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1 Introduction

A successful approach to statistical inference in econometrics models is based on the use of

a compatibility index between the model and the data. Formally, this compatibility index

is expressed in terms of an Objective Function (OF, hereinafter) that takes an ideal value

when there is full agreement between the model assumptions and the data. Once the OF is

de�ned, all inferential procedures are related to it. Parameter estimators are the parameter

values that make the OF closest to the ideal value. Tests for correct speci�cation are based

on the di¤erence between the ideal value of the OF and the value it takes on the model. Tests

for parameter restrictions are based on the change in the OF derived from the imposition of

these restrictions.

Probably the most popular application of this approach are the Generalized Method

of Moments (GMM, henceforth) procedures employed in models de�ned by Conditional

Moment Restrictions (CMR, hereinafter). In these procedures, the OF is a function of

a �nite number of unconditional moment restrictions implied by the in�nite restrictions

that de�ne the model. The ideal value of the OF is zero and larger values for the OF

indicate larger discrepancies between the model assumptions and the data. Parameters are

estimated by the value that minimizes the OF. Speci�cation testing is carried out using the

overidentifying restriction test that rejects when the minimized value of the OF is statistically

di¤erent from zero.

The GMM approach has been criticized because CMR cannot be fully imposed by a �nite

number of unconditional restrictions. This problem a¤ects any aspect of statistical inference,

and in particular, both speci�cation testing and estimation. Regarding speci�cation testing,

the problem was early noticed, see Newey (1985) or Tauchen (1985), and it implies that

the overidentifying restriction test is inconsistent. To address this problem, Bierens (1982)

proposed an alternative speci�cation test based on a compatibility index that targets to

impose in the data an in�nite number of unconditional moments that are equivalent to the

CMR that de�ne the model. Bierens�test is the �rst example of a consistent speci�cation test

for CMR models. Since then, a great variety of speci�cation tests have been proposed based

on the same idea, see for instance, Bierens and Ploberger (1997), Stute (1997), Carrasco and

Florens (2000) and references therein. An important and common feature of all these tests

is that the parameters of the model are considered nuisance parameters, which are typically

substituted by some GMM estimator.

Regarding estimation, this problem has been overlooked until recently. Domínguez and
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Lobato (2004, DL hereinafter) have shown that it may result in inconsistency of the GMM

estimators. Speci�cally, DL showed that consistency of GMM estimators depends on the

particular model and on additional assumptions to the model, such as assumptions on the

distribution of the conditioning variables. As an alternative to GMM, DL have considered the

compatibility index employed by the consistent tests referenced in the previous paragraph as

an OF and de�ned the parameter estimator as its minimizing value. The resulting estimator,

which we call Consistent Method of Conditional Moment estimator, is always consistent,

irrespective of the model and of any additional assumption to the model.

The purpose of this article is to present a global methodology for performing consistent

statistical inference on CMR models by extending the results in DL. For model checking we

propose to use the value of their OF at its minimum. In this way, we recover the uni�ed

approach to inference, and relate in a natural way both parts of inference, estimation and

diagnostic testing. Note that the consistency of both the estimators and the speci�cation test

derives from the fact that the OF considers an in�nite number of unconditional restrictions

that fully impose the CMR.

In addition, the resulting speci�cation test presents two advantages over the existing

ones. The �rst one is its simplicity: the test is a by-product of the estimation procedure.

The second advantage concerns the behavior of the test under the null hypothesis: the

proposed test properly controls the type I error without further assumptions. Note that all

speci�cation tests regard the model parameters as nuisance, and need to replace them by

consistent estimators. However, the existing tests are very careful imposing the full model

de�nition only at the model checking stage, and not at the estimation stage. As a result,

the estimators are consistent only under additional assumptions. If these assumptions do

not hold, the tests will not control the type I error.

Concerning the behavior under the alternative, it is a common belief that more powerful

tests are obtained by replacing the nuisance parameters by e¢ cient estimators. This would

suggest that more powerful tests could be constructed by evaluating our OF at the e¢ cient

GMM estimators rather than at the estimator proposed in DL. However, notice that e¢ -

ciency of the estimators holds just under the null hypothesis, whereas power is a property

under the alternative. Therefore, in general, such a test would not be more powerful (besides

this test would be computationally more costly and would not properly control the type I

error).

In summary, this article complements the results in DL and establishes an approach that

produces consistent estimators and tests that control the type I error and are simultaneously
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consistent for CMR models. With our approach we recover the traditional econometric

spirit of basing all inference on just one compatibility index, linking naturally estimation

and hypothesis testing, see for instance, Davidson (2000)2.

The plan of this note is the following. In Section 2 we present the testing framework,

introduce our test statistic and comment on related tests. Section 3 states the asymptotic

properties of the test. Since the asymptotic distribution of the proposed test is case depen-

dent, it cannot be automatically implemented. In Section 4 we propose a feasible imple-

mentation of the test that employs critical values obtained by a simple bootstrap procedure.

Section 5 concludes and establish some directions for further research.

2 Framework

In this section we will formally introduce our consistent speci�cation test and compare it

with related tests procedures. We will follow the notation in DL as close as possible. That

is, for all t; Zt is a time series vector and fYt; Xtg are two subvectors of Zt (that could
have common coordinates), where Yt is a k-dimensional time series vector that may contain

endogenous and exogenous variables and a �nite number of these variables lagged and Xt

is a d�dimensional time series vector that contains the exogenous variables (again, a �nite
number of these variables lagged can be included). The coordinates of Zt are related by

an econometric model which establishes that the true distribution of the data satis�es the

following conditional moment restrictions

E(h(Yt; �0) j Xt) = 0; a:s: (1)

for a unique value �0 2 �; where � � Rm. Equation (1) de�nes the parameter �0 which is
unknown to the econometrician. The function h that maps Rk�� into Rl is supposed to be
known. In general, h(Yt; �0) can be understood as the errors in a multivariate nonlinear dy-

namic regression model; for instance, h(Yt; �0) are called generalized residuals in Wooldridge

(1990). In this paper, for simplicity, we will consider the case where l = 1: This model has

been repeatedly considered in the econometrics literature and several estimators have been

proposed, see references in DL.

2�All the usual optimization estimators share the feature that the value of the expected criterion function

at the minimum is an indicator of goodness of �t�(Davidson, 2000, p.221).
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In this article, we consider testing whether model (1) is correctly speci�ed. Speci�cally,

we consider as null hypothesis

H0 : E(h(Yt; �0) j Xt) = 0; a:s:

for a unique value �0 2 �; where � � Rm; and the alternative hypothesis is that for any �

HA : P (E(h(Yt; �) j Xt) = 0) < 1 a:s::

As mentioned in the introduction, it is well known that the GMM overidentifying re-

striction test is not consistent for our null hypothesis because it just tests the validity of

an arbitrary �nite number of unconditional restrictions (from the in�nite implied by the

conditional expectation (1)). Note that the problem is not the selection of some arbitrary

(vs. optimal) instruments, as the examples in DL show, but the use of a �nite number of

instruments. In order to avoid this problem, Bierens (1982, 1990), Bierens and Ploberger

(1997) or Stute (1997), among others, proposed tests which employ an in�nite number of

unconditional moments. However, note that those references do not consider inference as

a whole, but they just focus on the model check stage. Then, since the parameters of the

model are nuisance for model checking, they propose to replace these parameters by consis-

tent estimators, without discussing carefully the estimation stage. As a result, the proposed

tests may not control properly the type I error, as we show next. Assume that H0 holds but

the true value �0 is estimated with an inconsistent estimator �̂ which converges in probability

to the random variable S: Then, these tests check whether E(h(Yt; S) j Xt) = 0; a:s:; which

may be false, although H0 holds. Therefore, under H0; these tests will reject asymptotically

more often than the speci�ed theoretical level. In particular, the examples presented by DL

can be worked out further to show that the GMM estimator converges to �0 with probability

p and to some other parameter values � 6= �0 with probability 1� p: In this particular case,
the asymptotic type I error of the tests that employ the GMM estimator is �p+(1�p) where
� is the desired nominal size. This example illustrates that, unless additional assumptions

are imposed, these tests do not control properly the level.

Next, we describe our test procedure. We propose a testing procedure that uses the

whole information about �0 contained in expression (1). Let PX be the probability law of

Xt and let I(Xt � x) denote the indicator function that equals 1 when each component in
Xt is less or equal than the corresponding component in x; and equals 0 otherwise. DL used

the compatibility index

Q(�) =

Z
Rd
E(h(Yt; �)I(Xt � x) j Xt)

2dPX (x) (2)
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which is 0 at �0 only if the conditional moment restrictions hold. DL proposed estimating

�0 by b� = argmin
�2�

Qn(�);

where Qn(�) is the sample analog of Q (�) ; namely,

Qn(�) =
1

n3

nX
`=1

 
nX
t=1

h(Yt; �)I(Xt � X`)

!2
:

DL showed that this estimator is consistent. Following the discussion in the introduction, a

natural goodness of �t test procedure is based on evaluating the distance of the previously

minimized objective function to zero (note that zero is the value of the population analogue

ofQn(�) if the model is correctly speci�ed). Hence, in order to avoid a degenerate asymptotic

null distribution, the proposed test statistic is Tn = nQn(b�).
As an additional point, notice that instead of plugging in b�, that is, a consistent, but

ine¢ cient, estimator, one could propose to employ as test statistic T (2)n = nQn(e�), where e�
is an e¢ cient estimator, such as the one proposed in Section 4 in DL. As mentioned in the

introduction, the comparison between Tn and T
(2)
n should be carried out under the null and

under the alternative. Under the null, T (2)n may not control the type I error. Even when

both tests control properly the type I error, under the alternative, T (2)n does not lead to

a more powerful test. The reason is clear: e¢ ciency of e� is a property derived under the
null hypothesis, assuming that the speci�ed model is correct, whereas power refers to the

behavior of the statistic under the alternative hypothesis. The following example illustrates.

Consider the model yi = g(xi)=
p
n+ ui, where ui is N(0; 1) and xi takes three values �1; 0

and 1; with probabilities p1; p2 and 1 � p1 � p2. For the null hypothesis g(xi) = 0; it can

be shown that, in general, against local quadratic alternatives, Tn dominates T
(2)
n , whereas

for local linear alternatives T (2)n dominates Tn. In particular, in Figure 1, we have plotted

in black the combinations of (p1; p2) where Tn has more power that T
(2)
n , for alternatives of

the form g(xi) = ax
2
i , with a > 0. From this plot it is clear that Tn dominates T

(2)
n unless

p1 takes high values and p2 is low. In practice, Tn has the additional advantage of being

computationally simpler.

In order to derive the asymptotic theory, it is useful to rewrite the statistic in terms of

the rescaled integrated regression function that can be seen as a marked empirical process

with marks given by h(Yt; �): That is, introduce the following empirical process

Rn(�; x) = n
�1=2

nX
t=1

h(Yt; �)I(Xt � x):
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Then, we can write

Tn =
1

n

nX
`=1

Rn(b�;Xl)
2

so that our statistic can be seen as a Cramer von Mises statistic applied to the marked

empirical process Rn(b�; x):
In the next section we state the asymptotic theory for this test statistic. Since the

asymptotic distribution is case-dependent, in Section 4 we propose to employ the bootstrap

to estimate the asymptotic critical values.

3 Asymptotic Theory

Let j�j denote the Euclidean norm in the corresponding Euclidean space, and assume that

all the considered functions are Borel measurable. The following set of assumptions are

referred to as assumptions A. These assumptions are slightly weaker than the assumptions

in DL, but are su¢ cient for the results in DL to hold, see Escanciano (2006).

Assumption A1. h(y; �) is continuous in � for each y in Rk, jh(Yt; �)j < k(Yt) with

Ek(Yt) <1 and E(h(Yt; �) j Xt) = 0 a:s: if and only if � = �0.

Assumption A2. Zt is ergodic and strictly stationary.

Assumption A3. � � Rm is compact.
Assumption A4. h(y; �) is once continuously di¤erentiable in a neighborhood of �0

and satis�es that E
�
sup�2@0

���� �h(Yt; �)����� < 1 where @0 denotes a neighborhood of �0 and
�
h(Yt; �) = @h(Yt; �)=@�:

Assumption A5. h(Yt; �0) is a martingale di¤erence sequence with respect to fZs, s � tg :
Assumption A6. �0 2 int(�):
Assumption A7. E (h2(Yt; �0)) <1:
DL established that under the null hypothesis

p
n(b� � �0)!d �

�1
�
H

�
H0
� �
HB�

, (3)

where � �
H

�
H0
=
R �
H

�
H 0dPX1 ; � �

HB�
=
R �
HB�dPX1 ; with

�
H(x) = E(

�
h(Yt; �0)I(Xt � x)) and

B� denotes a centered Gaussian process in D[R]d (where D[R]d is the space of real functions
that are continuous from above and with limits from below), with covariance structure

given by �(r; s) = E(h2(Yt; �0)I(Xt � r ^ s)): Note that, when h is homoskedastic and
d = 1, B� particularizes to a scaled Brownian motion. In addition, notice that (3) reminds
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similar properties satis�ed by popular estimators such as nonlinear least squares or GMM

estimators. The di¤erence with them is that, in our case the involved variables (�regressors�

and errors or generalized residuals) are partial sum processes instead of raw variables.

Using the previous results, we can derive the following properties of Tn. These theorems

are straightforward, given the results in DL and in Escanciano (2006), and so, their proofs

are omitted.

Theorem 1. Under assumptions A and the null hypothesis

Tn !d

Z �
B� +

�
H 0��1�

H
�
H0
� �
HB�

�2
dPX1 :

Remark 1. Note that the covariance structure of the process B� +
�
H 0��1�

H
�
H0
� �
HB�

is given

by

� (t; s) = � (t; s) +
�

H 0 (t)��1�
H

�
H0
�0�
H
0
�
(s) + � �

H0�
(t) ��1�

H
�
H0

�
H 0 (s)

+
�

H 0 (t)��1�
H

�
H0

�Z
_H 0 (u) � (u; v) _H (v)PX1 (du)PX1 (dv)

�
��1�
H

�
H0

�
H (s) ;

where � �
H
0
�
(s) =

R
_H 0 (u) � (u; s) dPX1 (u) : Therefore, the critical values of the test statistic

Tn depend on the data generating process (DGP), complicating statistical inference.

Concerning the behavior under the alternative, it is straightforward to show that the test

statistic Tn diverges under �xed alternatives. Under a sequence of local alternatives, such

as

HA;n : E(h(Yt; �0) j Xt) =
g(Xt)p
n

a:s:

note that �0 still minimizes (2). Therefore, we have the following result.

Theorem 2. Under assumptions A and under a sequence of local alternatives

p
n(b� � �0)!d �

�1
�
H

�
H0
� �
H(B�+G)

,

where � �
H(B�+G)

=
R �
H(B� +G)dPX1 ; G(x) = E(g(X)I(X � x)); and

Tn !d

Z �
B� +G+

�
H 0��1�

H
�
H0
� �
H(B�+G)

�2
dPX1.

Notice that the asymptotic distribution of Tn under HA;n is a Gaussian process centered

at the function G +
�
H 0��1�

H
�
H0
� �
HG
; where � �

HG
=
R �
HGdPX1 : Note that the structure of

the asymptotic distribution is essentially equivalent to the structure of the tests proposed

8



in Bierens and Ploberger (1997) and Stute (1997). These papers prove that the exis-

tence of this bias, G, is all that is needed to show that the probability of rejecting un-

der HA;n is larger than �: In particular, denote T0 =
R �

B� +
�
H 0��1�

H
�
H0
� �
HB�

�2
dPX1 and

T =
R �

B� +G+
�
H 0��1�

H
�
H0
� �
H(B�+G)

�2
dPX1 : Then, it is straightforward to show that for

any t; we have that P (T0 > t) < P (T > t) ; so the next theorem follows.

Theorem 3. Under assumptions A, Tn test has nontrivial power against a sequence of

local alternatives HA;n.

Finally, Bierens and Ploberger (1997) show that this kind of test enjoys optimality prop-

erties: a sequence of local alternatives, which depend on the spectral decomposition of the

bilinear operator � de�ned in Remark 1, can be de�ned such that Tn is asymptotically equiv-

alent to a likelihood ratio underH0. On the other hand, under regularity conditions it can be

shown that
p
n(b�� �0) is asymptotically equivalent to ��1�

H
�
H0

�
n�1=2

P
t� _H0� (Xt)h (Yt; �0)

�
,

where � _H0� (x) =
R
_H 0 (u) 1 (x � u) dPX1 (u) : Therefore, the optimality results in Stute

(1997) also apply to Tn.

4 Bootstrap test

Since � depends on the DGP, the asymptotic distributions of both Rn (�; x) and Tn gener-

ally also do. Hence, the theory established in the previous section cannot be automatically

applied for statistical inference because there are not generally valid critical values. There

are two approaches to constructing feasible tests: to estimate the critical values using the

bootstrap or to obtain an asymptotically distribution free test statistic via a martingaliza-

tion. Koul and Sakhanenko (2005) report that in �nite samples, tests based on the bootstrap

control worse the type I error, although they have more empirical power. We prefer to follow

the bootstrap approach for three reasons. First, the bootstrap test preserves the optimality

properties of the original unfeasible test, see Domínguez (2004). Second, the bootstrap test

is valid under heteroskedasticity of any form and it is not a case speci�c procedure. Finally,

it is unclear whether the martingalization approach would lead to abandon the unifying

inference approach advocated in this article.

Next, we explain and justify the proposed bootstrap-based test procedure. Recall

Rn(b�; x) = n�1=2 nX
t=1

h(Yt;b�)I(Xt � x);
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so that,

Rn(b�; x) = R1n(�0; x) +R2n(b�; x);
where

R1n(�; x) =
1p
n

nX
t=1

h(Yt; �)I(Xt � x); R2n(�; x) =
1p
n

nX
t=1

�
h(Yt; �

�)(� � �0)I(Xt � x)

and �� is intermediate between b� and �0. R1n is the process that a test would use for
model checking when the parameters are known, while R2n corrects R1n for the e¤ect of the

estimation of the model parameters. Then, using (3), we de�ne

R�n(
b�; x) = R�1n(b�; x) +R�2n(b�; x)

where

R�1n(
b�; x) = 1p

n

nX
t=1

h(Yt;b�)I(Xt � x)Wt; and R�2n(b�; x) =
�b�

H(x)0b��1�
H

�
H0
b� �
HB�

;

where b�
H(x) =

1

n

nX
s=1

�
h(Ys;b�)I(Xs � x);

b� �
H

�
H0
=
1

n

nX
k=1

b�
H(Xk)

b�
H

0

(Xk); b� �
HB�

=
1

n

nX
k=1

b�
H(Xk)R

�
1n(
b�;Xk);

and where fWtg is a sequence of independent random variables with zero mean, unit variance
and bounded support. The main idea is to estimate the distribution of

p
nRn

�b�; x� by the
distribution of

p
nR�n

�b�; x�, and hence to estimate the distribution of Tn by the distribution
of T �n , de�ned by

T �n =
1

n

nX
`=1

R�n(
b�;Xl)

2: (4)

This procedure has been called a wild or external bootstrap, see Wu (1986), Mammen

(1993) and Delgado and Fiteni (2002) for applications in econometrics.

Remark 2. Note that the standard bootstrap approach, based on constructing a boot-

strap sample (Y �t ; Xt) from resampling the residuals, cannot be followed. The reason is that

Y �t would be de�ned as the implicit solution of the equation Wth(y;b�) = 0. However, this
solution may not exist or may not be unique.

Remark 3. The wild bootstrap proposed in (4) is original in speci�cation testing. Dif-

ferent authors have proposed wild bootstrap procedures in similar contexts, see for instance,
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Stute, González-Manteiga and Presedo-Quindimil (1998) or Dominguez (2004). In these ref-

erences, the bootstrap procedure is asymptotically equivalent to resampling a complicated

process, which can not be regarded as a marked empirical process because of the particular

form of the corresponding term R2n. On the contrary, in our case both the estimator and

the test statistic are de�ned in terms of the same process R1n (�; x). Consequently, the

e¤ects of the errors in Tn are fully summarized in R1n (�; x), and hence, only this simple

marked empirical process has to be resampled. As a result, in order to bootstrap Tn; the

wild bootstrap only involves R�1n(b�; x), which is just the marked empirical process that one
would consider in case the parameters were known.

The next theorem establishes the consistency of the bootstrapped process
p
nR�n

�b�; x�.
This means that asymptotically the probability law of

p
nR�n

�b�; x� given the data Xn is the
null asymptotic distribution of

p
nRn

�b�; x� for almost all samples.
Theorem 4. Under assumptions A,

p
nR�n

�b�; x�)� B� +
�
H 0��1�

H
�
H0
� �
HB�

a:s:,

where )� a:s: denotes weak convergence almost surely under the bootstrap law, that is,

P (
p
nR�n

�b�; x� � s j Xn)!a:s: P (B� +
�
H 0��1�

H
�
H0
� �
HB�

� s) as n!1

plus tightness a.s.

Therefore, the asymptotic distribution of
p
nRn

�b�; x� can be estimated with that of
p
nR�n

�b�; x�. Similarly, the asymptotic distribution of Tn can be estimated with that of
T �n . In fact, a straightforward application of the Continuous Mapping yields the following

corollary.

Corollary. Under assumptions A,

T �n )�

Z �
B� +

�
H 0��1�

H
�
H0
� �
HB�

�2
dPX1 a:s::

This corollary justi�es the estimation of the asymptotic critical values of Tn by those

of T �n : In practice, the critical values of T
�
n are approximated by simulations. Hence, the

proposed general bootstrap test consists in the following steps:

a) Calculate the test statistic Tn:

b) Generate fWtg a sequence of n bounded independent random variables with zero

mean and unit variance. This sequence is serially independent and is also independent of

the original sample Xn:
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c) Compute
p
nR�n

�b�; x� and T �n .
d) Repeat steps b) and c) B times where in step b) each sequence fWtg is independent

of each other. This produces a set of B independent (conditionally in the sample) values of

T �n that share the asymptotic distribution of Tn.

e) Let T �[1��] be the 1 � ��quantile of the empirical distribution of the B values of T �n .

The proposed test of nominal level � rejects the null hypothesis if Tn > T �[1��]:

The corollary establishes that under the null hypothesis, Tn and T �n share the same as-

ymptotic distribution for almost all samples. Hence, under the null, the rejection probability

of the bootstrap test converges to � (the theoretical level). In addition, using arguments

similar to Domínguez (2004), it can be shown that the proposed bootstrap does not alter

the critical region. Therefore,

P (Tn > T
�
[1��])!

8>><>>:
� under the null,

1 under the alternative,

C under the sequence of local alternatives,

where � < C < 1. Hence, the proposed bootstrap test has an � asymptotic level, it

is consistent, it is able to detect alternatives tending to the null at the n�1=2 rate, and

preserves admissibility.

5 Conclusions

In this article we have proposed a consistent speci�cation test for models de�ned by CMR.

Together with DL, this article provides a simple uni�ed methodology for performing consis-

tent statistical inference for CMR models. Consistency derives from the use of a compati-

bility index that takes into account an in�nite number of unconditional restrictions, which

fully impose the de�nition of the model. Our approach highlights the importance of the esti-

mation stage in the model checking stage, an issue that has been overlooked in the previous

literature.

Compared to closely related existing tests, there are three main di¤erences. The �rst is

that our test is a part of a uni�ed approach, as mentioned above. The second is that either

the model or the assumptions of the rival tests are di¤erent from ours. Finally, the uni�ed

approach allows us to de�ne a new bootstrap procedure for estimating the critical values.
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