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Abstract

Since the seminal paper by Dickey and Fuller in 1979, unit-root tests have condi-
tioned the standard approaches to analyse time series with strong serial dependence
in the mean behavior, the focus being placed in the detection of eventual unit roots in
an autorregressive model …tted to the series. In this paper we propose a completely
di¤erent method to test for the type of long-wave patterns observed not only in unit
root time series but also in series following more complex data generating mechanisms.
To this end, our testing device analyses the trend exhibited by the data, by imposing
very few constraints on the generating mechanism. We call our device the Range Unit
Root (RUR) Test since it is constructed from the running ranges of the series. These
statistics endow the test with a number of desirable properties, among which its error-
model-free asymptotic null distribution, the invariance to monotonic transformations
of the series, and the robustness to the presence of parameter shifts and additive out-
liers. Moreover, the RUR test outperforms the power of standard unit root tests on
near-unit-root stationary time series and is asymptotically immune to noise.

Key Words: Unit Roots Tests, Structural Breaks, Nonlinearity, Additive Out-
liers, Near-Unit Root Time Series, Invariance, Robustness, Running Ranges, Noise
Immunity.
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1 Introduction

Many overwhelming low-frequency non-periodic components in time series are
associated with the presence of unit roots in their Data Generating Process
(DGP). Such time series are said to be integrated. The pioneering work of
Nelson and Plosser (1982) led to the belief that many economic time series were
best described in this way. This promted a large amount of research on unit
root time series, covering both theoretical and empirical aspects. The unit root
paradigm has important practical implications since it entails that shocks have
a permanent e¤ect on a variable, or equivalently that the ‡uctuations they cause
are not transitory.

The existence of unit roots in time series is investigated by means of unit
root tests. The application of standard unit root tests, such as the Dickey-Fuller
(DF hereafter) test (Dickey and Fuller, 1979), has been an important step in
the construction of a useful parametric model for many economic time series.
In a one-sided DF test, the null hypothesis of a unit root in a series xt, say H0 :
(1¡B)(xt¡¹t) = »t, is tested against the alternative H1 : (1¡½B)(xt¡¹t) = »t

with j½j < 1, where ¹t denotes the mean of xt. If the alternative is rejected then
xt is supposed to follow a unit root time series model.

Unit root time series models impose, however, severe restrictions on the
DGP’s of the data. Many real world time series exhibit nonlinearities, outliers,
and structural breaks either in the mean or in the variance. All these features,
which cannot be properly captured with random-walk-like models, fool standard
unit root tests (see for instance, Granger and Hallman,1991, and Ermini and
Granger, 1993).

Alternative procedures for testing unit roots were proposed by Lo (1991),
Kwiatowski et al. (1992), Stock (1994) and Bai and Perron (1998). Yet, they
were reported to have poor power performances when confronted to deviations
from the standard linear context (see for example, Sims, 1988; Perron, 1989;
Perron, 1990; Schotman and Van Dijk, 1991; 1995a).

The appropriate handling of such departures as parameter shifts, trend
breaks and nonlinearities calls for the development of robust unit root tests.
The rejection of the unit root hypothesis by standard tests together with the
acceptance of a wider null by a robust testing procedure may be more than
enough to justify the search for a competing nonlinear time series model.

In general, the nonparametric avenue of research have deserved little atten-
tion in unit root testing problem. As an example, Burridge and Guerre (1996)
proposed a nonparametric unit root testing device based on the di¤erent be-
havior of the level crossings of stationary series and random walks. However
the rather poor results reported by these authors and their subsequent gloomy
conclusions may have discouraged further research on such approaches.

In this paper, we try to provide evidence of the opposite by presenting a
nonparametric Range Unit Root (RUR hereafter) test whose superiority with
respect to the standard approaches is remarkable. First, it is invariant to mono-
tonic transformations and to the distribution of the model errors. Second it is
robust against structural breaks, parameter shifts and additive outliers. Third,
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it does not depend on the variance of any stationary alternative and thereby
outperforms standard tests also in terms of power on near-unit-root stationary
time series. Finally, the RUR test is not a¤ected asymptotically by the presence
of additive noise on the series.

The RUR test is a natural follow-up of the methodology proposed in Aparicio
(1995a), in Aparicio and Granger (1995b) and in Aparicio, Escribano and Garcia
(2000) for robustizing cointegration tests, recently extended to unit root test-
ing with some empirical applications in Aparicio, Escribano and Garcia (2002).
The structure of the paper is as follows. In Section 2 we explain the heuristics
which motivate the proposed methodology. This will lead us to de…ne the RUR
test in Section 3, where we also discuss its small sample behavior under the
null hypothesis of a single unit root. Section 5 deals with the asymptotic null
distribution of the test while Section 6 studies its power performances and its
consistency against both stationary, integrated and trending alternatives. Sec-
tion 7 analysis the behavior of test under di¤erent departures from the standard
unit root tests’ assumptions. Finally, after the concluding remarks in Section 8,
an appendix is devoted to the proofs of the main theoretical results.

2 Time Series Analysis based on Ranges

Many time series not generated by unit-root models exhibit similar mean behav-
ior to those which are. The objective of this section is to investigate alternative
procedures for assessing the presence of unit-root like features, not necessarily
caused by unit roots. We will begin by studying the behavior of the sequence
of running ranges in both stationary and random walk time series.

The range of a data sample is de…ned in terms of its extremes. Formally,
for a given time series xt, the statistics x1;i = min fx1; ¢ ¢ ¢ ; xig and xi;i =
max fx1; ¢ ¢ ¢ ; xig are called the i-th extremes (see for instance Galambos, 1984).
When the sample comes from a time series xt, a monotonically increasing se-
quence of ranges can be obtained as R

(x)
i = xi;i¡x1;i, for i = 1; 2; 3; ¢ ¢ ¢ ; n, where

n denotes the sample size. The total number of “new extremes” or records in a
sample of size n is given by the quantity

Pn
i=1 1(¢R

(x)
i > 0); where 1(:) is the

indicator function.
It can be shown that the long-run frequency of new records, n¡1

Pn
i=1 1(¢R

(x)
i >

0); vanishes faster for stationary time series than for series containing a unit root
-these latter series are often referred to as integrated “of order 1”, or brie‡y as
I(1): In particular, for i:i:d: sequences of random variables we have (see for
instance Embrechts, Klüppelberg and Mikosch, 1999):

n¡1
nX

i=1

1(¢R
(x)
i > 0) = O(n¡1 log n):

This result still holds for stationary series satisfying the so-called “Berman
condition”, which requires the covariance sequence of the series fci = Cov(xtxt+i)gi¸1
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to decrease faster than (log i)¡1, that is ci log i ! 0 as i ! 1 (see Lindgren
and H. Rootzén, 1987)1. As it will be shown later in this paper, the long-run
frequency of new records for I(1) time series decreases at the slower rate of
n¡1=2:

Figures 1, 2, 3 and 4 show respectively the sequences of running ranges
corresponding to a realization of a random walk process yt = yt¡1 + et; where
et » Nid(0; 1) (Figure 1), a stationary Gaussian AR(1) process yt = 0:5yt¡1 +et

(Figure 2), an AR(1) process yt = 0:5yt¡1 +»t where the model errors »t follow a
Student-t distribution with 5 degrees of freedom (Figure 3), and …nally the same
model with »t following a Cauchy distribution (Figure 4). We remark that for
the random walk, the sequence of running ranges escalates inde…nitely, whereas
it does not in the other cases. The two latter …gures show that thick-tailed
error distributions or mere in…nite variance do not imply the divergence of the
running ranges. Such a divergence is rather caused by strong serial dependence.
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Figure 1. Sequence of running ranges for a Gaussian random walk process
yt = yt¡1 + et; where et » Nid(0; 1).
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Figure 2. Sequence of running ranges for the Gaussian stationary AR(1)
process yt = 0:5yt¡1 + et; with et » Nid(0; 1).

1 Any time series with exponentially decaying covariances satis…es the “Berman condition”.
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Figure 3. Sequence of running ranges for the AR(1) process yt = 0:5yt¡1 + »t;
where »t is an i:i:d: sequence of random variables with a Student-t distribution

with 5 degrees of freedom.
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Figure 4. Sequence of running ranges for the AR(1) process yt = 0:5yt¡1 + »t;
where »t is an i:i:d: sequence of random variables with a Cauchy distribution.

Figures 5 and 6 illustrate the same fact by showing an estimate of the long-
run probability of new records: The probability was estimated from 1000 repli-
cations and for a sample size of n = 1000: Remark that when xt is a stationary
AR(1) series this probability estimate goes to zero for increasing t faster than
when xt is a random walk. Thus the presence of a long-wave pattern in the
series seems to be related to a higher persistence of records.
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Figure 5. Estimate of P
³

¢R
(x)
t > 0

´
versus t when xt = 0:6xt¡1 + ²t and

²t » Nid(0; 1).
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Figure 6. Estimate of P
³

¢R
(x)
t > 0

´
versus t when xt = xt¡1 + ²t and

²t » Nid(0; 1).

Another equivalent aspect of the previous property is captured by the mean
interarrival times between consecutive records. Records show up as jumps in
the sequence of running ranges. Figures 7 and 8 show respectively the mean
interarrival times between the …rst 50 consecutive maxima for a random walk
yt = 0:5yt¡1 + et, and for a stationary AR(1) time series generated by the
model yt = 0:5yt¡1 + et; where et » Nid(0; 1) in either case. The mean jump
interarrival times were estimated from 1000 replications of the various models,
each with a sample size of n = 1000: The …gures clearly show how the sequence of
interarrival times is stable for a random walk, while it explodes for the stationary
AR(1) process. Therefore new records become increasingly rare for the latter,
but do persist in time series with a unit root.
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Figure 7. Mean interarrival times between the …rst 50 consecutive maxima of
the Gaussian random walk process yt = yt¡1 + et; where et » Nid(0; 1):

6



1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

Figure 8. Mean interarrival times between the …rst 50 consecutive maxima of
the Gaussian AR(1) process yt = 0:5yt¡1 + et; where et » Nid(0; 1):

3 A Range Unit Root (RUR) Test

In this section we present the test statistic upon which the proposed unit root
testing methodology is based. Then we analyse its small-sample behavior under
the null hypothesis of a single unit root, provide some asymptotic results con-
cerning this behavior, and …nally, study its small-sample power performances
against stationary AR(1) alternatives.

3.1 The test statistic

In the sequel we will consider the statistic J(n) de…ned below for testing the
null hypothesis of a random walk xt = xt¡1 + ²t where the errors f²igi¸1 are
a sequence of i:i:d: random variables having zero mean and variance ¾2

² . The
corresponding testing device will be referred to as the Range Unit Root (RUR
hearafter) test.

J(n) = n¡1=2
nX

t=1

1(¢R
(x)
t > 0): (1)

The statistic J(n) can be interpreted as a measure of the errors committed
in predicting the range of xt at t, R

(x)
t , by means of its value at time t ¡ 1,

R
(x)
t¡1. As the sample size approaches in…nity, J(n) yields a global measure of

the one-step-ahead range prediction errors, that is of the divergence rate of the
range sequence for xt.Notice also that n¡1=2J(n) represents the proportion of
these prediction errors in a sample of size n; while n1=2J(n) is the number of
records of the time series xt up to time n:

Given the non-ergodic nature of xt under the null hypothesis, the normalized
number of records in the sample, J(n); does not converge to zero but to a
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non-degenerate random variable, as it will be shown later. On the contrary,
when xt » I(0), J(n) converges in probability to zero. This means that when
xt » I(0), R

(x)
t¡1 is a more e¢cient predictor of R

(x)
t than when xt contains a unit

root. Consequently, the test statistic J(n) will be expected to take comparatively
large values for I(1) time series while small for I(0) time series. Farther in the
paper we will show also that this test is either robust or invariant to a number
of departures from the null hypothesis.

3.2 Small-sample behavior under the null

Summary statistics for J(n) under the null hypothesis are given in Table 1 for a
sample size of n = 1000, and for Nid(0; 1) errors. The estimates were obtained
from 10000 replications of the null model xt = xt¡1 + ²t.

Summary Statistics minimum maximum mean median std. dev.
Sample estimates 0.80 4.65 2.11 2.02 0.63

Table 1.

Table 2 shows estimates of the critical values of J(n) obtained from 10000
replications of the null model, and for eigth di¤erent sample sizes and six sig-
ni…cance levels (® = 0:01; 0:025; 0:05; 0:10; 0:90; 0:95).

® j n 100 250 500 1000 2000 3000 4000 5000

0:01 0.9 0.9391 1.0119 1.0435 1.1180 1.1502 1.0594 1.0465

0:025 1.0 1.0752 1.1180 1.2333 1.1404 1.1502 1.2491 1.1031

0:05 1.1 1.2017 1.2075 1.2649 1.2746 1.3145 1.3123 1.3152

0:10 1.3 1.3282 1.3416 1.3598 1.2969 1.3510 1.3756 1.4425

0:90 2.8 2.9725 2.9963 3.0990 3.2870 2.9212 3.0042 2.7577

0:95 3.1 3.2888 3.3541 3.3520 3.6001 3.2498 3.3046 3.1396

Table 2.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
1.1

1.15

1.2
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1.35

8



Figure 9. Convergence of the empirical critical values of J
(n)
0 as n

increases.

Figure 9 shows the convergence of the 5%-level empirical critical values of
J(n) (vertical axis) towards the asymptotic values with increasing sample size
(horizontal axis), while Figure 10 shows the empirical density of J(n) estimated
by kernel smoothing, again under the null hypothesis of a random walk with
Nid(0; 1) errors. The estimates were obtained from 1000 replications and for
di¤erent sample sizes using the Epanechnikov kernel (see for example Silverman,
1986 and Hardle, 1990), which is optimal in the Mean-Square Error (MSE)
sense2.

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Kernel Density of J0 of Random Walk series

n=100
n=500
n=1000

Figure 10. Plot of the empirical density of J
(n)
0 under the null hypothesis

H0 : xt = xt¡1 + ²t, where ²t » Nid(0; 1). The density was estimated using
the Epanechnikov kernel on di¤erent sample sizes.

4 Asymptotics
A basic result regarding the behavior of the records of a random walk is that
the long-run frequency of these records is equal to zero. Proposition 1 formally
establish this result, which is proved in the Appendix and will be used subse-
quently. This proposition relies on an already classical set of conditions for the
model errors f²igi¸1 proposed by Phillips (1987).

2

The density of J
(n)
0 was estimated as:

f̂h(x) =
1

nh

nX
i=1

K

µ
x ¡ xi

h

¶
;

with K(:) given by K(u) = 3
4

(1 ¡ u2)1(juj · 1):
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C1. E(²t) = 0:

C2. supt E(j²tjp) < 1 for some p > 2:

C3. 0 < ¾2 = limn!1 E
h
n¡1 (

Pn
i=1 ²i)

2
i

< 1:

C4. f²tg1
t=1 is strong mixing with mixing coe¢cients f®mg1

m=1 satisfying
P1

m=1 ®
1¡2=p
m <

1:

Assumption C2 allows the possibility of heteroskedastic errors by just requir-
ing the …niteness of the higher order moments of the innovations. Condition C3
imposes bounds on the long-run variance of xn under the null hypothesis. The
lower bound rules out pathological cases such as I(¡1) processes. Finally, as-
sumption C4 allows trading an increasing degree of temporal dependence against
a decreasing degree of heteroskedasticity (and viceversa) in the process.

Proposition 1 Let xt = xt¡1 + ²t where f²tgt¸1 satis…es assumptions C1-C4,
and let xt;t = maxfx1; :::; xtg and x1;t = minfx1; :::; xtg: Then we have

lim
t!1 P (xt = xt;t) = lim

t!1 P (xt = x1;t) = 0: (2)

Proof. In Appendix A1.

A most important question is the appropriate scaling needed for the sequence
of partial sums

Pn
t=1 1(¢R

(x)
t > 0) in order to converge to a non-degenerate

random variable under the null hypothesis H0, as well as the distribution of such
a variable. Our main result establishes that under H0 the normalized sequence
of partial sums. J (n) = n¡1=2

Pn
t=1 1(¢R

(x)
t > 0) converges weakly to a random

variable whose pdf is the auto-convolution of the pdf of a Brownian local time
at zero. Under the alternative hypothesis of stationarity, and mediating very
mild restrictions on the degree of serial dependence of xt, the sequence of partial
sums

Pn
t=1 1(¢R

(x)
t > 0) diverges at a much lower rate, thus leading to J(n) as

n ! 1:

De…nition 2 (Local Time of a Brownian Motion Process) (Lévy, 1948)
Let B(:) represent a Brownian motion process in <, and let lB(x; t) be de…ned
as

lB(x; t) = lim
±#0

1

2±

Z t

0

1 [x ¡ ± · B(s) · x + ±] ds (3)

lB(x; t) is a continuous increasing process in x called the local time of B at x: It
measures the amount of time the Brownian motion spends in the neighborhood
of x. It can also be interpreted as the “spatial density” of the occupation timeR t

0
1 [x ¡ ± · B(s) · x + ±] ds:
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Theorem 3 Let xt =
Pt

i=1 ²i where f²igi¸1 :are continuous i:i:d: random vari-
ables with bounded and symmetric pdf , zero mean and …nite variance ¾2

² . Sup-
pose that x0 has also a bounded pdf and …nite variance. And let J(n) = J

(n)
1 +

J
(n)
2 with J

(n)
1 = n¡1=2

Pn
t=1 1(xt = xt;t) and J

(n)
2 = n¡1=2

Pn
t=1 1(xt = x1;t).

Then we have

1.

J
(n)
1 ) E fj²1jg

¾²
lB(0; 1) (4)

J
(n)
2 ) E fj²1jg

¾²
lB(0; 1) (5)

P
n

J
(1)
i · h

o
=

2r
2¼

³
Efj²1jg

¾²

´2

Z h

0

exp

0B@¡ u2

2
³

Efj²1jg
¾²

´2

1CA du; h ¸ 0; i = 1; 2

(6)

2.

J
(1)
1 and J

(1)
1 are independent random variables (7)

and

PfJ(1) < hg =
1

2
p

2¼

Z h

0

exp( ¡ v2+2

4
)[1 ¡ ©(v)]dv; (8)

where ©(:) is the probability distribution function of a standard Normal
random variable

3. If xt is a stationary Gaussian series with covariance sequence fci = Cov(xt; xt+i)gi

satisfying ci log i ! 0 as n ! 1 (Berman condition): Then we have

J(n) p! 0; (9)

and thus the RUR test is consistent against this sort of alternatives.

Proof. In Appendix A2.

To obtain the asymptotic null distribution of J(n) we proceed by …rst split-
ting it into two terms:

J(n) = n¡1=2
nX

i=1

1(¢R
(x)
i > 0)

= n¡1=2
nX

i=1

1(xi ¡ xi;i = 0) + n¡1=2
nX

i=1

1(xi ¡ x1;i = 0)

11



and then realizing that each term in this sum is the normalized number of
visits to the origin of the two I(1) processes with asymptotically i:i:d: innova-
tions:

yt = xt ¡ xt;t (10)

y0
t = xt ¡ x1;t: (11)

Figures 11 and 12 show a realization of these processes obtained from the
same random walk with i:i:d: Gaussian innovations with zero mean.
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Figure 11. Realization of the process yt = xt ¡ xt;t; where xt is a random walk
with Nid(0; 1) errors.

0 5000 10000 15000
0

50

100

150

200

250

300

350

400

Figure 12. Realization of the process y0
t = xt ¡ x1;t; where xt is a random walk

with Nid(0; 1) errors.

The I(1) nature of yt and y0
t allows the application of a result by Burridge

and Guerre (1996) for the asymptotic distribution of the normalized number
of level crossings of a random walk, and which leads straightforwardly to ours.
Quite interestingly, the asymptotic distribution of J(n) does not depend at all
on the innovations’ distribution (in particular of their variance, ¾2

² ), in spite
that such a dependence exists for the asymptotic distribution of J

(n)
i : This de-

pendence comes from the scaling factor a = Efj²jg=¾² which varies from one
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error distribution to another. For example, if the innovations ²t are Gaussian
then a =

p
2=¼, and thereby even the asymptotic distribution of the normal-

ized number of upper (or lower) records, J
(n)
1 (J

(n)
2 ); is una¤ected by errors’

variance, ¾2
² : However, this case is rather exceptional since for all other common

distribution the value of a is sensitive to its shape, or equivalently to the tails.
This is shown below for some typical error distributions with shape parameter
denoted by º.

Probability Distribution of Model Errors f²tgt¸1 a = Efj²jg
¾²

Student¡t with º degrees of freedom
q

º¡2
¼

¡( 1
2 (º¡1))
¡( º

2 )

Log-Normal 1p
exp(º2)¡1

Gamma ¡(c+1)p
c¡(c)

Weibull ¡( c+1
c )p

¡( c+2
c )

Therefore, in general, the asymptotic distribution of the statistics J
(n)
1 and

J
(n)
2 has di¤erent support depending on the shape of the model error distribu-

tion, which acts as a nuisance parameter. However, the asymptotic distribution
of our test statistic J(n) is “error-model-free”, and is therefore not a¤ected by
such parameters. This is contrast with the unit root testing device suggested by
Burridge and Guerre (1996), based on the number of crossings, which in fact,
not only does not improve DF’s performances but depends on these nuisance
parameters.

Another inmediate consequence of the error-model-free property of the RUR
test is that, contrary to the behavior of DF tests (see Hamori and Tokihisa,
1997), it is invariant to shifts in the model error variance.

To ensure the consistency of our test against general stationary alternatives
we need to impose a restriction on the amount of serial dependence of the
process. The following condition is similar in spirit (although much weaker) to
the strong-mixing condition and allows borrowing results from the asymptotic
theory of records for i:i:d: processes.

Condition 4 Let fxtgt¸1 be a stationary sequence of random variables with

Fi1;:::;in(u1; :::; un) = P fxi1 · u1; :::; xin · ung
representing its …nite-dimensional distribution function. Write Fi1;:::;in(u) =
Fi1;:::;in(u; :::; u) for economy of notation and de…ne

®n;l = max
©jFi1;:::;ip;j1;:::;jq (u) ¡ Fi1;:::;ip(u)Fj1;:::;jq (u)jª

with 1 · i1 < ::: < ip < j1 < ::: < jq · n; j1 ¡ ip ¸ l: The sequence fxtgt¸1 is
said to satisfy condition D(un) if there exists a sequence of numbers ln = o(n)
such that ®n;ln

! 0.
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Among the processes that satisfy the D(un) are the Gaussian processes sat-
isfying the so-called “Berman condition”. If xt is one such process then the joint
distribution of any …xed set of extreme statistics converges to the same limit as
if the variables were i:i:d: (Lindgren and Rootzén, 1987). As a consequence, we
must expect n1=2J(n) » O(log n), or equivalently, J(n) » O(n¡1=2 log(n)) ! 0
as n ! 1, and the consistency against this class of alternatives is proved: Re-
mark that the Berman condition is not very demanding, since it is satis…ed by
any process with exponentially decaying covariance function, among which are
all the stationary Gaussian ARMA processes. However, the Gaussian condition
seems to be too restrictive, since in our simulations the power of the RUR test
did not seem to vary signi…cantly on stationary alternatives with di¤erent error
distributions (such as Cauchy’s and the Student t).

The RUR test is also asymptotically immune to the presence of additive
noise in the series. The proposition below states formally this property. We will
use the following de…nition of an I(0) process proposed by Davidson (1998).

De…nition 5 A time series fstgt is I(0) if the process Sn de…ned on the unit
interval by

Sn(r) = ¾¡1
n

[nr]X
t=1

st ¡ ¾¡1
n [nr]E(st); 0 · r · 1; (12)

where ¾2
n = V ar fPn

t=1 stg, veri…es

Sn(r) ) B(r)

with fB(r)gr2[0;1] representing a standard Brownian motion on [0,1].

Proposition 6 Let xt be de…ned as xt =
Pt

i=1 ²i +st where f²igi¸1 is a family
of i:i:d:random variables with zero mean and …nite variance ¾2

² , and with st

representing an I(0) time series process in the sense of the previous de…nition.
Then

PfJ(1) < hg =
1

2
p

2¼

Z h

0

exp( ¡ v2+2

4
)[1 ¡ ©(v)]dv: (13)

Proof. See Appendix A3.

Figure 13 illustrates the noise immunity property of the RUR test by giving
the power curves as a function of the noise variance (horizontal axis), ¾2

s : For
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any …nite value of ¾2
s the power curves tend to collapse at the nominal size of the

test (here 5%) with increasing sample size. The same power curves are plotted
in Figure 14 for the DF test. These …gures suggest that for any …nite sample size
there is a threshold value for the noise variance beyond which the size distortion
in the DF case reaches its maximum. This is contrast with the RUR case for
which the size distortion increases very slowly with increasing noise variance
while approaching its nominal value with increasing sample size. Consequently,
in …nite samples, the amount of size distortion is remarkably larger for the DF
test than for the RUR test.
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Figure 13. Power curves of RUR test as a function of the noise variance, for
di¤erent sample sizes.
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Figure 14. Power curves of DF test as a function of the noise variance, for
di¤erent sample sizes.

If we let ½df denote the DF test statistic and let ½®; J® represent the critical
values of the DF and RUR tests, respectively, at the signi…cance level ®; then
the gain G(n; ¾2

s) in terms of size distortion o¤ered by the RUR test for a sample
size equal to n and a noise variance equal to ¾2

s could be measured by the ratio
of probabilities:

G(n; ¾2
s) =

1 ¡ P
n

J(n) < J®jxt =
Pt

i=1 ²i + st; var(st) = ¾2
s

o
1 ¡ P

n
½

(n)
df < ½®jxt =

Pt
i=1 ²i + st; var(st) = ¾2

s

o :

The aforementioned property of the RUR test statistic could then be ex-
pressed as:

lim
¾2

s!1;n!1
G(n; ¾2

s) = 1:

Figure 15 shows how the gain in noise immunity o¤ered by the RUR test over
the DF test increases with both increasing sample size and increasing variance
of the additive noise component.
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Figure 15. Gain in noise immunity of the RUR test over the DF test as a
function of the noise variance and for di¤erent sample sizes
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5 Power Performances and Consistency of the
Test

In this section we investigate the power performances of the RUR test and its
consistency against stationary, trending and integrated alternatives. First of
all, it is easy to show that the test is consistent against stationary alternatives.
To show it, recall from Section 2 that for such alternatives we can expect the
sequence of ranges to behave similarly as if xt was an i:i:d: sequence, that is:

n¡1
nX

i=1

1(¢R
(x)
i > 0) = O(n¡1 log n)

from where

J(n) = O(n¡1=2 log n):

Therefore the test is consistent since n¡1=2 log n ! 0 as n ! 1; while P (J(1) =
0jH0) = 0: A similar behavior applies on I(¡k) time series with k > 0 since the
degree of mean reversion is even more pronounced in this case. The following
simple device will allow to discriminate between the stationary and the inte-
grated case. Let B denote the delay operator and let ex(0)

t
¢
= xt: Note that if

xt » I(0) then the time series de…ned by ex(1)
t

¢
=

P1
j=0 Bjxt¡j is I(1): Similarly,

if xt » I(¡k) with k > 0 then k+1 will be the smallest positive integer such thatex(k+1)
t » I(1); or equivalently, such that J(n) does not vanish asymptotically.

By mere inversion of the argument, if k is the smallest nonnegative integer such
that the null hypothesis is not rejected on ex(k)

t then xt will very likely be I(¡k):
The small-sample power of the test against stationary AR(1) alternatives is

shown in Table 3 below using the estimated critical values at the 5% signi…cance
level, and from 10000 replications of the alternative model xt = b xt¡1 +²t, with
²t » Nid(0; 1). The autoregressive parameter b was allowed to take di¤erent
values (0:5; 0:8; 0:9) as well as the sample size n (100; 250; 500). The DF perfor-
mances appear in brackets.

n j b 0.5 0.8 0.9 0.95 0.99
100 0.8 (1) 0.6 (0.99) 0.5 (0.5) 0.4 (0.18) 0.12 (0.0375)
250 1 (1) 1 (1) 1 (1) 0.8 (0.7) 0.47 (0.0760)
500 1 (1) 1 (1) 1 (1) 1 (0.99) 0.72 (0.39)

Table 3.

These results show that the DF test outperforms the RUR test in only two
cases: (i) when the sample size is comparatively small (n = 100), and (ii)
when the autoregression parameter b is not close to the nonstationary border.
On near-unit root stationary time series, however, the RUR test outperforms
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remarkably DF test. This is not surprising knowing that unit root detection
procedures based on prediction errors have nearly optimal properties in the
vicinity of the null (see Sanchez, 2003).

The power curves are plotted in Figure 16 for three di¤erent sample sizes
(n = 100; 250; 500). The continuous and dotted lines correspond respectively
to the DF and the RUR test results.
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Figure 16. Plots of power estimates of the DF and RUR tests against
stationary Gaussian AR(1) series.

Therefore as compared to the DF test, the RUR test establishes a sharper
border between the null hypothesis of unit root and the stationary AR(1) alter-
natives. This can be explained by the invariance of the RUR test statistic J(n)

with respect to the …nite variance ¾2
x of the stationary alternative, and which

follows trivially from the fact that

1(¢R
(x)
t > 0) = 1(¾¡1

x ¢R
(x)
t > 0):

On trending alternatives, the RUR test is also consistent. To see this, we
invoke a classical result by Feller (1971) which states that on random walks
with nonzero drift, that is when ¹² = E(²t) 6= 0; the renewal counting process
of records N(t) =

Pt
i=1 1(¢R

(x)
i > 0) satis…es:

lim
t!1 t¡1N(t) = O(1):

As a consequence, J(n) = O(n1=2) ! 1 as n ! 1 under such alternatives.
A similar divergent behavior of the RUR test statistic occurs when xt » I(k)

with integration order k > 1; or when xt is a stationary time series ‡uctuating
around a deterministic trend. To distinguish between these two cases consider
the following time series models:

a) xt = xt¡1 + ²t with E(²t) = ¹² 6= 0:

b) xt = yt + ¹t where yt » I(0):
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Notice that under model a) ¢xt » I(0); while under model b) ¢xt » I(¡1):
So discrimination between model a) and b) is reduced to a previously solved
problem.

6 The RUR Test Statistic under Departures from
the Standard Assumptions

Another important property of the RUR test is its robustness to departures from
the standard assumptions. In this paper, we consider three types of departures:
a) when a stationary time series undergoes structural breaks; b) when I(1)
time series are corrupted by additive outliers; and c) when I(1) time series are
nonlinearly transformed. In the sequel we study the small sample behavior of
the RUR test in the presence of each of the above-mentioned departures from
the standard unit-root tests assumptions.

6.1 Stationary time series with level shifts

Many economic and …nancial time series such as in‡ation, nominal and real in-
terest rates can be trend-stationary with a structural break in the unconditional
mean which a¤ects the standard inferential procedures and often makes constant
coe¢cient models to perform poorly in practice (see for instance Perron, 1990,
and Malliaropulos, 2000). The literature on testing for unit roots in the pres-
ence of both known and unknown break points is large (see Maddala and Kim,
1998 for a review). Perron (1989), Vogelsang (1990) and Perron and Vogelsang
(1992) reported evidence that structural breaks can make an I(0) time series
behave locally as I(1) and, as a result, these breaks are able to fool standard unit
root tests (this is shown here by means of simulations). More precisely, Perron
(1989) and Rappoport and Reichlin (1989) showed via Monte Carlo experiments
that time series such as GNP previously modelled as I(1), appear as I(0) if we
allow for a segmented trend in the model during the oil crisis. In brief, if the
permanent break is not explicitly taken into account standard unit root tests
tend to …nd too many unit roots. This drawback of standard DF tests is usually
referred to in the literature as the “Perron phenomenon”. Leybourne, Mills and
Newbold (1998).reported that a “converse Perron phenomenon” is also often ob-
served, which consists in the spurious rejection of the null hypothesis of a unit
root when an early break appears in an I(1) time series. DF test outcomes can
therefore be very misleading. Moreover, the critical values of standard unit root
tests depend on the new unknown nuisance parameters such as the number of
breaks and their timing, which has led several authors (see Zivot and Andrews,
1992; Perron and Vogelsang, 1992; Banerjee, Lumsdaine and Stock, 1992; and
Stock, 1994) to propose complex recursive and sequential testing procedures in
order to estimate these parameters. In the light of all these di¢culties, the RUR
test combines simplicity with robustness and enhanced power performances. In
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the sequel we analyse these performances when confronted to the alternative of
a stationary AR(1) time series corrupted by one or two structural breaks. …rst
we will consider the case of a single structural break in the series in the middle
of the sample. The break is modeled as a dummy variable de…ned by Dt = 0
for t · n=2 and Dt = 1 for t > n=2. Speci…cally, we consider the alternative
model is xt = 0:5 xt¡1 + s Dt + ²t. Table 4 provides power estimates at the 5%
signi…cance level from 10000 replications for di¤erent values of the sample size
n and of the local break size s. The power performances of the Dickey-Fuller
test appear in brackets.

n j s 4 8 12
100 0.2 (0.00) 0.08 (0.00) 0.07 (0.00)
250 0.7 (0.00) 0.6 (0.00) 0.6 (0.00)
500 1 (0.86) 1 (0.00) 1 (0.00)

Table 4.

We remark that except for the case of s = 4 and n = 500, the Dickey-
Fuller (DF) test has a much stronger bias towards nonstationarity, and thus the
RUR test is less prone to misinterpret structural breaks as permanent stochastic
disturbances.

In a scenario allowing for multiple breaks, we should expect an even larger
decrease in power for both the RUR and the DF tests. In order to assess these
power losses, we performed another experiment which included two breaks at
di¤erent locations in time. The alternative model was now xt = 0:5 xt¡1 +
s1 Dt;1 + s2Dt;2 + ²t with Dt;i (i = 1; 2) representing dummy variables de…ned
by Dt;i = 0 for t · in=4 and Dt;i = 1 for in=4 < t · in=2. Table 5 shows
the power results at the 5% signi…cance level obtained from 10000 replications
of this model, for both the RUR and the DF tests (the DF …gures given in
brackets). Here s1;2 = (s1; s2)0. The power estimates are given for di¤erent
values of the sample size n (100,250,500), and of the break magnitudes s1 and
s2 ( s1 = 2; 4; 8; and s2 = 4; 8; 12;respectively). Once again, the RUR test
outperfoms the DF results in all cases, and is still remarkably powerful for the
sample size n = 500, as far as the break size is not too large.

n js1;2 (2,4) (4,8) (8,12)
100 0.07 (0.000) 0.005 (0.000) 0.000 (0.000)
250 0.5 (0.000) 0.200 (0.000) 0.05 (0.000)
500 1 (0.453) 0.7 (0.000) 0.6 (0.000)

Table 5.

To explain theoretically this robustness of the RUR test, consider the fol-
lowing AR(1) models, in one of which we allow for the possibility of a single
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break through the innovations’ dynamics:

a) xt = axt¡1 + »t; con E(»t) = 0; jaj < 1;

b) xt = axt¡1 + +²t; con E(²t) = s1(t = t0); jaj < 1:

Let J
(n)
» ; J

(n)
² be the RUR test statistics associated with the processes in

model a) and b), respectively. Now if jaj >> 0 and t0 >> 0 we will have

Rt0 = a + Rt0¡1;

since on I(0) processes P (¢Rt > 0) = O(t¡1) ' 0 for t large enough, that is
¢Rt0 = a with probability close to one.As a result, J

(n)
² ' J

(n)
» + n¡1=2 for

both n and t0 large enough. But then J
(n)
² ¡ J

(n)
»

p! 0 as n ! 1; which means
that the consistency of the test is not a¤ected by the presence of a level break,
whatever the size of such break.

When several level breaks are involved, say m breaks, we can write E(²t) =Pm
i=1 si1(t = ti): Now suppose t¤ ¢

= min1·i·mftig >> 0 and 0 << s¤ ¢
=

min1·i·mfsig < 1; such that P (¢Rt¤ > 0) = O(t¤¡1) ' 0 and thereby J
(n)
² '

J
(n)
» + n¡1=2

Pm
i=1 si for large enough n: Therefore J

(n)
² ¡ J

(n)
»

p! 0 as n ! 1;
for …nite m. What is more, the number of level breaks, m; can even grow
inde…nitely as o(n1=2) without a¤ecting the consistency of the test.

A similar argument can be used to show that the asymptotic size of the
RUR test is unaltered by the presence of as much as m = o(n1=2) level breaks
superimposed on a I(1) time series. Indeed, suppose we have the following two
models:

a) xt = xt¡1 + »t; con E(»t) = 0;

b) xt = xt¡1 + +²t; con E(²t) =
mX

i=1

si1(t = ti);

with t¤ >> 0 and 0 << s¤ < 1; such that P (¢Rt¤ > 0) = O(t¤¡1=2) ' 0 and
thereby J

(n)
² ' J

(n)
» + n¡1=2

Pm
i=1 si: Then as far as m = o(n1=2) we will get

J
(n)
² ¡J

(n)
»

p! 0 as n ! 1; and the asymptotic size will be the same as in model
a).

Notice that if, on the contrary, m is allowed to be O(n1=2+°) with ° > 0;

J
(n)
² will behave as if xt had a trend, that is, J

(n)
² ! 1 as n ! 1: Level

breaks will then shift inde…nitely the null distribution to the left leading to the
rejection of the null hypothesis of an I(1) time series.
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6.2 Nonlinearly transformed I(1) time series

In practice, it is di¢cult and even sometimes impossible to know whether a time
series exhibiting unit-root-like behavior is really I(1), or rather a monotonically
nonlinear transformation of an I(1) series. With standard unit-root tests, mis-
speci…cation of the true time series model may a¤ect the rate of divergence of
the test statistic, making it to behave inconsistently. The invariance to such
nonlinearities would be therefore a desirable property of a unit-root test.

Granger and Hallman (1991) looked at the autocorrelation function of several
nonlinear transformations of the original series and proposed a test invariant to
monotonic transformations based on ranks. Ermini and Granger (1993) worked
with the Hermite polynomial expansion of di¤erent nonlinear transformations of
random walks, possibly with drift, and showed that the autocorrelation function
is not always a reliable indicator of the degree of memory of nonlinear time series.

In what follows we analyse the small sample behavior of the RUR test in
the face of several nonlinear transformations of random walks, and show that it
is invariant to monotonic transformations. Table 6 shows the size estimated at
the 5% signi…cance level from 10000 replications of the di¤erent models and for
n = 100; 250; and 500.

Transformation 100 250 500

1) x2
t 0.079 (0.397) 0.170 (0.406) 0.178 (0.420)

2) x2
t , with xt > 0; 8t 0.03 (0.397) 0.059 (0.406) 0.048 (0.420)

3) x3
t 0.038 (0.456) 0.057 (0.532) 0.049 (0.533)

4) exp(xt) 0.03 (0.92) 0.05 (1) 0.0469 (1)

5) exp( xt

75) 0.054 (0.271) 0.0526 (0.271) 0.05 (0.301)

6) log(xt + 100) 0.043 (0.275) 0.064 (0.331) 0.051 (0.354)

7) log(xt+2
p

T
4

p
T

); xt+2
p

T
4

p
T

2 (0; 1) 0.072 (0.347) 0.054 (0.349) 0.051 (0.354)

8) sin(xt) 0.8828 (1) 0.9986 (1) 1 (1)

Table 6

It can be observed that the size tends towards its correct value in all cases
except when the transformation is non-monotonic (case 1), and when it station-
arizes the series (case 8). To study more precisely the e¤ect of the logarithmic
nonlinearity, in case 7), we forced the variable to take most of its values in the
interval (0; 1). This was done by transforming linearly the series prior to apply-
ing the logarithmic transformation. Since in this interval the function is not so
well approximated by a straight line, one would expect a more noticeable size
distortion, at least for the smaller sample size of n = 100. Overall, however,
all the empirical sizes for the purely monotonic transformations seem to con-
verge to the nominal size of 0:05 as the sample size grows. The invariance of
J(n) to monotonic nonlinear transformations g(:) applied to the series xt follows
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inmediately from the relations:

1 (g(xt) > g(xt¡1;t¡1)) = 1(xt > xt¡1;t¡1)

1 (g(xt) < g(x1;t¡1)) = 1(xt < x1;t¡1):

Notice that such invariance holds not only under the null hypothesis but
also under any alternative.This result is in fact related to the invariance of the
number of level crossings in a series (in this case, the …rst di¤erences of the
sequence of running ranges) to monotonic transformations.

6.3 Integrated time series corrupted by additive outliers

Outlying observations is another source of problems for the time series ana-
lyst. These may occur for di¤erent reasons, ranging from measurement errors to
recordings of unusual events such as wars, disasters and dramatic policy changes.
Some commonplace outlier-inducing events in economic time series are union
strikes, hoarding consumer behavior in response to a policy announcement, and
computer breakdown e¤ects on unemployment or sales data collection and pro-
cessing, to name a few. Outliers can also appear as a result of misspeci…ed
estimated relationships or omitted variables (see for instance Peña, 2001).

Outliers are usually classi…ed into two groups: Additive Outliers (AO) and
Innovation Outliers (IO), of which the former ones have the most insidious
e¤ects on classical inference. In both cases, standard unit root tests are biased
towards the rejection of the unit root hypothesis. An IO (AO) corresponds to
an external error or exogenous change in the observed value of the time series
at a particular instant, with (no) e¤ect on the subsequent observations in the
series. In the case of an AO at time T , instead of observing the original series
xt, we observe a corrupted series yt, given by:

yt =

½
xt t 6= T
xt + s t = T

where s represents the outlier magnitude.
There is a sort of duality between the e¤ects of AO’s and those of structural

breaks on time series. Indeed while I(0) time series subject to level shifts could
be misinterpreted as I(1), I(1) time series corrupted by AO’s might look like I(0)
provided that the outliers are su¢ciently frequent and important in magnitude.
In particular, it is known that the presence of AO’s leads to a downward bias of
the OLS parameter estimates in a stationary AR(1) process (Bustos and Yohai,
1986; Martin and Yohai, 1986) and thereby the DF test will have an actual
size in excess of the nominal size, thus rejecting the unit-root hypothesis too
often. The size distortion of the DF test in the presence of AO’s was quanti…ed
by Franses and Haldrup (1994), who also demonstrated that the distribution
of the autoregression parameter estimates changes dramatically when both the
magnitude of the outliers and their frequency become large.
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Traditionally, the presence of AO’s has been dealt with either by attaching
less weight to the extreme observations in the sample (damping) or by remov-
ing them with the inclusion of a dummy variable in the model (…ltering). A
recent example of the “…ltering approach” can be seen in Arranz and Escribano
(1998b). Single-stage (without prior damping or …ltering of the outliers) ro-
bust unit-root tests were …rst proposed by Lucas (1995a,b) and by Franses and
Lucas (1997) using M -estimators with high breakdown point and e¢ciency, in-
stead of OLS estimators. However, these tests were really conceived for dealing
with fat-tailed distributions of the model errors and therefore were less power-
ful than standard unit root tests on Normally distributed errors. Alternatively,
some authors have followed a likelihood-based approach where inference is made
about a particular fat-tailed distribution rather than on the Gaussian distribu-
tion (Hoek, Lucas and Van Dijk, 1995; Rothenberg and Stock, 1997). The use
of semiparametric and nonparametric statistics is another avenue of research in
robust unit root testing. Hasan and Kroenker (1997) applied rank-based meth-
ods to this problem and reported improved power performances on time series
corrupted by a few large observations. The RUR procedure also falls into the
nonparametric category.

The results in Tables 7 and 8 show that the size distortions caused by the
presence of an AO in the middle of the series and beyond are signi…cantly smaller
for the RUR test than for the DF test (shown in brackets). Our alternative
hypothesis was now represented by the model yt = xt+s±t;¿ where xt = xt¡1+²t,
¿ denotes an integer no larger than the sample size, and ±t;¿ is a dummy variable
de…ned by ±t;¿ = 1 if t = ¿ and zero elsewhere. The sizes were estimated at
the 5% signi…cance level, for di¤erent values of both ¿ (¿ = n=25; n=10; n=5)
and the sample size n (100; 250; 500). It can be seen that when the AO appears
near the end of the series (Table 8) the RUR test have even lower than nominal
sizes.

n j ¿ n=2 n=2 + 1 n=2 + 2

100 0.0826 (0.2978) 0.0830 (0.2964) 0.0812 (0.2958)

250 0.0800 (0.1682) 0.0800 (0.1688) 0.0798 (0.1670)

500 0.0644 (0.1130) 0.0640 (0.1102) 0.0642 (0.1096)

Table 7.

nj ¿ n ¡ n=20 n ¡ n=10 n ¡ n=5

100 0.0212 (0.2964) 0.0244 (0.2990) 0.0352 (0.2980)

250 0.0392 (0.1704) 0.0422 (0.1660) 0.0484 (0.1656)

500 0.0446 (0.1106) 0.0472 (0.1104) 0.0510 (0.1118)

Table 8.

Unfortunately, an early AO will produce a jump in the sequence of ranges
which may prevent other jumps from being counted by the RUR test statistic,
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thus biasing our test towards the rejection of the null hypothesis of unit root.
The bias will be larger the sooner the outlier appears in the series. In order to
grasp more closely this problem, we performed another Monte Carlo experiments
in which a single AO is introduced near the origin (Table 9).

n j¿ n=25 n=10 n=5

100 0.3778 (0.2956) 0.3192 (0.2964) 0.2432 (0.3002)
250 0.2746 (0.1672) 0.2230 (0.1668) 0.1700 (0.1676)
500 0.1930 (0.1114) 0.1588 (0.1112) 0.1188 (0.1110)

Table 9.

The results show that when the AO appears within the …rst quarter of the
sample, the RUR test seems to o¤er no real improvement over the DF test.

To give a ‡avor of what is going on in this case, suppose we have an AO
early in the series at time t = t0; and suppose that its magnitude, s; is such
that ¢R

(x)
t0

¸ max1·t·n ¢R
(x)
t . Such a large outlier will prevent new records

from ocurring at t > t0; and therefore ¢R
(x)
t = 0 for t > t0: It follows that

J(n) = n¡1=2
t0X

i=1

1(¢R
(x)
i > 0)

p! 0 as n ! 1;

and the test will then be likely to reject the null hipothesis. Notice that the
previous result still holds when the AO’s location is allowed to increase with the
sample size as fast as O(n1¡°) with ° > 0:

Obviously, when more than one early AO appear the record count will be
determined by the largest AO’s location, but the real size lof the test will grow.to
one, in the same way, as n ! 1:

The relatively large size distortion of the RUR test in the presence of early
AO’s can be solved, however, by slightly modifying the test statistic so as to
count also the records appearing when the series is observed in reversed order.
The discussion on this variant of the test will be postponed for lack of space.

7 Concluding Remarks

Standard unit root tests su¤er from a number of drawbacks when the usual
assumptions are no longer justi…ed. Apart from having low power on stationary
near-unit root time series, they are also seriously a¤ected by other aspects of
real data such as parameter shifts, outliers and neglected nonlinearities.

In 1996 Burridge and Guerre proposed a nonparametric unit root testing
device based on the number of crossings. This test was sensitive to the tails of
the error distribution and was inferior in other respects to DF’s. In the light of
these poor results, these authors concluded that there is no necessarily a gain
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in robustness from using a nonparametric unit root test instead of the standard
tests. In this paper, we have shown that there is no reason for such a pessimistic
view about the possibilities of nonparametric methods. In particular, we have
presented an nonparametric testing device, called the Range Unit Root (RUR)
Test, which is robust to structural breaks either in the mean or in the variance,
as well as to the presence of non-early additive outliers. The new method is
also invariant to monotonic nonlinearities in the DGP and to the shape of the
innovations’ distribution, and outperforms the DF test in terms of power on
stationary near-unit root alternatives. Finally, it is asymptotically immune to
the presence of additive noise superimposed on an unobserved variable.
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A. Appendix
In this section we provide the proofs for the theoretical results presented in

previous sections. For this we need to invoke the following lemmas.

A0. Preliminary lemmas

Lemma 7 (Herrndorf’s Invariance Principle). Let f²tgt=1;1 be a ran-
dom sequence satisfying assumptions C1-C4, then de…ning

xn(r) = ¾¡1n¡1=2

[nr]X
t=1

²t ) B(r)

where B(:) is a Brownian motion process on the interval [0,1], ¾ represents the
long-run variance de…ned in C3, and “) " denotes convergence in distribution
as n ! 1:

Proof. See Herrndorf (1984)

Lemma 8 (Continuous Mapping Theorem). Let T be continuous function
(except possibly on a set with Lebesgue measure equal to zero) such that: T :
C[0; 1] 7! C[0; 1]; where C[0; 1] denotes the space of cadlag functions.on the
interval [0; 1]: Let xn(r) de…ned as in Lemma 9. Then

T (xn(r)) ) T (B(r)) :

Proof. See Billingsley (1968).

Lemma 9 Let xn(r) de…ned as in Lemma 9.Under the assumptions C1-C4 we
have:

xn(r) ¡ max
s2[0;1]

fxn(s)g = T1 (xn(r)) ) B(r) ¡ sup
s2[0;1]

fB(s)g

xn(r) ¡ min
s2[0;1]

fxn(s)g = T2 (xn(r)) ) B(r) ¡ inf
s2[0;1]

fB(s)g :

Proof. The proof follows from the CMT (Lemma 8) and the continuity of the
functions T1 and T2:

Lemma 10 (Lévy, 1948). Let fB(r)gr2[0;1] represent a Brownian motion pro-

cess on the interval [0,1], and let eB1(r) = B(r) ¡ sups2[0;1] fB(s)g and eB2(r) =

B(r)¡infs2[0;1] fB(s)g : The processes fB(r)gr2[0;1] ;
n eB1(r)

o
r2[0;1]

and
n eB2(r)

o
r2[0;1]

have the same probability distribution.
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Proof. See Karatzas and Shreve (1988).

Lemma 11 (Lévy, 1948). Let eB1(r) = B(r)¡sups2[0;1] fB(s)g wherefB(r)gr2[0;1]

is a Brownian motion process in [0,1]. The random variables eB1(r) and 2lB(0; r)
have, for each value of r 2 [0; 1] the same probability distribution given by

P
n eB1(r) · b

o
=

r
2

¼r

Z b

0

exp

µ
¡³2

2r

¶
d³; b > 0

Proof. See Karatzas and Shreve (1988).

Lemma 12 Let xt = xt¡1 + ²t where f²tgt¸1 are i:i:d: random variables with
zero mean and …nite variance ¾2

² ; and let

J(n)(b) = n¡1=2
nX

t=1

[1 (xt¡1 < b; xt ¸ b) + 1 (xt¡1 > b; xt · b)]

denote the normalized number of crossings of level b. If x0 and ²1 have bounded
pdf 0s with …nite variance then we must have:

J(n)(b) ) E fj²1jg
¾²

jZj;

where Z is a standard Normal random variable.

Proof. See Theorem 1 in Burridge and Guerre (1996).

Lemma 13 (Lévy, 1948) Let Z be a standard Normal random variable and let

lB(0; 1) = lim
±#0

1

2±

Z t

0

1 [¡± · B(s) · ±] ds;

where fB(r)gr2[0;1] is a Brownian motion process on [0; 1]: Then

jZj d
= lB(0; 1):

Proof. See Theorem 2.3 in Revuz and Yor (1991).

Lemma 14 Let fxtgt¸1 be a stationary Gaussian sequence with covariances
fcigi¸1 satisfying the “Berman condition”: ci log i ! 0 as n ! 1: Then all
extreme statistics have the same asymptotic distributions as an i:i:d: Gaussian
sequence.
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Proof. Theorem 2.5.2 in Leadbetter and Rootzén (1988).

Lemma 15 If fxtgt¸1 is a sequence of i:i:d: random variables then for large n

E
n

n1=2J(n)
o

= O(log n)

V ar
n

n1=2J(n)
o

= O(log n):

Proof. See for instance Port (1994).

Lemma 16 Let f»igi¸1 a sequence of random variables such that limi!1E(»i) =
¹; and limi!1V ar(»i) = 0: Then

»i
p! ¹:

Proof. See for instance Arnold (1990).

Lemma 17 Let xi = xi¡1 +²i where f²igi¸1 are continuous i:i:d: random vari-
ables with …nite variance ¾2

² and symmetric pdf around a zero mean. If t0 is the
random time of ocurrence of the maximum of fxig1·i·t then for any u 2 [0; 1] :

P ft0=t · ug =
2

¼

Z u

0

arc sin
p

vdv

Proof. See Loève (1978).

A1. Proof of Proposition 1
Let xt = xt¡1 + ²t with ²t satisfying assumptions C1-C4, and let

ª(n) = n¡1
nX

t=1

1(R
(x)
t > 0) = n¡1=2J

(n)
0

= n¡1
nX

t=1

1(xt = xt;t) + n¡1
nX

t=1

1(xt = x1;t)

= ª
(n)
1 + ª

(n)
2
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Note that ª(n) is the frequency of upper and lower records in the samplefx1,...,xng,
and that we could also split this frequency into the sum of the frequencies of
upper and lower records as:

ª
(n)
1 =

nX
t=1

1

·
n¡1=2xt

¾
¡n¡1=2xt;t

¾
= 0

¸ ·
t

n
¡ t ¡ 1

n

¸

ª
(n)
2 =

nX
t=1

1

·
n¡1=2xt

¾
¡n¡1=2x1;t

¾
= 0

¸ ·
t

n
¡ t ¡ 1

n

¸
:

Now de…ning r = t=n; where t = 1; 2; :::; n; and letting n ! 1 we obtain from
direct application of lemmas 1, 2 and 3:

ª
(n)
1 )

Z 1

0

1

"
B(r) ¡ sup

s2[0;1]
fB(s)g = 0

#
dr

ª
(n)
2 )

Z 1

0

1

·
B(r) ¡ inf

s2[0;1]
fB(s)g = 0

¸
dr

Finally, it follows from lemma 12 and from the de…nition of local time that

ª
(n)
i )

Z 1

0

1 [jB(r)j = 0] dr; i = 1; 2

=

Z 1

0

1 [B(r) = 0] dr

= 2lB(0; 1) lim
±!0

± = 0;

where lB(0; 1) represents the local time of the Brownian motion B(:) at
zero. Thus the asymptotic probability for the appearance of either upper or
lower records must be equal to zero, that is:

lim
t!1 P (xt = xt;t) = 0

lim
t!1 P (xt = x1;t) = 0:

A2. Proof of Theorem 3
Consider a time series process xt =

Pt
i=1 ²i where f²igi¸1 :are continuous

i:i:d: random variables with zero mean and variance ¾2
² : Let yt = xt ¡ xt;t and

y0
t = xt ¡ x1;t and split the RUR test statistic as

J(n) = J
(n)
1 + J

(n)
2 ;
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with

J
(n)
1 = n¡1=2

nX
t=1

1(yt = 0)

= n¡1=2
nX

t=1

1(yt¡1 < 0; yt = 0) + n¡1=2
nX

t=1

1(yt¡1 ¸ 0; yt = 0)

= n¡1=2
nX

t=1

1(yt¡1 < 0; yt = 0);

J
(n)
2 = n¡1=2

nX
t=1

1(y0
t = 0)

= n¡1=2
nX

t=1

1(y0
t¡1 > 0; y0

t = 0) + n¡1=2
nX

t=1

1(y0
t¡1 · 0; y0

t = 0)

= n¡1=2
nX

t=1

1(y0
t¡1 > 0; y0

t = 0); since P
¡
y0

t¡1 · 0; y0
t = 0

¢
= 0:

where we have used the fact that
nX

t=1

1(yt¡1 ¸ 0; yt = 0) = o

Ã
nX

t=1

1(yt¡1 < 0; yt = 0)

!
nX

t=1

1(y0
t¡1 · 0; y0

t = 0) = o

Ã
nX

t=1

1(y0
t¡1 > 0; y0

t = 0)

!
:

Notice that the number of lower records of xt in any given time interval is
the same as the number of upper records of ¡xt in that same interval. Therefore
the asymptotic distribution of J

(n)
1 and J

(n)
2 must be identical. To obtain this

distribution we will proceed by …rst showing that the time series processes de-
…ned as yt and y0

t are asymptotically random walks. By symmetry, the behavior
of y0

t must be statistically equal to that of yt: It is therefore enough to study the
properties of the process fytgt¸1 :

The conditional variance of yt given that xt;t = xt0 (t0 2 [1; n] \ Z) is

var(ytjxt0 = xt;t) = var

Ã
tX

i=t0+1

²i

!
= (t ¡ t0)¾2

²

From lemma 19, the random variable t0=t has an arcsine distribution with
pdf :

f(t0=t) =
2

¼
p

1 ¡ (t0=t)2
; t0=t 2 [0; 1];
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from which we obtain the following expression for the unconditional variance:

var(yt) =
2¾2

²

¼

Z 1

0

t ¡ t0p
1 ¡ (t0=t)2

d(t0=t) = t
¾2

²

2
:

As a consequence, yt cannot be an I(0) time series process. In fact, if
we write yt = yt¡1 + ´t where ´t is I(0) and force the equality between this
representation and the de…nition, we get

´t = ²t ¡ ¢xt;t

= ²t ¡ (xt;t ¡ xt¡1;t¡1)

= ²t; if xt · xt¡1;t¡1

= ²t ¡ (xt ¡ xt¡1;t¡1) ; if xt ¸ xt¡1;t¡1

Now, from Proposition 1, we know that the long-run frequency of records is
equal to zero, and thus limt!1 P (xt ¸ xt¡1;t¡1) = 0: It follows that ´t = ²t

with probability pt = P (xt < xt¡1;t¡1) ! 1. In particular:

E(´t) = 0

var(´tjxt0 = xt;t) = ¾2
² with probability pt ! 1

var(´tjxt0 = xt;t) = (t ¡ t0 ¡ 1)¾2
² with probability 1 ¡ pt ! 0;

from where the unconditional variance of ´t is obtained:

var(´t) =
2¾2

²

¼

Z 1

0

t ¡ t0 ¡ 1q
1 ¡ (t0=t)2

d(t0=t)

= ¾2
²

µ
t ¡ 1

2

¶
with probability 1 ¡ pt ! 0:

var(´t) =
2¾2

²

¼

Z 1

0

1q
1 ¡ (t0=t)2

d(t0=t)

= ¾2
² with probability pt ! 1:

Since in practice it can be assumed that the process xt was generated at
t = ¡1, we conclude that ´t is I(0).

It can also be shown that for t small enough the process yt has a stochastic
unit root. The heuristic reasoning is as follows. Writing yt = atyt¡1 + ²t and
assuming yt¡1 6= 0 (event whose long-run frequency equals one) we obtain the
expected value of the process at given the past of yt:

E(atjyt¡1) = 1 +
´t ¡ ²t

yt¡1
:

Thus there is a possibly non-observable period of time during which ´t can
be less than ²t; implying a transitory short-memory behavior for yt. Notice
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however that as t ! 1 we get E(atjyt¡1) ! 1; and thus yt becomes an I(1)
process.

Given that yt is an I(1), and noting that for this process a zero “crossing”
amounts to a visit to the origin (crossing over the zero level is impossible), it
follows from lemma 14 that

J
(n)
1 ) E fj²1jg

¾²
jZj;

where Z is a standard Normal random variable. From lemma 15 the distribution
of jZj is the same the local time at zero of a Brownian motion in [0,1], say
lB(0; 1): Therefore we can write

J
(n)
1 ) E fj²1jg

¾²
lB(0; 1):

By the same token we have:

J
(n)
2 ) E fj²1jg

¾²
lB(0; 1):

Since the pdf of the absolute value of a standard Normal random variable Z
is given by

fjZj(u) =

r
2

¼
exp

µ
¡u2

2

¶
; u ¸ 0;

we can easily obtain for the pdf of J
(1)
i (i = 1; 2) the following expression:

f
J

(1)
i

(u) =
2r

2¼
³

Efj²1jg
¾²

´2
exp

0B@¡ h2

2
³

Efj²1jg
¾²

´2

1CA ; h ¸ 0; i = 1; 2:

Our next step is to show that J
(n)
1 and J

(n)
2 are asymptotically independent.

This will allows to invoke lemma 10 and derive the asymptotic pdf of J(n) =

J
(n)
1 +J

(n)
2 as the auto-convolution of the pdf of .the absolute value of a standard

Normal random variable:

To show the independence of J
(1)
1 and J

(1)
2 …rst let Tn = o(n) with limn!1 Tn =

1, and write:

J
(n)
1 = n¡1=2

TnX
t=1

1(yt = 0) + n¡1=2
nX

t=Tn+1

1(yt = 0)

J
(n)
2 = n¡1=2

TnX
t=1

1(y0
t = 0) + n¡1=2

nX
t=Tn+1

1(y0
t = 0):
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It is easy to see that

n¡1=2
TnX
t=1

1(yt = 0)
p! 0

n¡1=2
TnX
t=1

1(yt = 0)
p! 0:

That is, for n large enough we get

J
(n)
1 » n¡1=2

nX
t=Tn+1

1(yt = 0)

J
(n)
2 » n¡1=2

nX
t=Tn+1

1(y0
t = 0):

Therefore it is enough to show that the families of binary random variables
f1(yt = 0)gt and f1(y0

t0 = 0)gt0 are independent for t and t0 su¢ciently large.
Let us show that this is the case.

First of all, the random variables 1(yt = 0) and 1(y0
t = 0) are asymptotically

independent for t large enough, since we have:

lim
t!1 P fyt = 0; y0

t = 0g = lim
t!1 P fxt = xt;t; xt = x1;tg

= 0 (since the events fxt = xt;tg and fxt = x1;tg
are mutually exclusive for t > 1):

= lim
t!1 P fyt = 0g P fy0

t = 0g = (0)(0) = 0:

lim
t!1 P fyt = 0; y0

t 6= 0g = lim
t!1 P fyt = 0g ¡ lim

t!1 P fyt = 0; y0
t = 0g = 0 ¡ 0

= lim
t!1 P fyt = 0g P fy0

t 6= 0g = (0)(1) = 0:

lim
t!1 P fyt 6= 0; y0

t = 0g = lim
t!1 P fy0

t = 0g ¡ lim
t!1 P fyt = 0; y0

t = 0g = 0 ¡ 0

= lim
t!1 P fyt 6= 0g P fy0

t = 0g = (1)(0) = 0:

lim
t!1 P fyt 6= 0; y0

t 6= 0g = lim
t!1 P fy0

t 6= 0g ¡ lim
t!1 P fyt 6= 0; y0

t = 0g = 1 ¡ 0

= lim
t!1 P fyt 6= 0g P fy0

t 6= 0g = (1)(1) = 1:

Let us now show the independence of the variables 1(yt = 0) and 1(y0
t¡i = 0)

for i > 0 and t asymptotically large. First of all note that the of events fyt = 0g
and

nPi¡1
j=0 ²t¡j = xt;t ¡ xt¡i

o
are equivalent. Thus we can write

fyt = 0g =

8<:
i¡1X
j=0

²t¡j = xt;t ¡ xt¡i

9=; :

Similarly, we have: ©
y0

t¡i = 0
ª

= fxt¡i = x1;t¡ig :
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Therefore

©
yt = 0; y0

t¡i = 0
ª

=

8<:
i¡1X
j=0

²t¡j = xt;t ¡ x1;t¡i

9=;
=

8<:
i¡1X
j=0

²t¡j =
iX

k=0

¢xt¡k;t¡k + Rt¡i

9=; :

But since fyt = 0g ½ f¢xt;t > 0g ; it follows that

©
yt = 0; y0

t¡i = 0
ª ½

8<:
i¡1X
j=0

²t¡j > Rt¡i

9=; ;

and thereby

lim
t!1 P

©
yt = 0; y0

t¡i = 0
ª · lim

t!1

8<:
i¡1X
j=0

²t¡j > Rt¡i

9=;
= 0 (by the unboundness of the range sequence)

= lim
t!1 P

©
yt = 0gPfy0

t¡i = 0
ª

:

Now we just have to proceed as for i = 0: That is,

lim
t!1 P

©
yt = 0; y0

t¡i 6= 0
ª

= lim
t!1 P fyt = 0g ¡ lim

t!1 P
©

yt = 0; y0
t¡i = 0

ª
= 0 ¡ 0

= lim
t!1 P

©
yt = 0gPfy0

t¡i 6= 0
ª

= (0)(1) = 0:

lim
t!1 P

©
yt 6= 0; y0

t¡i = 0
ª

= lim
t!1 P

©
y0

t¡i = 0
ª ¡ lim

t!1 P
©

yt = 0; y0
t¡i = 0

ª
= 0 ¡ 0

= lim
t!1 P

©
yt 6= 0gPfy0

t¡i = 0
ª

= (1)(0) = 0:

lim
t!1 P

©
yt 6= 0; y0

t¡i 6= 0
ª

= lim
t!1 P

©
y0

t¡i 6= 0
ª ¡ lim

t!1 P
©

yt = 0; y0
t¡i 6= 0

ª
= 1 ¡ 0

= lim
t!1 P

©
yt 6= 0gPfy0

t¡i 6= 0
ª

= (1)(1) = 1:

The asymptotic independence of the variables 1(yt¡i = 0) and 1(yt = 0) for
i > 0 follows trivially from the above result by the symmetry of the problem.
Therefore we conclude that the random variables J

(1)
1 and J

(1)
2 are indepen-

dent. Letting fjZj(:) denote the pdf of the random variable jZj we may …nally
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invoke lemma 14 to obtain

f
J

(1)
0

(v) =

Z v

0

f
J

(1)
1

(w)f
J

(1)
1

(v ¡ w)dw

= a¡2

Z v
a

0

fjZj(
w

a
)fjZj(

v ¡ w

a
)dw; where a =

E fj²1jg
¾²

= a¡1

Z v
a

0

fjZj(u)fjZj(
v

a
¡ u)du; where we let u =

w
Efj²1jg

¾²

=

Z v

0

fjZj(u)fjZj(v ¡ u)du

=
1

2
p

2¼
exp( ¡ v2+2

4
)[1 ¡ ©(v)]:

To prove the consistency of the test against stationary alternatives satisfying
the Berman condition we invoke lemmas 14 and 15, following which E

©
J(n)

ª »
V arfJ(n)g » O(n¡1=2 log n) ! 0 as n ! 1: Finally, we apply lemma 16 to
obtain:

J(n) p! 0

A3. Proof of Proposition 6

Letting xt = wt + st; the proof is a straight consequence of the fact that

n¡1=2st
p! 0; as n ! 1

Now since

R
(x)
t = xt;t ¡ x1;t

· wt;t + st;t ¡ w1;t ¡ s1;t;

we obtain

1(R
(x)
t > 0) = 1(¾¡1

² n¡1=2R
(x)
t > 0)

= 1(¾¡1
² n¡1=2R

(w)
t + ¾¡1

² n¡1=2R
(s)
t > 0):

Thus

J(n) = n¡1=2
nX

t=1

1(¾¡1
² n¡1=2R

(w)
t > ¡¾¡1

² n¡1=2R
(s)
t )

» n¡1=2
nX

t=1

1(¾¡1
² n¡1=2R

(w)
t > 0) for large enough n

since for 0 < t · n R
(s)
t · R

(s)
n = o(n¡1=2):
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