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This paper reviews the literature on GARCH-type models proposed to repre-

sent the dynamic evolution of conditional variances. E�ects of level outliers

on the diagnostic and estimation of GARCH models are also studied. Both

outliers and conditional heteroscedasticity can generate time series with ex-

cess kurtosis and autocorrelated squared observations. Consequently, both

phenomena can be confused. However, since outliers are generated by unex-

pected events and the conditional variances are predictable, it is important

to identify which one is producing the observed features in the data. We

compare two alternative procedures for dealing with the simultaneous pres-

ence of outliers and conditional heteroscedasticity in time series. The �rst

one is to clean the series of outliers before �tting a GARCH model. The

second is to estimate �rst the GARCH model and then to clean of outliers

by using the residuals adjusted by its conditional variance. It is shown that

both approaches may result in di�erent estimated conditional variances.
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1 Introduction

This paper reviews the literature on Generalized Autoregressive Conditional

Heteroscedasticity (GARCH)-type models proposed to represent the dynamic

evolution of conditional variances often observed in real heteroscedastic time

series. Since many real time series are a�ected by outliers, we also ana-

lyze how the presence of outliers may a�ect the diagnostic and modelling

of conditional heteroscedasticity. The development of GARCH models has

been mainly related with the empirical modelling of high frequency �nan-

cial time series. Modelling volatility of returns is fundamental, for example,

for option valuation and risk management; see, for example, Engle (2001).

Financial series of returns are mainly characterized by having leptokurtic

marginal distributions and volatility clustering. These properties have been

documented as early as Mandelbrot (1963) and Fama (1965). Often, these

series are not autocorrelated although they are not independent. The au-

tocorrelation function (acf) of squared observations has a small �rst order

autocorrelation coeÆcient followed by coeÆcients decaying very slowly to-

wards zero; see, for example, Bollerslev and Engle (1993), Mills (1996) and

Granger and Marmol (1998). Therefore, models representing the dynamic

behavior of high frequency �nancial time series should be able to explain at

least three properties: high kurtosis, small �rst order autocorrelation and

high persistence in the autocorrelations of squares. Some review papers on

these models are Bollerslev et al. (1992), Bollerslev et al. (1994), Bera and

Higgins (1995), Diebold and L�opez (1995), Pagan (1996) and Palm (1997).

Engle (1995) is a survey of some of the main papers related with GARCH

models and Campbell et al. (1997) provide an extensive textbook on this

area. Bollerslev (2001) provides a very selective updated summary of the

most in
uential developments in the area

Another important stylized fact of many �nancial series is the asymmetric

response of volatility to positive and negative movements in stock prices. This

is known as leverage e�ect and was originally described by Black (1976).

This asymmetry has also been reported by Glosten et al. (1993), Schwert

(1989), Nelson (1991), Campbell and Hentchel (1992), Engle and Ng (1993),

Sentana (1995) and Shephard (1996) among others. In this paper, we will

also describe models which are able to represent this asymmetry.

In order to illustrate the main empirical properties often observed in

high frequency �nancial time series, table 1 contains descriptive statistics of

twelve daily series. Denoting by pt, the observed price at time t, the series of

interest are the returns, de�ned as rt = 100(log(pt)� log(pt�1)). The series

described in table 1 are returns of the US Dollar against the Canadian Dollar,

the Spanish Peseta, the German Mark, the Japanese Yen, the Swiss Franc,
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the Swedish Krona and the British Pound observed from January 1993 to

October 2000. Also we describe returns of �ve international stock market

indexes, the Amsterdam E.O.E. index and the Bombay stock market index

(from October 1995 to October 2000), the Dow Jones (from January 1990 to

October 2000), the IBEX 35 of the Madrid Stock Exchange (from January

1992 to December 1999) and, �nally, the S&P 500 index (from November

1987 to December 1998). Table 1 shows that most of these series have zero

mean and all of them have excess kurtosis and negative skewness coeÆcients.

Also, although the series are not autocorrelated, the squared observations

have signi�cant non null coeÆcients at low lags.

As an example, Figure 1 represents the returns of the S&P 500 index and

the Dollar/Yen exchange rate. It is possible to observe volatility clustering

with sequences of days of large returns in absolute value. Figure 1 also gives

kernel estimates of the marginal densities of returns together with the corre-

sponding normal density. These density plots con�rm that the distributions

of returns are heavy-tailed. Finally, the acf of the series yt, y
2
t and jytj is also

plotted in this �gure. The acf of yt does not have signi�cant autocorrelations

but the volatility clustering is re
ected in the signi�cant correlations of the

transformed returns. In particular, in the acf of y2t and jytj, the autocorrela-

tions start at low values but are signi�cant even for very large lags. This fact

may suggest the presence of high persistence or long memory in the volatil-

ity process; see, for example Ding et al. (1993), Bollerslev and Mikkelsen

(1996), Lobato and Savin (1998) and Lobato and Velasco (2000). Finally,

Figure 1 illustrates what it is known as the "Taylor e�ect" that states that

the absolute returns have the highest autocorrelations among all possible

power transformations. High autocorrelations of absolute returns have also

been found, for example, by Taylor (1986), Cao and Tsay (1992), Ding et al.

(1993) and Granger and Ding (1995).

The simplest model to represent the empirical properties just described,

speci�es the series of interest as the product of two processes, "t and �t, that

is

yt = "t�t (1)

where "t is a serially independent and identically distributed (i.i.d.) white

noise process with unit variance that is assumed to be independent of �t,

which is known as volatility in the �nancial literature. GARCH models

specify the volatility as a non-linear function of past returns. It is easy to

show that if the conditional expectation of �t is �nite, the process yt in (1)

is a martingale di�erence. Furthermore, model (1) can explain volatility

clustering via autoregressive dynamics in the conditional expected value of
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�
2
t . Finally, yt can have excess kurtosis either because "t has a leptokurtic

distribution and/or because of the stochastic features of E(�2t jYt�1), where

Yt�1 is the information set available at time t� 1, i.e. Yt�1=fy1, y2,...,yt�1g.

Therefore, even if "t were a Gaussian process, the excess kurtosis observed

in high frequency time series could be due to conditional heteroscedasticity.

However, it is well known that outliers may also cause excess kurtosis in

time series and, when they appear in clusters, autocorrelations of squares.

Thus, outliers e�ects can be confused with ARCH e�ects. Balke and Fomby

(1994) analyze �fteen post World War II US macroeconomic time series and

�nd that controlling for outliers eliminates much of the evidence of non-

linearity in many of them. Once outliers are removed, there is no evidence of

signi�cant excess kurtosis or skewness in most of the series. They also test for

GARCH in various series before and after controlling for outliers. They �nd

that most of the raw series show evidence of either GARCH or non-linearity.

After �tting the outlier model and controlling for the e�ects of outliers, the

evidence of GARCH and non-linearity in many of the series is substantially

weaker. The same result has been found by Fiorentini and Maravall (1996)

analyzing monthly observations of the Spanish monetary aggregate known

as Liquid Assets in the Hands of the Public.

On the other hand, if the series is truly heteroscedastic, the shape of

the acf of squared observations can be distorted in the presence of outliers.

Thus, outliers may hide genuine ARCH e�ects. Consequently, the presence

of outliers in conditionally heteroscedastic time series may have e�ects on the

estimates of the parameters of the equation governing the volatility dynam-

ics. Finally, notice that conditional heteroscedasticity may generate what

can be identi�ed as outliers. Observations corresponding to periods when

the conditional volatility is over the marginal standard deviation can be

identi�ed as outliers by traditional outlier detection methods. Fiorentini and

Maravall (1996) also point out the possible confusion between conditional

heteroscedasticity and outliers when looking at real data sets.

Since outliers are the result of non repetitive interventions, they are un-

predictable given past information, while conditional heteroscedasticity gen-

erates volatility clustering and, therefore, can be predicted. Furthermore,

conditional heteroscedasticity is related with uncertainty about the value of

yt and outliers are caused by unexpected events. Both phenomena have di�er-

ent interpretations and economic implications and, therefore, it is important

to distinguish between them.

The paper is organized as follows. Section 2 reviews the growing literature

on models for conditionally heteroscedastic time series. Although a wide

spectrum of models has been proposed, we concentrate our attention on the

GARCH class of parametric models and their ability to represent the three
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main stylized facts that characterize high frequency �nancial time series.

In this section we also describe brie
y some asymmetric GARCH models

and two alternatives to GARCH-type models proposed in the literature to

represent the dynamic evolution of volatility. Section 3 deals with the e�ects

of outliers on the diagnostic and estimation of GARCH models. We illustrate

with real data the performance of two alternative strategies to deal with the

simultaneous presence of conditional heteroscedasticity and outliers in time

series. The �rst one consists of cleaning for outliers before �tting a GARCH

model. In the second procedure, the GARCH model is estimated �rst and

then, outliers are identi�ed using the conditional variance. Finally, section 4

includes some concluding remarks.

2 Models for conditional heteroscedasticity

2.1 Symmetric ARCH models

The AutoRegressive Conditional Heteroscedasticity (ARCH) model was in-

troduced by Engle (1982) to model the conditional variance of UK in
ation.

The ARCH(p) model allows the volatility, �2t , to be a linear function of the

squares of past observations. In the simplest case, the ARCH(1)1 model, the

series of interest, yt; is given by

yt = "t�t (2)

�
2

t = ! + �y
2

t�1

where "t is a Gaussian white noise process with zero mean and unit variance,

i.e., "t � NID(0; 1); and ! and � are parameters such that ! > 0 and

0� � < 1. The positivity conditions on the parameters ! and � are needed

to guaranty the positivity of the conditional variance, and ! has to be strictly

positive for the process yt not to degenerate. Finally, � < 1 is the covariance

stationarity condition for yt. However, Nelson (1990) shows that yt is strictly

stationary if Eflog(�"2t )g < 0. If "t is Gaussian, this condition is satis�ed if

� < 3:56.

Notice that, once yt�1 is observed, �
2
t is known, and the conditional dis-

tribution of yt is given by

yt j Yt�1 � N(0; �2t ): (3)

1In this paper, we will focus on the simplest speci�cation of each model considered

given that they are the ones often used in practice.
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It is easy to prove that yt is a martingale di�erence process with marginal

variance given by

�
2

y =
!

1� �
: (4)

Assuming 3�2 < 1; the kurtosis coeÆcient of yt has the following expres-

sion

�y =
E(y4t )

[E(y2t )]
2
=

3(1� �
2)

1� 3�2
(5)

which is greater than 3. Therefore, the marginal distribution of yt has fat

tails even if its conditional distribution is normal. All the odd moments can

be seen to be zero, so yt has a symmetric marginal density.

The dynamics of the process yt appear in the squared observations. Notice

that a large y2t�1 tends to be followed by a large y2t generating volatility

clustering. The acf of y2t is given by

�2(�) = �
� (6)

The shape of the acf of y2t in expression (6) mimics that of an AR(1)

process. Therefore, the ARCH(1) model in (2) is able to generate volatility

clustering. From (5) and (6), it is possible to write down the order one

autocorrelation of squares in terms of the kurtosis of yt as follows

�y = 3
1� �2(1)

2

1� 3�2(1)2
(7)

Figure 2 plots this relationship and the observed sample values of the kurtosis

and �rst order autocorrelation of the squared observations for the twelve

series in table 1. It can be observed that for the values of the kurtosis often

observed in real time series, the implied value of �2(1) is extremely higher

than the sample values.

The early implementation of ARCH(p) models required a large number

of past values of y2t in the equation of �2t , making these models diÆcult to

handle in practice. Bollerslev (1986)2 proposed a parsimonious model able

to cope with the high persistence often observed in squared observations, the

Generalized ARCH, or GARCH process.

2Taylor (1986) proposed the GARCH(1,1) model simultaneously.
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2.2 GARCH models

The series yt follows a GARCH(1,1) model if

yt = "t�t (8)

�
2

t = ! + �y
2

t�1 + ��
2

t�1

where "t � NID(0; 1); and !, � and � are parameters such that ! > 0,

�; � � 0 and � + � < 1. Once more, the positivity conditions are needed to

guaranty the positivity of the conditional variance3 and ! has to be strictly

positive for the process yt not to degenerate. Finally, � + � < 1 is the

covariance stationarity condition for yt. Nelson (1990) shows that yt is strictly

stationary if E[log(�+�"2t )] < 1: This condition is satis�ed even if �+� = 1.

Therefore, it is interesting to note that when � + � = 1; the GARCH(1,1)

process is strictly stationary although, as we will show later, the marginal

variance is not �nite.

The conditional distribution of yt is still given by (3). All GARCH pro-

cesses are martingale di�erences and if � + � < 1, yt has �nite variance. In

this case, the marginal variance of yt is given by

�
2

y =
!

1� �� �
(9)

The condition for the existence of the four order moment is 3�2 + 2�� +

�
2
< 1; see Bollerslev (1986). If this condition is satis�ed, the kurtosis of yt

is given by

�y =
E(y4t )

[E(y2t )]
2
= 3 +

6�2

1� 3�2 � 2�� � �2
(10)

which is greater than 3.

Alternatively, the GARCH(1,1) model can be written as a non-Gaussian

ARMA(1,1) model in the squared observations given by

y
2

t = ! + (� + �)y2t�1 + �t � ��t�1 (11)

where �t is an uncorrelated process de�ned as �t = y
2
t � �

2
t which has zero

mean, constant variance but it is conditionally heteroscedastic. In expression

(11), it is possible to observe that the dynamic behavior of the GARCH(1,1)

3The positivity conditions of �2t for the general GARCH(p,q) model have been given

by Nelson and Cao (1992).
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process shows up in the acf of the squared observations. Bollerslev (1988)

shows that the autocorrelations of y2t are given by

�2(1) =
�(1� �� � �

2)

1� 2�� � �2
(12)

�2(�) = (�+ �)��1�2(1); � > 1

The acf of squares has the same pattern as an ARMA(1,1) process. Notice

that the persistence of the volatility process depends on the value of � +

�. Figure 2 plots the relationship between kurtosis and �2(1), as given by

Ter�asvirta (1996), for two normal GARCH models with di�erent persistence

measured by � + �. Such relationship can be easily obtained from (10) and

(12). This �gure shows how large values of the kurtosis coeÆcient and low

values of �2(1) cannot exist simultaneously in conditionally normal GARCH

models; see Ter�asvirta (1996). Carnero et al. (2001b) show that the GARCH

model is very rigid, because it can only generate high kurtosis and low order

one autocorrelation of squares if � + � is close to one. Therefore, it could

be expected that, in empirical applications, the estimates of � + � are very

close to one, even if shocks to volatility are not persistent. However, GARCH

models have been successfully �tted to high frequency �nancial time series

by a large number of authors; see, for example, the references in Palm (1997).

Table 2 reports the Maximum Likelihood (ML) estimates of the parame-

ters of the Normal GARCH model 4 for four of the series described in section

1: the US Dollar/Spanish Peseta and US Dollar/ Japanese Yen exchange

rates and the Bombay and S&P 500 indexes. In this table it is possible to

observe that all the series considered have signi�cant ARCH e�ects and high

persistence measured by b�+ b�. Model diagnostics are based on the standard-

ized observations de�ned as b"t = yt=b�t, where b�t is obtained substituting the

estimated parameters in the corresponding expression of the conditional vari-

ance. The plots of b�t, corresponding to two of the series, appear in Figure

3. In table 2, we also report several sample moments of b"t. Notice that the
standardized observations have still heavy tails. However, the autocorrela-

tions of squares are not any longer signi�cant. Therefore, for these series the

GARCH(1,1) model is able to represent adequately the dynamics of squares

although it is not able to explain the excess kurtosis present in the data. This

could be due to an inadequate assumption on the distribution of "t and/or

to the presence of outliers in the data.

Table 3 reports analytic values of the kurtosis and acf of squares implied

by the GARCH models estimated for each of the four series analyzed in

4The estimation has been carried out with EViews, version 3.1.
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this section, together with their sample moments. Notice that in the four

series the theoretical kurtosis implied by the model is smaller than the sam-

ple kurtosis. On the other hand, the implied �rst order autocorrelations of

squares are below the observed ones. Therefore, the results observed in ta-

ble 2 about the moments of standardized residuals are con�rmed. It seems

that the GARCH(1,1) model cannot represent well the observed properties

of these series. This could be due to the presence of outliers that may a�ect

both, the properties of the correlogram of squares and of the estimates of the

GARCH parameters. We will consider these e�ects latter on.

Finally, notice that GARCH models may generate what can be iden-

ti�ed as outliers by traditional methods. Figure 4 shows four simulated

GARCH(1,1) series with parameters (!; �; �) equal to (0.85,0.15,0), (0.6,0.4,0),

(0.1,0.1,0.8) and (0.1,0.2,0.7) respectively, with Normal conditional distribu-

tion. Notice that all the models have the same marginal variance, equal to

one. As we can see, several observations are, in absolute value, greater than

3.5 times the standard deviation, which means that they would be consid-

ered outliers with respect to the Normal distribution. Notice also that, as

expected, the bigger is �, the bigger is the number of observations greater

than 3.5 standard deviations. It is important to note that these outlying

observations appear in clusters and jumping from positive big values to neg-

ative big ones. Figure 4 also represents two series generated by the �rst and

third models described above with a conditional Student-t distribution with

7 degrees of freedom. Notice that in these two series, the number of obser-

vations greater that 3.5 standard deviations is clearly increased with respect

to the corresponding conditionally normal cases.

As we have seen in table 2, in many empirical studies, the estimates of

� and � are such that b� + b� ' 1, suggesting high persistence of shocks

to volatility. Engle and Bollerslev (1986) proposed the Integrated GARCH

(IGARCH) process given by model (8) with � + � = 1: Remember that

although the marginal variance of an IGARCH process is not �nite, the

IGARCH process with a normal conditional distribution is strictly stationary.

Furthermore, Kleibergen and van Dijk (1993) show that the probability of

an increase in the variance is smaller than the probability of a decrease

and therefore, the dynamic behavior of IGARCH series is rather regular.

Alternatively, the results of Ter�asvirta (1996), suggest why, in practice, one

may obtain estimates of the parameters such that b� + b� ' 1 even when the

volatility process is not persistent. As we mentioned before, the GARCH(1,1)

model with normal errors cannot adequately characterized simultaneously the

high kurtosis and the small �rst order autocorrelation of squared observations

often observed in real series. Even IGARCH models are unlikely to provide an
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adequate characterization of both stylized facts. Ter�asvirta (1996) suggests

that substituting the normal distribution of "t by a heavy-tailed distribution

as, for example, the Student-t distribution, may improve the adequacy of

the GARCH model to characterize the stylized facts observed in practice.

Remember that in table 3, the observed kurtosis is clearly over the implied

kurtosis. In Figure 2, we also represent curves with the relationship between

kurtosis and �2(1) for the same GARCH(1,1) models as before but with "t
having a Student-t distribution with 7 and 10 degrees of freedom. As we can

see, the GARCH-t model seems to be better at explaining the simultaneous

high kurtosis and low �2(1) than the Normal GARCH.

The Gaussian assumption on "t has been relaxed by several authors. For

example, Bollerslev (1987) suggests a Student-t distribution, the normal-

Poisson mixture distribution is used by Jorion (1988), the power exponential

distribution in Baillie and Bollerslev (1989), the normal-lognormal mixture

distribution in Hsieh (1989) and the Generalized error distribution (GED) in

Nelson (1991). Bollerslev et al. (1994) used the Generalized-t distribution

which includes both the Student-t and the GED distributions as particular

cases. Finally, Granger and Ding (1995) and Gonz�alez-Rivera (1998) also

consider the use of the Laplace distribution in conjunction with GARCH

models.

The ML estimates of the parameters of the GARCH(1,1) model with

Student-t errors adjusted to the four selected �nancial series 5 are, with the

exception of Bombay index, very similar to the ones reported in table 2.

However, the estimates obtained for Bombay are dramatically di�erent. The

� parameter is estimated as 0:1127 and the estimate of � is 0:8137. Notice

that the persistence of Bombay volatility is smaller when the errors have a

Student-t distribution instead of being Normal. In table 3, where we report

the moments implied by the estimated GARCH-t models, it is possible to

observe that, with the exception of the S&P 500 index, the implied kurtosis

is clearly over the observed kurtosis. Therefore, it seems that when condi-

tional Gaussianity is assumed, the implied kurtosis is too low but when the

conditional distribution is a leptokurtic Student-t distribution, the implied

kurtosis is too high.

In Figure 5, we plot the News Impact Curve proposed by Engle and Ng

(1993) to measure the impact of shocks on the volatility. Holding constant

the information up to and including time t � 2 and all the lagged condi-

tional variances evaluated at the level of the unconditional variance, the

News Impact Curve measures the implied relation between yt�1 and �
2
t . For

5These estimates are not reported to save space but they are available from the authors

upon request.
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the GARCH(1,1) model in (8), the News Impact Curve has the following

expression

�
2

t = A + �y
2

t�1 (13)

where A = ! + ��
2
y . As we can see, the News Impact Curve of the GARCH

model is symmetric, which means that positive shocks have the same e�ect

on the volatility as negative ones with the same absolute value. Notice that

this contradicts one of the stylized facts of many �nancial series.

Given that the autocorrelations of absolute returns are higher than for

squared returns, several authors have also proposed to model the conditional

standard deviation instead of the conditional variance6. Modelling the ab-

solute returns can be traced back to Taylor (1986) and Schwert (1989) who

proposed the Absolute Value GARCH (AVGARCH) model given by

�t = ! + � jyt�1j+ ��t�1 (14)

Nelson and Foster (1994) demonstrate that the Taylor/Schwert GARCH

model is a more eÆcient �lter of the unconditional variance in the presence

of leptokurtic error distribution than the speci�cations based on �2t . He and

Ter�asvirta (1999) show that the autocorrelation function of squares for the

AVGARCH model is radically di�erent from that of the GARCH model. For

the latter model, the acf decays exponentially whereas for the former, the

rate of decay is slower than exponential. Although the kurtosis and �rst

order autocorrelation of squared observations of the AVGARCH model are

straightforward to obtain from He and Ter�asvirta (1999), they have rather

complicated expressions and we remit the interested lector to their paper.

Like in the GARCH(1,1) model, the News Impact Curve of the AV-

GARCH is symmetric, as we can see in Figure 5, so this model does not

allow for asymmetries in the volatility .

2.3 EGARCH models

Nelson (1991) points out three important limitations of GARCH processes.

First of all, the non negativity constrains on the parameters are sometimes

violated in empirical applications. Secondly, GARCH models are not able

to represent the asymmetry of volatility responses to positive and nega-

tive shocks often observed in real time series. Finally, the interpretation

of persistence in GARCH processes is not clear. To overcome these prob-

lems, Nelson (1991) proposes the Exponential GARCH (EGARCH) model.

If "t � NID(0; 1), the simplest EGARCH(1,1) model is given by

6However, notice that He and Ter�asvirta (1999) suggest that the Taylor e�ect may be

due to the severe bias in the sample autocorrelations of squares.

11



yt = "t�t (15)

log �2t = ! + � log �2t�1 + �[jyt�1j � (2=�)1=2] + 
yt�1

where there is no need to restrict the parameters to guaranty the positivity

of the conditional variance given that the model is formulated for the log �2t
process. The stationarity condition is j�j < 1. There is an asymmetric

response of volatility to negative and positive returns. When yt�1 > 0; then

@ log�2t =@yt�1 = 
+� while the derivative is 
�� when yt�1 < 0. In Figure

5 we can see the News Impact Curve of the EGARCH(1,1) model, which is

given by

�
2

t =

8<:A exp
�

+�

�y
yt�1

�
if yt�1 > 0

A exp
�

��

�y
yt�1

�
if yt�1 < 0

(16)

where A = �
2�
y exp (! � �

p
(2=�)). Notice that in this case, where we have

considered ! > 0, 0 < � < 1, 0 < � < 1 and, importantly, 
 < 0, negative

shocks have bigger e�ect on the volatility than positive ones.

The marginal variance, kurtosis and acf of squared observations of the

EGARCH process in (15) were derived by He et al. (1999) and they are

given by

�
2

y = exp

�
!

1� �

�
1Y
i=1

E
�
exp (�i�1

g)
�

(17)

�y = 3

1Y
i=1

E (exp (2�i�1
g))

[E (exp (�i�1g))]2
(18)

and

�2(�) =
E
�
"
2
t�1 exp (�

��1
g)
�
P1P2 � P3

3P4 � P3
(19)

where g = g(yt�1) = �

�
jyt�1j �

p
2=�

�
+ 
yt�1, P1 =

Q�

i=1E (exp (�i�1
g)),

P2 =
Q

1

i=1E (exp ((1 + �
�)�i�1

g)), P3 =
Q

1

i=1[E (exp (2�i�1
g))]2 and P4 =Q

1

i=1E (exp (2�i�1
g)). In particular, it is interesting to note that the acf

of squared observations of EGARCH processes can be negative. There-

fore, EGARCH models can produce cycles in the autocorrelation function

of squares.

Figure 6 plots the relationship between kurtosis and �2(1) for EGARCH

models with parameters � = 0:99 and 0.95, and 
 = �0:05 together with the
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sample values of the kurtosis and �2(1) for the series in table 1. It seems that

the behavior of the EGARCH model in terms of the relationship between �y
and �2(1) is not very di�erent from the GARCH model. In any case, for a

given value of the kurtosis, the �rst order autocorrelation of squares is even

greater for an EGARCH than for a GARCH model with the same persistence.

EGARCH models have been �tted to real time series by Nelson (1991),

Kearns and Pagan (1993), Poon and Taylor (1992), Zakoian (1994) and

Chong et al. (1999) among others.

Table 4 shows the estimated EGARCH models for the four series con-

sidered in the previous subsection. Once more the persistence of shocks to

volatility, measured by �, is estimated very close to one and the asymmetry

parameter is signi�cant for all the series considered, except for the US Dol-

lar/ Spanish Peseta exchange rate. In table 3, where the moments implied

by the estimated EGARCH models appear, it is possible to observe that the

kurtosis and the �rst order autocorrelation of squares are similar to the ones

implied by the corresponding GARCH models.

2.4 Other models for asymmetric conditional variances

Since the original proposal of Nelson (1991) and mainly due to the prob-

lems faced in the empirical �tting of EGARCH models, a huge number of

models have been proposed to represent the asymmetric response of volatil-

ity. Among the most popular asymmetric models is the Asymmetric-Power

ARCH (A-PARCH) model, proposed by Ding et al. (1993), that is able to

unify seven ARCH-like models for power transformations of the conditional

standard deviation. In particular, the A-PARCH model encompasses the

GARCH, the AVGARCH, the GJR-GARCH of Glosten et al. (1993), the

Threshold-ARCH (TARCH) of Zakoian (1994), the NARCH of Higgins and

Bera (1992) and the log-ARCH of Geweke (1986) and Pantula (1986). The

conditional variance in the simplest A-PARCH model is given by

�
Æ
t = ! + �(jyt�1j � 
yt�1)

Æ + ��
Æ
t�1 (20)

Ding et al. (1993) and Granger and Ding (1995) argue that the parameter

Æ serves as a Box-Cox transformation of �t and it is necessary to adequately

capture the dynamic characterization of volatility. The parameter 
 allows

�t to respond asymmetrically to positive and negative shocks. The statistical

properties of the A-PARCH model have been addressed by He and Ter�asvirta

(1997) and Fornani and Mele (1997). The A-PARCH model has been �tted

to returns of several Stock Markets by Brooks et al. (2000) and Paolella

(2000).
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Recently, there has been several new models proposed to nest most of the

ARCH-type models previously described. First, Hentschel (1995) de�nes a

parametric family of GARCH models that nets the EGARCH and A-PARCH

models but not the GQARCH model of Sentana (1995). Le�on and Mora

(1999) apply the model proposed by Hentschel (1995) to daily returns of the

IBEX-35 index of the Madrid Stock Exchange and conclude that models that

focus on conditional standard deviation perform better than those that focus

on conditional variances. They also �nd that the likelihood of models based

on leptokurtic conditional distributions are higher than when the conditional

distribution is assumed to be Normal. Finally, they show that the asymmetric

behavior of the IBEX-35 returns is statistically signi�cant. The asymmetric

response of volatility and the leptokurtic conditional distribution have also

been found by Blanco (2000) for the same variable.

Alternatively, Duan (1997) introduces the augmented GARCH model

that is general enough to unify many of the main ARCH-like models in the

literature. Loudon et al. (2000) document on an UK weighted stock index,

observed daily from 1971 to 1997, the relative e�ectiveness of most of the

major parametric ARCH models using the model proposed by Duan (1997).

They �nd that the estimates for the ARCH parameters across all models

are highly signi�cant. They also �nd that volatility measures exhibit a high

degree of persistence and asymmetry. However, standardized residuals are

characterized by having substantial negative skewness and excess kurtosis,

concluding that ARCH models with conditionally normal density functions

are able to capture some, but not all, of the observed skewness and excess

kurtosis, a fact already suggested by McCurdy and Morgan (1987), Milhoj

(1987), Hsieh (1989) and Baillie and Bollerslev (1989).

Finally, He and Ter�asvirta (1999) provide a unifying framework for con-

sidering the statistical properties of many GARCH models both symmetric

and asymmetric and without making any particular assumption on the distri-

bution of "t: They consider the following models: GARCH, AVARCH, GJR-

GARCH, Nonlinear GARCH, which is a particular case of the A-PARCH,

volatility switching GARCH of Fornani and Mele (1997), TGARCH, fourth-

order nonlinear generalized moving-average conditional heteroscedasticty of

Yang and Bewley (1995) and GQARCH. They do not include neither the

EGARCH nor the A-PARCH models. For their family of GARCH models,

they derive a general existence condition of any integer moment of absolute-

valued observations as well as the moments themselves, and the acf of squared

and absolute observations.
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2.5 Alternative models for conditional heteroscedas-

ticity

The literature on models for the dynamic evolution of the volatility, �t, is so

extensive that we do not try to cover all proposed models. In this subsection,

we brie
y describe two models that can be interesting alternatives to the

GARCH-type models.

The Conditional Heteroscedastic Autoregressive Moving Average (CHARMA)

process was introduced by Tsay (1987) . A simple CHARMA model is given

by,

�(L)yt = �(L)at (21)

Æt(L)at = �t

where �(L) = 1��1L��2L
2
�: : :��pL

p and �(L) = 1��1L��2L
2
�: : :��qL

q

are constant coeÆcient polynomials in L of degrees p and q respectively,

L is the lag operator such that Lj
yt = yt�j, �t is a Gaussian white noise

with variance �2� and Æt(L) = 1 � Æ1tL � Æ2tL
2
� : : : � ÆrtL

r is a purely

random coeÆcient polynomial in L of degree r. The random coeÆcient vector

Æt = (Æ1t; Æ2t; :::; Ært)
0 is a sequence of iid random vectors with zero mean and

nonnegative de�nite covariance matrix �. In addition, Æt is independent of

�t. The CHARMA model uses random coeÆcients to produce conditional

heteroscedasticity. If, for example, p=q=0 and r=1, then the series yt is

given by

yt = Æ1tyt�1 + �t

It is easy to prove that fytg is uncorrelated, conditional heteroscedastic

and with leptokurtic unconditional distribution. Tsay (1987) considers an

application of the CHARMA models using their fatter-tailed property and

employs the heteroscedastic structure as an alternative approach for handling

outliers in time series analysis.

Another important alternative models to represent the dynamic evolution

of volatilities are the Stochastic Volatility (SV) models, originally proposed

by Taylor (1986). SV models assume that �t is a latent variable that usually

follows an autoregressive process after being transformed into logarithms.

Surveys on the properties of SV models are given by Taylor (1994), Ghysels

et al. (1996) and Shephard (1996).

The simplest Autoregressive SV model of order 1, ARSV(1), is given by:
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yt = �?"t�t (22)

ln�2t = � ln�2t�1 + �t

where "t and �t are assumed to be white noise processes mutually independent

and normally distributed with zero mean and variances 1 and �2� respectively,

�? is a scale factor that removes the necessity of including a constant term in

the equation of ln�2t and the restriction j�j < 1 guarantees the stationarity

of yt. Although the assumption of Gaussianity of �t can seem ad hoc at �rst

sight, Andersen et al. (1999) show that the daily log-volatility distribution

of real �nancial series may be well approximated by a normal distribution.

Notice that �2� is the variance of the volatility disturbance. When �2� is zero,

the model in (22) is no longer identi�ed. The ARSV model generates series

with excess kurtosis and autocorrelated squared observations. The shape of

the acf of squared observations is similar to that of an ARMA(1,1) model.

Although the properties of the ARSV(1) and GARCH(1,1) models may seem

very similar, Carnero et al. (2001b) show that SV models are more 
exible

than GARCHmodels to represent simultaneously the three properties charac-

teristic of high frequency �nancial time series: high kurtosis, small order one

autocorrelation and slow decay of the autocorrelation coeÆcients of squared

observations. However, the estimation of SV models is not straightforward

since they are not conditionally Gaussian even if "t is assumed to be Gaus-

sian. Inference of ARSV models is usually based either on approximations

or on numerically intensive methods.

3 Modelling conditional heteroscedastic time

series in the presence of outliers

None of the empirical studies previously mentioned take into account that

long real time series usually have outliers and these observations may a�ect

both the correlogram of squares and the estimated model for the conditional

variance. In this section, we deal with the simultaneous presence of outliers

and conditional heteroscedasticity.

3.1 Types of Outliers

The study of outliers in time series has been mainly done in the context of

linear ARMAmodels, where two main types of outliers can be considered: the

Additive (AO) and the Innovative outlier (IO). These types of observations
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were introduced by Fox (1972) and generalized later by Tsay (1988). Reviews

on outliers in ARMA models can be found in Tolvi (2000) and Pe~na (2001).

A linear ARMA(p,q) model is given by

�(L)yt = �(L)at (23)

where �(L) and �(L) are de�ned as in (21) with all their roots outside the

unit circle and at is assumed to be NID(0,�2a). Alternatively, yt may be

expressed as the AR(1) process �(L)yt = at where �(L) = �(L)�(L)�1, or

the MA(1) process yt =  (L)at where  (L) = �(L)�(L)�1.

In this context, an AO is related to an exogenous change that directly

a�ects the series yt. That is, instead of yt, we observe a series zt, which is

contaminated at time � by an outlier of size wA, i.e.

zt = yt + wAI(t = �) =

(
yt if t 6= �

yt + wA if t = �
(24)

An additive outlier only a�ects the level of the given observation at time �

and therefore, the model for the observed series is given by zt = wAI(t =

�) +  (L)at or, equivalently,

�(L)
�
zt � wAI(t = �)

�
= at:

The IO is possibly generated by an endogenous change in the time series,

that is, the observed series is, in this case

zt =

(
yt if t < �

yt + wI j if t = � + j; j > 0
(25)

where  j are the coeÆcients of the corresponding MA(1) representation.

An innovative outlier a�ects all the observations after time � through the

memory of the ARMA process. The model for the observed series is zt =

 (L)
�
wII(t = �) + at

�
or equivalently �(L)zt = wII(t = �) + at.

It is well known that outliers a�ect the autocorrelation structure of a time

series and, therefore, they cause biases in the estimated autocorrelation coef-

�cients depending on their number, size and position; see Chang et al. (1988)

and Chan (1995). In particular, a large additive outlier will push all the au-

tocorrelation coeÆcients toward zero. Since traditional ARMA model identi-

�cation procedures are based on the estimated autocorrelations, outliers will

have, then, important e�ects on identifying the corresponding ARMA(p,q)

model; see, for example, Deutsch et al. (1990). Similarly, outliers bias the

estimated ARMA model parameters. Least squares and maximum likelihood
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methods are both sensitive to the presence of outliers, especially to AOs. It

is also known that a single AO has a strong e�ect on the estimation of the

AR(1) parameter pushing it towards zero as the size of the outlier goes to

in�nity. In the case of IOs, the e�ects are not so strong. This type of outliers

produce a small e�ect on the autocorrelation and hence, on the parameter

estimates.

With respect to outliers in nonlinear GARCH models, Hotta and Tsay

(1998) introduce two types of outliers, the level outlier (LO), which a�ects

just the level of the series and has no e�ect on the conditional variance and,

the volatility outlier (VO), which a�ects both, the level and the variance of

the series.

Let us consider a GARCH(1,1) uncorrelated time series, yt. In this con-

text, AO and IO coincide, since there is no structure in the mean, and we

should only distinguish between LO and VO. The level outlier can be de�ned

as follows,

zt = yt + wLI(t = �) (26)

�
2

t = ! + �y
2

t�1 + ��
2

t�1

Notice that the conditional variance depends on y2t�1, hence it is not a�ected

by the outlier. The volatility outlier is given by

zt = yt + wV I(t = �) (27)

�
2

t = ! + �z
2

t�1 + ��
2

t�1

Notice that in this case, the conditional variance �2t depends on z2t�1, so is

a�ected by the outlier.

If both the conditional mean and the conditional variance evolve over

time, there are three types of possible outliers: the AO as de�ned before, but

now the IO can be a LO or a VO. In order to make this clear, let us consider,

for example, the MA(1)-GARCH(1,1) model given by,

yt = (1 + �L)at (28)

at = "t�t

�
2

t = ! + �a
2

t�1 + ��
2

t�1

If there is an AO, the observed series will be zt as in (24), but if the outlier

is an IO, the observed series could be

zt = (1 + �L)~at (29)

~at = "t�t + wLI(t = �)

�
2

t = ! + �a
2

t�1 + ��
2

t�1
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or

zt = (1 + �L)~at (30)

~at = "t�t + wV I(t = �)

�
2

t = ! + �~a2t�1 + ��
2

t�1

Since in this paper we focus on the analysis of �nancial time series, we will

assume that yt is an uncorrelated process, so additive and innovative outliers

coincide. Furthermore, we will focus only on the e�ects of level outliers on

the identi�cation and estimation of GARCH models. Like innovative outliers

in linear models, we expect that the e�ects of volatility outliers are not so

strong as for level outliers.

3.2 E�ects of outliers on identi�cation of ARCH ef-

fects

The Lagrange Multiplier (LM) test statistic for ARCH e�ects proposed by

Engle (1982) is given by TR2, where T is the sample size and R2 is the

determination coeÆcient computed from the regression of the squared ob-

servations y2t on a constant and p lagged values, y2t�1; :::; y
2
t�p. Under the

null hypothesis of homoscedasticity, the test statistic is asymptotically dis-

tributed as a �2 variable with p degrees of freedom. It is also quite common

to use the asymptotically equivalent portmanteau test proposed by McLeod

and Li (1983) based on the analogue of the Box-Pierce statistic that uses au-

tocorrelation coeÆcients of squared observations; see Granger and Ter�asvirta

(1993). The �nite sample properties of this stastistic have been studied in

Engle et al. (1985). Therefore, the correlogram of squared observations is one

of the main tools used in practice to test for conditional heteroscedasticity

in time series.

Van Dijk et al. (1999) show how the presence of level outliers can produce

both spurious ARCH e�ects and hide true conditional heteroscedasticity.

They propose a robust test which seems to work well in discriminating spuri-

ous ARCH e�ects due to consecutive additive outliers from true conditional

heteroscedasticity. However, the power is smaller than the corresponding to

the LM test.

Lumsdaine and Ng (1999) analyze the e�ects of a possibly misspeci�ed

conditional mean on the LM test for ARCH. They show that misspeci�cation

will lead to overrejection of the null hypothesis of conditional homoscedas-

ticity and propose a robust test based on adding additional terms in the

estimated model for the mean, in particular, additional lags of the vari-

able being analyzed and functions of lagged recursive residuals. Analyzing
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by means of Monte Carlo experiments the performance of the LM test for

ARCH in the presence of three consecutive outliers, they conclude that the

null hypothesis is rejected too frequently. They also �nd evidence that this

e�ect is exacerbated by higher levels of persistence. The robust test they

propose does not work properly in this case.

Ruiz et al. (2001) analyzing monthly series of in
ation of the G7 countries

and by means of simulations illustrate the problems raised by the simulta-

neous presence of outliers and conditional heteroscedasticity in time series.

They show that the presence of outliers in conditional heteroscedastic se-

ries, generates a big �rst order autocorrelation of squares. The same result

was found by Deutsch et al. (1990) in relation to the identi�cation of linear

ARMA models. They conclude that the presence of a single outlier in an AR

model leads to the identi�cation of a MA or ARMA model.

To illustrate the potential e�ects of outliers on the correlogram of squared

observations, in table 5 we report sample moments of the twelve �nancial

series described before, corrected by outliers. In this table, all observations

bigger than 4 standard deviations have been substituted by the sample mean.

Notice that the magnitude of the autocorrelations of squares and the Box-

Ljung statistic for y2t are reduced for most of the series and the reduction of

the autocorrelations is specially remarkable for the order one autocorrelation.

See, for example, the correlograms of squared observations for the US Dollar/

German Mark and the US Dollar/Japanese Yen exchange rates. However,

there are three series, the Bombay, Dow-Jones and S&P 500 indexes, where

potential outliers are hiding the dynamic structure in the squares. Conse-

quently, the results in this table point out the necessity of dealing properly

with the presence of outliers. They can hide dynamic structure of squares

or imply autocorrelations of squares not due to conditional heteroscedastic-

ity. However, notice that the series have been corrected by outliers de�ned

with respect to the marginal variance. If these series are conditionally het-

eroscedastic, it is not clear that the corrected observations are truly outliers.

Granger and Orr (1972), in an early paper, also pointed out the danger

involved in correcting too many outliers.

In order to illustrate these e�ects, we have simulated three series of size

T = 500. The �rst one is a Gaussian zero mean white noise with variance

one, denoted by at: The second series, yt; is generated by a GARCH(1,1)

process with parameters ! = 0:1; � = 0:1 and � = 0:8 and the third one,

xt, is an EGARCH(1,1) with parameters ! = �0:001, � = 0:07, � = 0:98

and 
 = �0:0456. We have contaminated the series at �rst with three con-

secutive outliers at observations t = 200; 201 and 202 and second, with three

isolated outliers, at observations t = 100; 200 and 300, obtaining the con-

taminated series a?t and a
0

t respectively. Series y
?
t , yt

0, x?t and xt
0 have been
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generated from yt and xt in the same way. All outliers have size w equal to

�ve standard deviations. Table 6 reports the Monte Carlo results on several

descriptive statistics based on 1000 replicates generated by each of the pre-

viously described processes. The e�ect of outliers on skewness and kurtosis

is, as expected, the same regardless of whether the outliers are isolated or

consecutive and if the original series is white noise, GARCH or EGARCH.

Both coeÆcients are bigger in the contaminated series and the magnitude of

the e�ect is also similar. However, the e�ect on the order one autocorrela-

tion of squared observations depends on whether the outliers are consecutive

and on whether the original series is white noise, GARCH or EGARCH. If

the series is white noise, isolated outliers do not generate autocorrelations of

squares and the LM test for heteroscedasticity has lower size than nominal.

However, the presence of consecutive outliers generates a signi�cant order

one autocorrelation of squared observations. In this case, the LM test rejects

the null hypothesis of homoscedasticity and, therefore, consecutive outliers

can be confused with heteroscedasticity. On the other hand, when the series

is conditionally heteroscedastic, consecutive outliers increment the order one

autocorrelation while isolated outliers can hide conditional heteroscedastic-

ity.

Notice that for EGARCH models, the LM test has very low power. When

the series has no outliers, the test rejects the null hypothesis of homoscedas-

ticity just 27:10% when the alternative is in fact true. When outliers are

present, they a�ect the size and power of the test in the same way as before.

It is also important to notice that in the case of series with some structure

in the mean, what we usually do is (i) to model the mean and (ii) to check

homoscedasticity in the residuals. For example, in the case of a simple AR(2)

model, if the series is contaminated with just one outlier, the residuals appear

contaminated with 3 consecutive outliers, which leads us to the �rst case

considered, the white noise series with 3 consecutive outliers.

3.3 E�ects of outliers on estimation of ARCH models

At the moment, there are very few articles analyzing how the presence of

outliers in time series with ARCH e�ects, a�ects the estimation of the pa-

rameters of the conditional variance equation. There are two main proce-

dures to estimate these parameters. The simplest one is to estimate by Or-

dinary Least Squares (OLS) the parameters of ARCH(p) models, expressed

as AR(p) models for y2t . The OLS estimator is not eÆcient and cannot be

applied when the conditional variance is modelled as a GARCH process. On

the other hand, the estimation of the parameters of GARCH models can

be carried out by Quasi-Maximum Likelihood (QML) by maximizing the
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Gaussian log-likelihood; see, for example, Bollerslev and Wooldridge (1992).

Carnero et al. (2001a) study the e�ects of level outliers on the OLS esti-

mation of ARCH models, �nding that a single outlier biases the estimation

of the parameter ! of the ARCH(p) model toward 1 and the �i toward

�
1

T�2p
; 8i = 1; : : : ; p as the size of the outlier goes to 1. When there are

k consecutive outliers of the same size, ! is biased toward 1 and the bias

of the estimate of �i depends on the number of outliers k. When k is big

enough, persistence in the variance is estimated very close to one. These re-

sults are extended to the QML estimates of GARCH(1,1) models by means

of simulations.

Verhoeven and McAleer (2000) study, empirically, the e�ects of outliers

on the AR(1)-GARCH(1,1) process by analyzing 1000 trading days of �ve

�nancial time series: S&P 00, Nikkei 225, HSI, British Pound - US Dollar

spot exchange rate and the Gold Bullion spot rate. They �nd that outliers

tend to dominate the QML estimates resulting in larger ARCH and smaller

GARCH estimates and may give rise to spurious AR(1) and ARCH e�ects.

They also �nd that outliers are frequently clustered and do not appear to be

i.i.d. This fact could explain the biases found for the ARCH and GARCH

parameters, � and �, toward one and zero respectively, since it could be

due to consecutive outliers, as Carnero et al. (2001a) point out. Another

possible explanation to this founding is that the outliers detected correspond

to periods of high volatility, and considering those observations as outliers

may bias the estimates of the conditional variance.

In order to illustrate the kind of biases outliers cause on the estimation of

GARCH models, Figure 7 plots the results of a simple Monte Carlo study in

which we have simulated 100 replicates of GARCH(1,1) series of sample size

T=500, with parameters ! = 0:1, � = 0:1 and � = 0:8. In the �rst row of

Figure 7, we can see estimates of the parameters for the original series and

after correcting for observations bigger than 4 standard deviations. Most

of the times, there are not such observations and then, the original and

corrected series are the same, but when some observation is bigger than 4

standard deviations and the series is corrected, we can see that the estimates

are di�erent for the original and for the corrected series, resulting that in

most of the corrected series, ! and � are estimated smaller and � is estimated

bigger than in the original series. So, we have to be careful about correcting

for outliers, because we can introduce important biases in the estimates.

This could be the case in Verhoeven and McAleer (2000) and in the US

Dollar/Japanese Yen exchange rate.

The second and third rows of Figure 7 show estimates for the original

series and the contaminated ones. It is important to notice that for all the

contaminated series, ! is overestimated without depending on whether the
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series is contaminated with consecutive or isolated outliers. But in the case

of estimates of � and �, the biases depend on the nature of outliers, if they

are consecutive, � is overestimated and � is underestimated, while in the

case of isolated outliers, the biases are not very clear, both parameters � and

� can be overestimated or underestimated.

3.4 Alternative modelling strategies

In this section, we compare two alternative procedures for dealing with the

simultaneous presence of outliers and conditional heteroscedasticity in time

series. First, it is possible to correct the series for outliers using standard cri-

teria and then estimate the conditional variance. Alternatively, it is possible

to estimate initially a model for the conditional variance, and then obtain

the 'conditional' outliers using the resulting estimated conditional standard

deviations. There are two procedures to detect outliers in GARCH models

based on these 'conditional' outliers. Hotta and Tsay (1998) propose two test

statistics to detect outliers in ARCH and GARCH processes. They applied

the proposed tests to simulated and real examples and conclude that the tests

work well in both applications. Franses and Ghijsels (1999) and Franses and

van Dijk (1999) proposed to apply the Chen and Liu (1993) method to cor-

rect for additive outliers in stock market returns, when GARCH models for

these returns are used for forecasting volatility. Notice that, a third approach

to deal with this problem is to estimate the conditional variance parameters

using robust estimation methods as proposed by Sakata and White (1998).

We will compare the two alternative strategies by applying them to the

four selected series. Using the �rst strategy Table 7 shows the estimated

GARCH(1,1) parameters for the series corrected by outliers bigger than 4

standard deviations. These estimates are for the Dollar/Peseta exchange

rate and the S&P 500 index similar to the ones previously obtained (see

table 2). However, those corresponding to the Dollar/Yen exchange rate and

the Bombay index are quite di�erent. For the Dollar/Yen exchange rate,

the � parameter is estimated smaller and the estimate of � bigger, after

correcting by outliers. For the Bombay index the result is the opposite.

This could indicate that in the case of the Dollar/Yen exchange rate we are

correcting observations which are not outliers and, consequently, pushing the

estimates of the conditional variance towards the homoscedastic case, which

is � = 0 and � = 1. However, the Bombay index seems to have outliers

and after controlling for them the dynamics on the squares appears more

clear. It is also important to note that the estimated parameters obtained

after correcting for outliers are similar to the ones obtained when �tting the

GARCH model with a conditional Student-t distribution. Therefore, this
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result suggests that the lack of �t when conditional normality is assumed

could be due to the presence of outliers. Figure 3 plots estimates of the

volatility after correcting for outliers bigger than 4 standard deviations. As

we can see in this plot, there are important di�erences between estimates

of the volatility before and after correcting for outliers. For the Dollar/Yen

exchange rate, correcting for outliers makes the estimated volatility smoother

while for the Bombay index, the estimated volatility without correcting for

outliers is smoother.

Now we apply the second strategy, that is, we estimate �rst the condi-

tional variance and then using the standardized observations look for outliers.

The series is corrected by these 'conditional' outliers and then new estimates

are computed. In this way we obtain the GARCH estimates in Table 8. Esti-

mates of the volatility based on the new estimations are also plotted in Figure

3. For the Bombay index, as we saw before, there are di�erences between

estimated volatilities after and before correcting for outliers but it seems that

correcting for marginal or conditional outliers lead us to similar estimates.

For the Dollar/Yen series the di�erences appear when we correct for marginal

outliers. Table 9 indicates which observations are detected as outliers. As

we can see, observations detected as outliers using the the marginal variance

are not the same as the ones detected using the conditional variance.

Finally, in order to illustrate the e�ects that outliers may have on the

estimation of the asymmetry response of volatility to negative and positive

shocks, we �t EGARCH models to the series corrected by outliers bigger

than 4 standard deviations7 and we observe that the estimated asymmetric

parameter, 
, is smaller in absolute value, for the four series considered,

although it is still signi�cant for all the series, except the US Dollar/Spanish

Peseta exchange rate. Notice that the e�ect of outliers on the estimated

parameter of asymmetry may depend on the sign of the outlier.

4 Conclusions

We have seen that �nancial time series have high kurtosis and correlations

in the squared observations. This features can be explained by ARCH and

GARCH models, although we have seen that although these models are able

to capture some of these features they do not represent well many observed

time series. This result may be due to the presence of outliers that can pro-

duce also high kurtosis and correlations in the squared observations. A key

problem is to distinguish both e�ects. We have compared two alternative

7These estimations are available from authors upon request.
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strategies for dealing with the simultaneous presence of outliers and condi-

tional heteroscedasticity in time series. The �rst one is to correct the series

for outliers using standard criteria and then estimate the conditional vari-

ance. The second one is to estimate the conditional variance and then correct

the series for 'conditional' outliers. We have shown that both approaches may

result in di�erent estimated conditional variances. An important area of re-

search is to compare the relative advantages of both procedures in practical

problems.

It would be important to analyze the e�ects of other types of outliers,

in particular level shifts and variance changes. For example, Tsay (1988)

shows, analyzing a real time series, that if a variance change is ignored, more

than 15 outliers are identi�ed. However, when the variance change is taken

into account, the series seems to have only two outliers. On the other hand,

Lamoureux and Lastrapes (1990) show that variance changes can also be

confused with highly persistent conditional heteroscedasticity. Thus deriving

procedures to deal with these problems seems to be a promising line of future

research.
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Figures and Tables

Figure 1: S&P 500 and US Dollar/Japanese Yen exchange rate
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Figure 2: Relationship between �y and �2(1) for symmetric GARCH models
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Figure 3: Estimated volatilities for daily returns
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Figure 4: Simulated ARCH type series
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Figure 5: News Impact Curve of GARCH, AVGARCH and EGARCH models
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Figure 6: Relationship between �y and �2(1) for GARCH and EGARCH

models

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

5

10

15

20

25

First order autocorrelation of squares

K
ur

to
si

s

 β=0.99  
β=0.95   
         
α+β=0.99 
α+β=0.95 
         

GARCH 

EGARCH 

Data 

36



Figure 7: GARCH(1,1) estimates based on 100 simulated series
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Table 2: Estimated GARCH models and diagnostics for the original series

yt US-ES S&P 500 US-JA BOMBAY

!
0:0045

(0:0015)

0:0040

(0:0008)

0:0130

(0:0019)

0:0718

(0:0106)

�
0:0327

(0:0058)

0:0316

(0:0026)

0:0559

(0:0060)

0:0431

(0:0059)

�
0:9563

(0:0086)

0:9633

(0:0030)

0:9230

(0:0075)

0:9369

(0:0063)

� + � 0.9890 0.9949 0.9789 0.9800

log L -1808.812 -3543.487 -2162.498 -2498.162b"t = yt
b�t

Mean 0.0386 0.0646� -0.0095 0.0072

S.D. 1.0002 1.0077 0.9959 0.9942

Skewness -0.1371� -0.7483� -0.5439� -0.0852

Kurtosis 5.1636� 8.1309� 6.0109� 6.8879�

r(1) -0.0300 0.0300 0.0300 0.0900�

Q(20) 18.1 27.7 19.6 42.5�

r2(1) 0.0100 0.0300 0.0300 0.0400

r2(2) -0.0200 0.0200 0.0000 0.0100

r2(5) -0.0200 0.0100 -0.0100 0.0200

r2(10) 0.0000 0.0000 -0.0300 -0.0100

Q2(20) 7.4 8.6 13.3 30.3
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Table 3: Sample moments and implied ones by the model

In sample Implied by Implied by Implied by

GARCH GARCH-t EGARCH

US-ES

Mean 0.0245 0.0000 0.0000 0.0000

Variance 0.3885 0.4091 0.6429 0.5009

Kurtosis 5.1553 3.3250 23.9662 3.2475

y
2
t

�2(1) 0.0800 0.0773 0.1025 0.0645

�2(2) 0.0500 0.0764 0.1018 0.0636

�2(5) 0.0300 0.0739 0.0997 0.0612

�2(10) 0.0400 0.0699 0.0962 0.0574

S&P 500

Mean 0.0575 0.0000 0.0000 0.0000

Variance 0.8253 0.7933 0.5455 1.8048

Kurtosis 9.6405 3.7415 9.0915 4.0078

y
2
t

�2(1) 0.1700 0.1194 0.0934 0.1456

�2(2) 0.0900 0.1188 0.0927 0.1438

�2(5) 0.1500 0.1168 0.0906 0.1385

�2(10) 0.0700 0.1124 0.0872 0.1302

US-JA

Mean -0.0077 0.0000 0.0000 0.0000

Variance 0.6078 0.6182 0.5143 0.7546

Kurtosis 7.3970 3.5306 22.3612 3.5132

y
2
t

�2(1) 0.2500 0.1204 0.1055 0.1267

�2(2) 0.1300 0.1179 0.1044 0.1220

�2(5) 0.1100 0.1106 0.1012 0.1092

�2(10) 0.0500 0.0992 0.0960 0.0911

BOMBAY

Mean 0.0111 0.0000 0.0000 0.0000

Variance 3.3948 3.6066 3.1291 4.2475

Kurtosis 6.8799 3.3226 31.7640 3.2679

y
2
t

�2(1) 0.1300 0.0868 0.1796 0.0934

�2(2) 0.1300 0.0851 0.1664 0.0885

�2(5) 0.1000 0.0802 0.1323 0.0755

�2(10) 0.0400 0.0709 0.0903 0.0582
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Table 4: Estimated EGARCH models and diagnostics for the original series

yt US-ES S&P 500 US-JA BOMBAY

!
�0:0087

(0:0134)

0:0045

(0:0067)

�0:0110

(0:0116)

0:0646

(0:0100)

�
0:0693

(0:0130)

0:0886

(0:0086)

0:1460

(0:0132)

0:1314

(0:0013)

�
0:9881

(0:0046)

0:9899

(0:0015)

0:9692

(0:0051)

0:9540

(0:0076)



0:0089

(0:0064)

�0:0495

(0:0065)

�0:0330

(0:0074)

�0:0301

(0:0099)

log L -1800.9 -3516.3 -2160.6 -2507.9

"̂t =
yt
�̂t

Mean 0.0387 0.0638 -0.0062 0.0124

S.D. 0.9999 0.9935 1.0036 1.0049

Skew -0.1557� -0.6905� -0.4821� -0.0597

Kurtosis 4.9981� 7.8433� 5.8503� 7.7198�

r(1) -0.0300 0.0300 0.0300 0.0900

Q(20) 18.51 26.65 20.53 44.44�

r2(1) 0.0200 0.0200 0.0300 0.0300

r2(2) -0.0200 0.0020 0.0100 0.0200

r2(5) -0.0200 0.0030 -0.0200 0.0200

r2(10) 0.0030 -0.0050 -0.0200 -0.0040

Q2(20) 7.19 6.37 15.57 57.72�
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Table 6: Descriptive Statistics based on 1000 replicates for three models with

isolated (IS) and consecutive (CS) outliers

Series Mean S.D. Skew. Kurt. r(1) r2(1) LM test

(% rejections)

Gaussian (at) 0.0018 1.0003 0.0003 2.9794 -0.0019 -0.0025 4.40

CS (a?t ) 0.0318 1.0721 0.5919� 5.6537� 0.0847 0.3763� 99.50

IS (at
0) 0.0318 1.0721 0.5912� 5.6472� -0.0021 -0.0054 1.70

GARCH (yt) 0.0022 0.9951 0.0034 3.2619� -0.0011 0.1167� 63.10

CS (y?t ) 0.0322 1.0675 0.6104� 5.9715� 0.0855 0.4097� 99.70

IS (yt
0) 0.0322 1.0676 0.6123� 5.9894� -0.0020 0.0397 14.30

EGARCH (xt) 0.0015 0.9937 0.0160 3.2132� -0.0024 0.0530� 27.10

CS (x?t ) 0.0315 1.0651 0.6029� 5.8261� 0.0837 0.3782� 99.70

IS (xt
0) 0.0315 1.0648 0.5995� 5.8032� -0.0031 0.0170 5.20

* Signi�cant at the 5% level.
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Table 7: Estimated GARCH models and diagnostics for the corrected series

by outliers

yt US-ES S&P 500 US-JA BOMBAY

!
0:0038

(0:0013)

0:0039

(0:0010)

0:0089

(0:0014)

0:1298

(0:0259)

�
0:0299

(0:0055)

0:0334

(0:0045)

0:0424

(0:0055)

0:0746

(0:0117)

�
0:9599

(0:0082)

0:9602

(0:0052)

0:9410

(0:0064)

0:8828

(0:0177)

� + � 0.9898 0.9936 0.9838 0.9574

log L -1758.369 -3351.154 -2082.421 -2414.408

"̂t =
yt
�̂t

Mean 0.0445 0.0796� 0.0001 0.0168

S.D. 0.9915 1.0096 0.9962 1.0004

Skew -0.1496� -0.1853� -0.2903� -0.1020�

Kurtosis 4.1440� 4.0186� 4.7636� 5.4231�

r(1) -0.0400 0.0400 -0.0100 0.1100�

Q(20) 16.9 37.6� 19.9 52.3�

r2(1) 0.0200 0.0000 0.0200 -0.0100

r2(2) -0.0200 0.0100 -0.0100 0.0100

r2(5) -0.0100 0.0100 -0.0200 0.0100

r2(10) 0.0100 0.0000 -0.0300 -0.0100

Q2(20) 12.2 12.9 13.6 14.1
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Table 8: Estimated GARCH models and diagnostics for the series corrected

by conditional outliers

yt US-ES S&P 500 US-JA BOMBAY

!
0:0019

(0:0009)

0:0039

(0:0010)

0:0091

(0:0016)

0:1026

(0:0234)

�
0:0392

(0:0063)

0:0361

(0:0030)

0:0531

(0:0068)

0:0963

(0:0137)

�
0:9569

(0:0071)

0:9588

(0:0036)

0:9309

(0:0079)

0:8715

(0:0170)

� + � 0.9961 0.9949 0.9840 0.9678

log L -1732.074 -3479.874 -2080.440 -2386.581

"̂t =
yt
�̂t

Mean 0.0433 0.0729� 0.0061 0.0163

S.D. 1.0013 0.9985 1.0004 0.9999

Skew -0.1592� -0.6240� -0.2104� -0.0140

Kurtosis 3.8501� 7.8999� 4.7933� 4.1322�

r(1) -0.0400 0.0370 0.0010 0.1140�

Q(20) 18.85 25.86 27.84 56.07�

r2(1) 0.0140 0.0130 0.0140 0.0200

r2(2) -0.0170 0.0180 0.0090 -0.0120

r2(5) -0.0020 0.0120 -0.0200 0.0090

r2(10) 0.0170 -0.0090 -0.0350 0.0100

Q2(20) 10.66 5.96 16.67 13.66
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Table 9: Observations detected as outliers

Series Marginal outliers Conditional outliers

US-ES

93 151

392 1876

1958

93 392

861 909

1662 1757

S&P 500

20 47 114

494 812 1023

2526 2527 2719

2736 2738 2739

2743 2770

114 495

812 1023

1338 1585

2112

US-JA

287 673

699 1114

1391 1443

1448 1468

1469 1476

287 664

988 1114

1176 1266

1391 1468

BOMBAY

321 351

370 853

1023 1130

250 351

370 753

853 1023

1066

46


