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A dimension reduction method in kernel discriminant analysis is presented,

based on the concept of dimension reduction subspace. Examples of application

are discussed.
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1. INTRODUCTION

Consider a classi…cation problem where the goal is to assign an individual to one of a

…nite number of classes or groups g1, ..., gk on the basis of p observed features x = (x1,

..., xp)0. If the possible distributions of x are assumed to be continuous, the optimal or

Bayes rule, that is the rule that minimizes the probability of misclassi…cation, assigns

x to group gi when

¼ifi(x) = max
1·j·k

¼jfj(x) , (1)
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where, for i = 1, ..., k, fi(x) is the ith class conditional density and, if g is the

random label that denotes the true class membership of the individual under study,

¼i = P [g = i] > 0 is the ith class prior probability (see e.g. Seber 1984, sec. 6.9).

Given that the pairs (¼i,fi(x)) are typically unknown, rule (1) is often implemented in

practice once the unknown quantities involved in its construction have been replaced

by adequate estimators computed from

Dn = f(xj;gj) : j = 1, ..., ng , (2)

a database of size n formed by i.i.d. observations from the pair (x,g) obtained from

individuals previously classi…ed. For example, the prior probabilities ¼i may be esti-

mated by the proportions b¼i = ni=n, where ni represents the number of observations
(xj,gj) in Dn such that gj = i. If, on the other hand, the class conditional densi-

ties are not supposed to follow any particular model, fi(x) may be estimated by a

nonparametric kernel density estimator of the form

bfi(x) = 1

nih
p
i

nX
j=1

K[
1

hi
(x¡ xj)]I(i)(gj) , (3)

see e.g. Scott (1992, chap. 6), where K(:) is a suitable kernel function, hi is an

smoothing parameter and I(i)(gj) is an indicator function that takes the value 1 when

gj = i and 0 otherwise. After replacing in (1) the pairs (¼i,fi(x)) by the pairs

(b¼i, bfi(x)), the sample based plug-in rule that assigns x to group gi when
(ni=n) bfi(x) = max

1·j·k
(nj=n) bfj(x) , (4)

is the so called kernel discriminant rule and a classi…cation procedure based on (4) is

commonly denoted as kernel discriminant analysis (KDA).

Despite its natural construction and well established theoretical properties (see e.g.

Devroye, Györ… and Lugosi 1996, chap. 10), the performance of the KDA rule in

applications deteriorates as the dimension p of the feature vector x increases (Hand
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1997, chap. 5). This phenomenon, usually referred to as the “curse of dimensional-

ity”, motivates the need of constructing e¢cient dimension reduction methods. The

aim of this paper is to develop a dimension reduction procedure that, after projecting

the vector of features onto a lower dimensional subspace, allows to performKDA in a

nearly optimal fashion. Section 2 establishes notation and contains some background

and motivation. Section 3 presents the theoretical foundations of the procedure. Sec-

tion 4 studies related practical implementation issues and section 5 develops some

applications on real or simulated data. Section 6 gives some …nal comments.

2. BACKGROUND AND MOTIVATION

In the continuous feature vector case, the joint distribution of the pair (x,g) is

characterized by the prior probabilities ¼i = P [g = i] and class conditional densities

fi(x), or, alternatively, by the marginal density of x, f(x) = ¼1f1(x)+ ... +¼kfk(x),

combined with the posterior class probabilities

¼i(x) = P [g = i jx ] = ¼ifi(x)

f(x)
, i = 1, ..., k . (5)

When the densities fi(x) have …nite moments of order two, the p £ p matrices
§i = V ar(x jg = i) are positive de…nite for i = 1, ..., k, so x can be conveniently

standardized in the form §¡1=2(x ¡ ¹), where ¹ = E(x) is the expected value with
respect to the marginal density f(x), and

§ = E[V ar(x jg )] =
kX
i=1

¼i§i , (6)

is the p£ p within groups dispersion matrix. If the linear transformation

y =

0BBB@
y1
...

yp

1CCCA = A0§¡1=2(x¡¹) , (7)
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is now considered, where A = (a1, ..., ap) is a non singular p £ p matrix of generic
column aj, j = 1, ..., p, the joint distribution of (y,g) is characterized by the priors ¼i

and class conditional densities fy;i(y), i = 1, ..., k, or, in other form, by the marginal

density fy(y) = ¼1fy;1(y)+ ... +¼kfy;k(y) and posterior probability functions

qi(y) = P [g = i jy ] = ¼ify;i(y)

fy(y)
, i = 1, ..., k . (8)

Using standard arguments of change of variable, the optimal or Bayes error corre-

sponding to rule (1) can be written in the form

L¤ = 1¡
kX
i=1

P [x 2 Ri ; g = i] =

= 1¡
kX
i=1

¼i

Z
Ri

fi(x)dx = 1¡
kX
i=1

¼i

Z
Si

fy;i(y)dy , (9)

where, for i = 1, ..., k, Ri = fx 2 Rp : ¼ifi(x) = max1·j·k ¼jfj(x)g and Si = fy 2
Rp : ¼ify;i(y) = max1·j·k ¼jfy;j(y)g. The Bayes error is then the same in both the x
and y spaces and, as a natural idea, transformation (7) could be designed to achieve

the optimum error L¤ using only the …rst s coordinates of the transformed feature

vector y = (y1, ..., ys, ys+1, ..., yp)0 where, hopefully, 1 · s¿ p.

To that end, let fy;i(y1, ..., ys) be the marginal density of (y1, ..., ys) under fy;i(y),

and write

fy;i(y) = fy;i(y1; :::; ys)fy;i(ys+1; :::; yp jy1, ..., ys ) , (10)

where fy;i(ys+1; :::; yp jy1, ..., ys ) is the conditional density of (ys+1, ..., yp) given (y1,
..., ys). Similarly, write

fy(y) = fy(y1; :::; ys)fy(ys+1; :::; yp jy1, ..., ys ) , (11)

where, respectively, fy(y1; :::; ys) and fy(ys+1; :::; yp jy1, ..., ys ) are, in the probability
distribution in Rp de…ned by fy(y), the marginal density of (y1, ..., ys) and the
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conditional density of (ys+1, ..., yp) given (y1, ..., ys). If, for some 1 · s < p, the

condition below holds:

(C1) For i = 1, ..., k ,

fy;i(ys+1, ..., yp jy1, ..., ys ) = fy(ys+1, ..., yp jy1, ..., ys ) , (12)

one has, using (10),

Si = fy 2 Rp : ¼ify;i(y) = max
1·j·k

¼jfy;j(y)g = Ui £ Rp¡s , (13)

where Ui = f(y1; :::; ys) 2 Rs : ¼ify;i(y1; :::; ys) = max1·j·k ¼jfy;j(y1; :::; ys)g. The
Bayes error in equation (9) can be then reexpressed as

L¤ = 1¡
kX
i=1

¼i

Z
Si

fy;i(y)dy = 1¡
kX
i=1

¼i

Z
Ui£Rp¡s

fy;i(y)dy =

= 1¡
kX
i=1

¼i

Z
Ui

fy;i(y1; :::; ys)dy1 ... dys , (14)

and, in conclusion, if, for 1 · s · p,

As = (a1; :::; as) (15)

is the p £ s matrix formed by the …rst s columns of the matrix A in (7), assigning

(y1, ..., ys)0 = A
0
s§

¡1=2(x¡¹) to group gi when

¼ify;i(y1; :::; ys) = max
1·j·k

¼jfy;j(y1; :::; ys) , (16)

is a classi…cation procedure that, as desired, achieves the Bayes error L¤ using only

the …rst s coordinates of the transformed feature vector y = A0§¡1=2(x¡¹).
Using now standard properties of conditional probability, for i = 1, ..., k the identity

¼i(x) = qi[A
0§¡1=2(x¡¹)] holds. Combining this expression with (8), (10) and (11)

above, condition (C1) can be seen to be equivalent to the alternative condition:
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(C2) For i = 1, ..., k , there exists some function hi(:) such that

¼i(x) = P [g = i jx ] = qi[A0§¡1=2(x¡ ¹)] = hi[A0
s§

¡1=2(x¡¹)] . (17)

In other words, and following Cook (1998, chap. 6), the conditional density func-

tions fy;i(ys+1; :::; yp jy1, ..., ys ) are identical across groups if, and only if, Col(As), the

column space spanned by the columns of the p£ s matrix As in (15), is a dimension

reduction subspace for g
¯̄
§¡1=2(x¡¹) , the conditional distribution of the group label

g given the standardized feature vector §¡1=2(x¡¹). Condition (17), and therefore
condition (12), can be seen to be equivalent to the statement that g and (ys+1, ...,

yp) are conditionally independent once the …rst s coordinates (y1; :::; ys) of the trans-

formed feature vector y = A0§¡1=2(x¡¹) have been determined. That is, if Col(As)

is a dimension reduction subspace, the original feature vector x can be, for classi…ca-

tion purposes, replaced by the projected coordinates (y1, ..., ys)0 = A
0
s§

¡1=2(x ¡ ¹)
without loss of discriminatory information.

As a consequence of the above, the problem of optimal dimension reduction in

nonparametric discriminant analysis by means of a linear transformation of the form

(7), can be solved by …nding a dimension reduction subspace relative to the condi-

tional distribution g
¯̄
§¡1=2(x¡¹) with the smallest possible dimension. According

to Cook (1998, chap. 6), assuming that the support of the marginal density f(x) is a

convex subset of Rp, this subspace, termed the central dimension reduction subspace

or simply the central subspace, exists, is unique and coincides with the intersection

of all dimension reduction subspaces. If by convention the central subspace is an

r¡dimensional subspace of the form L0 = Col(Ar;0), where Ar;0 is a p£ r matrix of
rank r, the “canonical” coordinates0BBB@

y1
...

yr

1CCCA = A
0
r;0§

¡1=2(x¡ ¹) , (18)
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are, in a sense, the smallest possible amount of information needed for optimal clas-

si…cation by means of the following reduced optimal rule: assign x to giwhen

¼ify;i(y1; :::; yr) = max
1·j·k

¼jfy;j(y1; :::; yr) , (19)

where the fy;i(y1, ..., yr) are the class conditional densities of coordinates (18).

3. DETECTION OF DIMENSION REDUCTION SUBSPACES

Paradigm (18)-(19) motivates the need of determining the dimension and speci…c

structure of the central subspace L0 = C(Ar;0). This is done in this section by intro-

ducing two numeric functionals of the pairs (¼i,fi(x)) that can be used to characterize

when, for some 1 · s · p, Col(As) is a dimension reduction subspace. For every

invertible s £ s matrix B the identity Col(As) = Col(AsB) holds, so if As spans a

dimension reduction subspace the same is true for AsB. The matrix As can then be

taken as being suborthogonal for all 1 · s · p or, in other words, it is enough to

consider linear transformations of the form (7) where the matrix A is orthogonal. In

what follows, emphasis is in the functionals as tools for subspace detection, leaving a

detailed discussion of their properties for appendix A.

3.1 Dimension reduction functionals

Given two densities g(x) and h(x) in Rp, the quantity

I(g; h) =

Z
Rp
log[

g(x)

h(x)
]g(x)dx , (20)

is the well-known relative entropy between g(x) and h(x) (see e.g. Huber 1985,

secs. 11 and 12). I(g; h) is always a non negative number, possibly in…nite, and

I(g; h) = 0 only when g(x) and h(x) coincide. With this notation, if f(x) = ¼1f1(x)+

... +¼kfk(x), the functional

H =
kX
i=1

¼iI(f; fi) , (21)
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will be called the global entropy of the discriminant problem de…ned by the pairs

(¼i,fi(x)), i = 1, ..., k. Assuming I(f; fi) …nite for all i, the magnitude H of (21)

is such that 0 · H < +1. Taking into account the well established notion of the
relative entropy (20) as a measure of discrepancy, the index H can be interpreted

as an aggregate measure of separation between the conditional class densities fi(x)

and the marginal density f(x). Also, if for a …xed p £ p orthogonal matrix A the

linear transformation y = A0§¡1=2(x¡¹) of (7) is considered, by change of variable
arguments the global entropy is the same in the classi…cation problems de…ned by

either the pairs (¼i,fi(x)) or the pairs (¼i,fy;i(y)). That is, separation among densities

remains constant under non singular linear transformations. As it can be seen in

appendix A, for every 1 · s · p the additive decomposition below holds:

H = Hs(As) + Js(A) , (22)

where, if fy;i(y1, ..., ys) and fy(y1, ..., ys) are as in (10) and (11), the index

Hs(As) =
kX
i=1

¼iI[fy(y1, ..., ys),fy;i(y1, ..., ys)] , (23)

is the global entropy in the projected coordinates (y1, ..., ys)0 = A
0
s§

¡1=2(x¡¹), and

Js(A) =
kX
i=1

¼iEfI[fy(ys+1, .., yp jy1, ..., ys ),fy;i(ys+1, .., yp jy1, ..., ys )]g , (24)

where in (24) expectation is taken with respect to the marginal density fy(y1, ..., ys).

Index Js(A) is always nonnegative or equivalently using (22), 0 · Hs(As) · H. In
other words, as measured respectively by indexes Hs(As) in (23) and H in (21), the

degree of separation among densities after projecting §¡1=2(x¡ ¹) onto Col(As), is

always smaller than the degree of separation among the original densities fi(x).

To derive a second dimension reduction functional, the true membership of a given

individual is modelled by a random vectorG that takes when g = i the valueG = ei,
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where ei is the ith canonical vector of Rk. Let

Gp(x) = E(G jx1, ..., xp ) =

= (¼1(x), ..., ¼k(x))0 = (¼1f1(x)=f(x), ..., ¼kfk(x)=f(x))0 , (25)

be the best mean square prediction of G in terms of the feature vector x = (x1, ...,

xp)
0. The functional

C = tr V ar[Gp(x)] =
kX
i=1

var[¼i(x)] =

=
kX
i=1

fE[¼2i (x)]¡E2[¼i(x)]g =
kX
i=1

Z
Rp

µ
¼ifi(x)

f(x)

¶2
f(x)dx¡

kX
i=1

¼2i , (26)

will be called the total prediction capacity for the new “group label” G of the feature

vector x. The properties of C in (26) are similar to the ones ofH in (21). For example,

by change of variable arguments, the transformed feature vector y = A0§¡1=2(x ¡
¹) of (7) possesses the same prediction capacity for G than the original vector x.

Moreover, as established in appendix A, for all integers 1 · s · p the additive

decomposition below, similar to decomposition (22), holds:

C = Cs(As) +Ds(A) , (27)

where, if Gs(y) = E(G jy1, ..., ys ) is the total prediction ofG o¤ered by the projected
coordinates (y1, ..., ys)0 = A

0
s§

¡1=2(x¡¹),

Cs(As) = trV ar[Gs(y)] =

=
kX
i=1

Z
Rs

µ
¼ify;i(y1, ..., ys)
fy(y1, ..., ys)

¶2
fy(y1, ..., ys)¡

kX
i=1

¼2i , (28)

is the prediction capacity in (y1, ..., ys)0 and

Ds(A) = trV ar[Gp(y)¡Gs(y)] . (29)
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De…nition (26) above depends on the variances of the ratios ¼i(x) = ¼ifi(x)=f(x),

i = 1, ..., k, so index C can be again interpreted as an aggregate measure of sep-

aration between the densities fi(x) and f(x). Ds(A) in (29) is always nonnegative

so, according to (27), 0 · Cs(As) · C and, as with the relative entropy, separation
among densities decreases after projecting onto Col(As).

For every pair (As,F), where As is suborthogonal of p £ s and F orthogonal of
s£ s, by arguments of change of variable one has the identities

Hs(As) = Hs(AsF) , Cs(As) = Cs(AsF) . (30)

Since Col(As) = Col(AsF), both Hs(As) and Cs(As) take then values that are

speci…c to the subspace Col(As) and not to the particular form of the columns aj,

j = 1, ..., s. (30) de…nes an invariance property that seems naturally adapted to the

task of detecting dimension reduction subspaces.

3.2 Finding the central subspace

The usefulness of Hs(As) and Cs(As) for detecting dimension reduction subspaces

is extracted from the following condition, taken from appendix A:

(C3) Given the orthogonal p£p matrix A of transformation (7), for a given integer
value 1 · s · p, Col(As) is a dimension reduction subspace if, and only if, Js(A) =

Ds(A) = 0, or, according to representations (22) and (27), if, and only if,

Hs(As) = H or Cs(As) = C . (31)

Phrased di¤erently, and recalling the interpretation given in subsection 3.1 of

Hs(As) and Cs(As) as separation indexes, Col(As) is a dimension reduction sub-

space according to (31) if, and only if, the degree of separation among densities after

projecting onto Col(As) is the same than in the original formulation of the problem.

Condition (C3) can be exploited to develop a search criterion for dimension reduction
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subspaces of a predetermined dimension 1 · s · p. Under adequate regularity condi-
tions given in appendix A, once the location vector ¹ and within dispersion matrix §

have been …xed in transformation (7), Hs(As) and Cs(As) are continuous functions

of argument As = (a1, ..., as) in the Stiefel manifold Vs;p of orders s and p (Muirhead

1982, p. 67), de…ned as the space of all suborthogonal p £ s matrices As such that

A
0
sAs = Is, where Is is the identity of order s. The criterion below follows:

(C4) For a given integer 1 · s · p there exists a dimension reduction subspace Ls
of dimension s, if, and only if,

Hs = max
As2Vs;p

Hs(As) = H or Cs = max
As2Vs;p

Cs(As) = C . (32)

Moreover, Ls = Col(As;0), where As;0 is any optimizer of either Hs(As) or Cs(As).

The “if” part follows from (C.3) and continuity of Hs(As) and Cs(As) in the compact

set Vs;p. The “only if” part from (31) and Hs(As) · H or Cs(As) · C.

Criteria (32) above transform then the task of detecting dimension reduction sub-

spaces of dimension s by making the conditional densities fy;i(ys+1, .., yp jy1, ..., ys )
identical for i = 1, ..., k, into the more accessible task of detection by separating, in

as much as possible according to the indexes Hs and Cs of (32), the marginals fy;i(y1,

..., ys) of the projected coordinates (y1, ..., ys)0 = A
0
s§

¡1=2(x ¡ ¹). Maximization
criteria (32) lead to the following characterization of L0 = Col(Ar;0):

(C5) The dimension r of L0 is the …rst integer 1 · r · p such that

Hr = Hr+1 = ... = Hp = H or Cr = Cr+1 = ... = Cp = C . (33)

Moreover, L0 = Col(Ar;0), where Ar;0 is given, up to an orthogonal rotation, by

Ar;0 = arg max
Ar2Vr;p

Hr(Ar) = arg max
Ar2Vr;p

Cr(Ar) . (34)

According to (C5) L0 is then the “smallest” subspace for reaching, after projecting

onto L0, the maximum possible degree of separation among densities.
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4. EFFECTIVE DIMENSION REDUCTION

Criteria (33)-(34) suggest that the dimension and speci…c shape of the central

subspace L0 = Col(Ar;0) could be determined after conducting sequentially for s = 1,

2, ... , maximization processes over Vs;p of the functionals Hs(As) and Cs(As) until

observing stability of the corresponding optima. These processes are not directly

feasible since, according to their de…nitions (23) and (28), Hs(As) and Cs(As) depend

both on the unknown prior probabilities ¼i and on the unknown class conditional

densities fy;i(y1, .., ys) of (y1, ..., ys)0 = A
0
s§

¡1=2(x ¡ ¹). If a database Dn of

individuals previously classi…ed is available, a possible solution is to replace Hs(As)

and Cs(As) by sample based objective functions bHs(As) and bCs(As), constructed in

such way that their sequential optimization for s = 1, 2, ..., is “informative” on the

optimization of their theoretical counterparts. In what follows, it is convenient to

write the database, rather than in the original notation of expression (2) in section

1, as Dn = fxij : i = 1, ..., k , j = 1, ..., nig, where xij is the jth individual in class
gi and, for i = 1, ..., k, ni is the total number of individuals in group gi.

4.1 Objective functions

Proceeding in order, the prior probabilities ¼i are estimated by the proportionsb¼i = ni=n. If, on the other hand, the matrix of directions As, the location vector

¹, and the within group covariance § =
Pk

i=1 ¼i§i were known, fy;i(y1, .., ys) could

be approximated by a nonparametric density “estimator” computed from the “data”

A
0
s§

¡1=2(xij ¡ ¹), j = 1, ..., ni. Since the goal is to construct sample based ob-

jective functions depending solely on As, ¹ is estimated by the sample mean x =Pk
i=1(ni=n)xi, where xi =

Pni
j=1 xij=ni is the ith class centroid, and§ by the weigthed

covariance matrix b§ =
Pk

i=1(ni=n)
b§i, where b§i = (1=ni)Pni

j=1(xij ¡ xi)(xij ¡ xi)0.
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For i = 1, ... k, fy;i(y1, .., ys) may be then approximated by the function

bfy;i(y1, ..., ys;As) =
1

nihsi

niX
j=1

Kif 1
hi
[

0BBB@
y1
...

ys

1CCCA¡A0
s
b§¡1=2(xij ¡ x)]g , (35)

where

Ki(z) = (2¼)
¡(s=2)

¯̄̄ bVi

¯̄̄¡1=2
exp(¡z0 bV¡1

i z=2) , z 2 Rs , (36)

is an s¡variate gaussian kernel with s£ s dispersion matrix

bVi = A
0
s
bQiAs , (37)

where bQi = b§¡1=2b§i b§¡1=2, and hi is an smoothing parameter. Once that for i = 1,
...., k each fy;i(y1, ..., ys) has been approximated by the corresponding function in

(35), the density fy(y1, ..., ys) =
Pk

i=1 ¼ify;i(y1, ..., ys) is approximated by the mixturebfy(y1, ..., ys;As) =
Pk

i=1(ni=n)
bfy;i(y1, ..., ys;As).

Construction (35) is similar to the usual structure of a nonparametric kernel density

estimator, as studied for example in Scott (1992, chap. 6). Other alternative ker-

nel functions could be considered, but a gaussian kernel seems to be convenient for

computing work. bVi in (37) is the dispersion matrix of the “data” A
0
s
b§¡1=2(xij ¡x),

j = 1, ..., ni, so, according to Silverman (1986, pp. 77 and 78), a kernel of the form

(36) justi…es using, as in (35), a single smoothing parameter instead of one for each

of the s dimensions in (y1, .., ys)0. In principle, hi should depend on the scale of the

“data”A
0
s
b§¡1=2(xij¡x), j = 1, ..., ni, and therefore on the speci…c form of the matrix

of directions As. However, and again to simplify numerical matters, hi is selected in

an automatic form using a proposal in Silverman (1986, p. 87), speci…cally

hi =

µ
4

ni(s+ 2)

¶1=(s+4)
. (38)

Replacing now in de…nitions (23) of Hs(As) and (28) of Cs(As), unknown elements

by estimations or approximations and, at the same time, expectations by averages
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over the “data” bzlj = A
0
s
b§¡1=2(xlj ¡ x), l = 1, ..., k, j = 1, ...., nl, the following

objective functions are obtained after some routine algebra. On one hand,

bHs(As) =

=
kX
i=1

³ni
n

´
[
1

n

kX
l=1

nlX
j=1

¡ log
Ã
(ni=n) bfy;i(bzlj;As)bfy(bzlj;As)

!
]¡

kX
i=1

³ni
n

´
[¡ log

³ni
n

´
] , (39)

is the sample global entropy or entropy criterion and, on the other,

bCs(As) =
kX
i=1

³ni
n

´2
[
1

n

kX
l=1

nlX
j=1

Ã bfy;i(bzlj;As)bfy(bzij;As)

!2
]¡

kX
i=1

³ni
n

´2
, (40)

is the sample total prediction capacity or trace criterion. The second summands

in (39) and (40) can be ignored for maximization purposes. From (35), (36) and

(37), the two objective functions above depend on As only through
¯̄̄
A

0
s
bQiAs

¯̄̄
and

As(A
0
s
bQiAs)

¡1A
0
s. Therefore bHs(As) and bCs(As) satisfy, for every orthogonal matrix

F of s£ s and As in Vs;p, an orbit invariance property of the form

bHs(As) = bHs(AsF) , bCs(As) = bCs(AsF) , (41)

that is similar to property (30) satis…ed by Hs(As) and Cs(As).

As established in appendix A, under adequate regularity conditions on the posterior

probability functions ´i(y1, ..., ys) = P [g = i jy1, ..., ys ], i = 1, ..., k, for every

1 · s · p, bHs(As) and bCs(As) are such that

bHs = max
As2Vs;p

bHs(As) »= Hs , bCs = max
As2Vs;p

bCs(As) »= Cs , (42)

where, as in (32), Hs = maxAs2Vs;p Hs(As) and Cs = maxAs2Vs;p Cs(As). Approxi-

mations in (42) are in some asymptotic sense explained in the appendix. Sequential

optimization of the objective functions (39) and (40) is then, as intended, “equivalent”

to sequential optimization of their theoretical versions (23) and (28).

14



4.2 Steps in dimension reduction

A two step procedure can be now introduced for e¤ective dimension reduction in

KDA using the information obtained from sequential optimization of (39) and (40):

Step 1 : Estimation of the central subspace L0 = Col(Ar;0). The dimension of L0 is

declared as the value of the …rst integer r such that stability of the optima bHs and bCs
is observed for s ¸ r. From approximations (42), this stability can be interpreted as

empirical evidence of an structure of the form (33), that is either Hs = H or Cs = C

for s ¸ r. As seen in next section, this procedure, of essentially exploratory nature,
has a good behaviour in applications. Once a decision on the value r of dim(L0) has

been adopted, Ar;0 is estimated by any optimizer bAr;0 of bHr(Ar) or bCr(Ar) ;

Step 2. Construction of a reduced KDA rule (RKDA). After estimation of L0 =

Col(Ar;0), the next natural stage is to construct a sample based version of the reduced

optimal rule de…ned by paradigm (18)-(19) in section 2. To do that, coordinates (18)

are estimated by the sample canonical coordinates0BBB@
by1
...byr

1CCCA = bA0
r;0
b§¡1=2(x¡ x) , (43)

and the prior probabilities ¼i by the proportions b¼i = ni=n. Also, for i = 1, ..., k,

the unknown fy;i(y1, ..., yr) is approximated by the corresponding function in (35).

Replacing in bfy;i(y1, ..., yr;Ar;0) coordinates (y1, ..., yr)0 by coordinates (by1, ..., byr)0
of (43) and matrix Ar;0 by optimizer bAr;0 leads …nally to the following sample rule:

assign x to group gi when

(ni=n) bfy;i(by1, ..., byr;bAr;0) = max
1·j·k

(nj=n) bfy;j(by1, ..., byr;bAr;0) . (44)
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4.3 Additional considerations

For a given integer 1 · s · p, put bAs;0 for any optimizer of the objective functionsbHs(As) or bCs(As). If in (35) As is replaced by bAs;0, the function bfy;i(y1, ..., ys;bAs;0)

is a …rst estimate of fy;i(y1, ..., ys), the ith class conditional density of the projected

coordinates (y1, ..., ys)0 = A
0
s§

¡1=2(x ¡ ¹). The maximization problems de…ned in
(42), bHs = maxAs2Vs;p bHs(As) and bCs = maxAs2Vs;p bCs(As), can be then interpreted

as search procedures to separate estimators bfy;i(y1, ..., ys;bAs;0) in as much as possible

after projecting onto Col(bAs;0). This is in the same spirit than s¡ dimensional

projection pursuit methods, as studied in Huber (1985, sec. 7).

Once the dimension r = dim(L0) has been determined, rule RKDA (43)-(44) is

the result of a three stage process: i) separate estimated densities using sequential

application of (42) to get bAr;0; ii) project onto Col(bAr;0) to determine coordinates

(by1, ..., byr)0 = bA0
r;0
b§¡1=2(x ¡ x) in (43), and iii) classify according to the sample

based criterion (44). This is a nonparametric extension of the classical ideas of lin-

ear discriminant analysis (LDA) where, as described for example in Johnson and

Wichern (1998, chap. 11), assuming that the underlying class conditional densities

are approximately multivariate normal with the same dispersion matrix, classi…ca-

tion (stage iii)) is performed after projection (stage ii)) onto an adequately chosen

subspace in which the class centroids xi =
Pni

j=1 xij=ni, i = 1, ..., k, reach their

maximum possible separation (stage i)).

According to Gill, Murray and Wright (1981, chap. 6), given the nonlinear nature

of both objective functions and restrictions A
0
sAs = Is, a sequential quadratic pro-

gramming (SQP ) algorithm is appropriate to solve the numerical problems (42). In

experience of the authors, the optima of bHs(As) and bCs(As) o¤er exploratory evi-

dence of stability after an integer r typically smaller than the original dimension p. In

the spirit of circumventing the curse of dimensionality in KDA, the range of integers
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s in which both the entropy and trace criteria need to be e¤ectively evaluated can be

then restricted to some subset 1 · s · s0, where r < s0 ¿ p.

5. APPLICATIONS

The dimension reduction algorithm of the previous section is now applied to three

classi…cation problems with continuous data x = (x1, ..., xp)0 and moderately large

dimension p. In all the examples that follow, optimization of the objective functionsbHs(As) and bCs(As) is performed using the SQP algorithm NPSOL, released by

the System Optimization Laboratory of Stanford University. For details, see Gill,

Murray, Saunders and Wright (1986). Analysis of the values of the optima bHs andbCs is complemented, for each integer s = 1, 2, ..., with an adequate estimation

of Ln, the conditional probability of error of the sample rule that assigns (by1, ...,bys)0 = bA0
s;0
b§¡1=2(x¡ x) to the ith group when
(ni=n) bfy;i(by1; :::; bys; bAs;0) = max

1·j·k
(nj=n) bfy;j(by1; :::; bys; bAs;0) , (45)

where bfy;i(by1; :::; bys; bAs;0) is constructed in an obvious manner from the functionbfy;i(y1; :::; ys;As;0) of (35). Clearly, when s = r = dim(L0), rule (45) above reduces

to the RKDA rule (43)-(44). Recall that, as for example in Devroye et al. (1996,

chap. 1), Ln is de…ned as the random variable

Ln = 1¡
kX
i=1

P [x 2 bUi ; g = i jDn ] = 1¡
kX
i=1

¼i

Z
bUi fi(x)dx , (46)

where the pair (x,g) is independent from the database Dn and bUi = fx 2 Rp :

(ni=n) bfy;i(by1, ..., bys;bAs;0) = max1·j·k(nj=n) bfy;j(by1, ..., bys;bAs;0)g.

5.1 Wisconsin breast cancer data

The problem in this example, as presented in Lim, Lo and Shih (2000), is to decide

whether a tissue sample of nine measurements x = (x1, ..., x9)0 obtained from a
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patient’s breast, is either g1 : benign or g2 : malignant. Using information from

Merz and Murphy (1996), a database Dn of size n = 683 is available with n1 = 444

observations in group g1 and n2 = 239 observations in group g2. For completeness,

in each of the subtables of table 1 the …rst column contains the values of the optimabHs and bCs for the full range of integers 1 · s · 9. The second column gives for each
s the value of L(R)n , the usual apparent or resubstitution error rate estimator of the

conditional error Ln in (46), as de…ned, for example, in Devroye et al. (1996, chap.

23). The third column contains the estimations of Ln given by the ten-fold cross

validation estimator bLn;10 of Breiman, Friedman, Olsen and Stone (1984, p. 85). The
fourth column reports standard errors of bLn;10.

Table 1

According to the results in table 1, the optima of the trace criterion seem to be

stable starting from s = 1, while the optima of the entropy criterion are clearly stable

from s = 2. An explanation for this apparent contradiction is given by …gures 1

and 2 below, that display the functions bfy;i(y1, ..., ys;bAs;0), i = 1, 2, for respectively

s = 1 and s = 2. According to …gure 1, the one dimensional functions bfy;i(y1;bA1;0)

are quite separated for both the entropy and trace criterions but still with a common

part, due mainly to the pronounced skewness to the right of bfy;1(y1;bA1;0). As seen

in …gure 2, the functions bfy;1(y1;y2;bA2;0) and bfy;2(y1,y2;bA2;0) are almost completely

separated. The minor extra degree of separation in the (y1,y2) plane forces only a

slight change in the optima of the trace criterion from bC1 = :9609 to bC2 = :9740, and
a relatively larger change in the optima of the entropy criterion from bH1 = 3:8217

to bH2 = 5:1562. This should be expected since, in the format (39) and (40), both

objective functions depend on the ratios 0 < (ni=n) bfy;i(bzij;As)= bfy(bzlj;As) < 1, the

trace criterion measuring separation in a quadratic scale and the entropy criterion in

the ¡ log scale. As a conclusion of this analysis, the dimension of the central subspace

18



is declared as r = 2, the second dimension o¤ering only a marginal contribution for

density separation purposes.

Figure 1

Figure 2

Turning now to error estimation, the values of L(R)n in table 1 tend to cero as s

increases. This con…rms the well-known optimistically biased character of L(R)n as

an estimator of Ln. The message from the more reliable estimator bLn;10 in the third
column is di¤erent. For both criteria, the estimated error rates for s = 1 and s = r = 2

are substantially smaller than the values of bLn;10 for the rules of the form (45) that

include spurious directions s = 3, 4, ... . In particular observe, for s = p = 9, the poor

behaviour of the KDA rule. This is an empirical justi…cation of dimension reduction

methods as tools for a more e¢cient use of the available sample information.

Notice that, in this example, the sample rule (45) for s = 1 is slightly better than

the RKDA rule that corresponds to taking s = r = 2 in (45). This is not surprising

given the marginal separation of densities provided by the second direction. Finally,

it is interesting to analyze the relative performances of these two rules as compared

with other classi…cation methods applied to this data set. The two rules derived from

the trace criterion for s = 1 and s = r = 2 improve over the “best” classi…cation

method out of the thirty three studied in the comparative study of Lim et al. (2000),

a neural net with estimated error bLn;10 = :0278. The entropy rule (45) for s = 1 is
immediately after this neural net. However, all these comparisons are, rather than

among the true unknown conditional errors Ln, among estimators bLn;10 of relatively
imprecise sampling distributions, as indicated by the large standard errors in the

fourth columns of table 1, and should be therefore taken with some degree of caution.

19



5.2 Wave form data

This is an arti…cial classi…cation problem with k = 3 groups and p = 21 variables,

introduced by Breiman et al. (1984, p. 49). The probabilistic structure of x is:

g1 : xi = uh1(i) + (1¡ u)h2(i) + "i ; (47)

g2 : xi = uh1(i) + (1¡ u)h3(i) + "i ; (48)

g3 : xi = uh2(i) + (1¡ u)h3(i) + "i , (49)

where, for i = 1, ..., 21, u » U(0; 1) and "1, ..., "21 » N(0; 1) independently of

u. In equations (47), (48) and (49), the hi(:) are the shifted wave form functions

h1(i) = max(6 ¡ ji¡ 11j,0), h2(i) = h1(i ¡ 4) and h3(i) = h1(i + 4). The priors

are all set to ¼i = 1=3. This relatively complex example has been used as a test

case of classi…cation methods for several authors, among others Michie, Spiegelhalter

and Taylor (1994), and Hastie and Tibshirani (1996). Breiman et al. (1984, p. 84)

estimate the Bayes error as L¤ = :1400. As in Lim et al. (2000), simulated “training”

and “testing” databases Dn and Tm of sizes n = 600 and m = 3000 are available.

Table 2

Table 2 displays, for the range 1 · s · 7, the results after sequential optimization
of bHs(As) and bCs(As). Clearly, for both the trace and entropy criterions, the decision

on the dimension of the central subspace L0 is r = 2. This is con…rmed by …gure 3 that

shows a poor degree of separation between the one dimensional functions bfy;i(y1;bA1;0),

i = 1, 2, 3, improved in …gure 4 for the bfy;i(y1,y2;bA2;0), i = 1, 2, 3.

Figure 3

Figure 4

As in the previous example, the resubstitution error estimates L(R)n do not o¤er

reliable information. The adequate error estimator in this example is the so called
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error-counting bLn;m (Devroye et al. 1996, chap. 8), de…ned as the relative frequency
of errors on the testing database Tm of a rule of the form (45) constructed using the

training databaseDn. According to the values of bLn;m in the third columns of table 2,
the best rule of the form (45) is the RKDA rule corresponding to s = r = 2. Again,

the error rates deteriorate with the inclusion of spurious directions s = 3, 4, ... .

As with respect the relative performance of the RKDA rule in this example as

compared with other classi…cation methods, the reduced rules corresponding to, re-

spectively, the entropy and the trace criterions occupy the third and fourth positions

in the ranking of methods reported by Lim et al. (2000). The “best” method is a

neural net, with estimated error bLn;m = :151. This shows that, despite its rather so-
phisticated non linear simulation mechanism (47)-(48)-(49), the information needed

in this example for nearly optimal classi…cation is essentially captured by a projection

onto a linear subspace of dimension r = 2. See also the comments in Hastie and Tib-

shirani (1996, sec. 4) on the intrinsic “bidimensional structure” of this classi…cation

problem.

5.3 Image segmentation data

This is a classi…cation problem analyzed in the statlog project reported by Michie

et al. (1994). The samples are from a database of outdoor images that are hand-

segmented to create a classi…cation in k = 7 classes that can be either g1 : brickface,

g2 : sky, g3 : foliage, g4 : cement, g5 : window, g6 : path or g7 : grass. The feature

vector x contains p = 18 continuous variables. This is a rather numerically complex

example and, for simplicity, only the results of application of the trace criterion for

the range of integers 1 · s · 5 are reported in table 3 below. Classi…cation errors

are estimated using either the resubstitution estimator L(R)n or the ten-fold cross-

validation estimator bLn;10.
Table 3
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Given the limited range of dimensions analyzed in this example, it is somewhat

premature to get a de…nite conclusion on the dimension on the central subspace L0,

although s = 3 and s = 4 appear as strong candidates. Taking again as a reference the

study in Lim et al. (2000), the reduced rules (45) for these two integers have a good

behaviour. The best rule is a kth nearest neighbor plug-in rule with bLn;10 = :0221.
The rules for s = 3 and s = 4 occupy, respectively, the third and fourth positions.

Figures 5 and 6 display, for s = 1 and s = 2, the estimated densities bfy;i(y1, ...,
ys;bAs;0), i = 1, ..., 7. Notice the improvement for di¤erentiating among densities of

…gure 6 over …gure 5, particularly for the case of groups g3 and g7.

Figure 5

Figure 6

5.4 Conclusions

In the three examples above, the RKDA rule (43)-(44) is, in applications of non-

parametric discriminant analysis, a valuable analytical tool for dimension reduction.

The methodology has the advantage of visualization since the process of sequential

separation of densities can be monitored graphically using, for s = 1, 2, ... , plots

of the functions bfy;i(y1, ..., ys;bAs;0), i = 1, ..., k. These are natural nonparametric

extensions of the plots of canonical coordinates in standard LDA, that are used to

calibrate separation among projected class centroids. See, e.g. Flury (1997, chap. 7).

As for comparison of criteria, the trace criterion (40) is by construction numerically

more tractable than the entropy criterion (39), due to the unbounded character of

the logarithm in regions of low density. The trace criterion is then more manageable,

although the entropy criterion can o¤er, as in the Wisconsin breast cancer data,

additional information on the dimension of the central subspace.

Finally, a natural question to be asked is whether a computationally simpler one
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direction at a time optimization strategy, would be perhaps preferable to joint opti-

mization as suggested in (42). For example, if ba1 = argmaxkak=1 bC1(a), one has
max

kbk=1, ba01b=0 bC2(ba1,b) · max
(a, b)2V2;p

bC2(a,b) = bC2 , (50)

and therefore a one at a time approach de…nes, in general, a suboptimal search proce-

dure that can lead to misleading conclusions on the value of bC2. Joint optimization,
not trivial but made feasible by the proper use of an adequate SQP algorithm, is

then more recommendable. See also Huber (1985, sec. 7) on the advantages and

disadvantages of stepwise versus multidimensional projection pursuit procedures.

6. FINAL COMMENTS

Dimension reduction to avoid the curse of dimensionality in KDA is an standard

applied problem. See the review in McLachlan (1992, sec. 12.4.5, p. 405) of earlier

work in this area. Recently, Zhu (2001) and Hastie and Zhu (2001) have presented

a method for feature extraction in nonparametric discriminant analysis. Their ap-

proach is inspired on the ideas of projection pursuit density estimation, developed by

Friedman, Stuetzle and Schroeder (1984). This paper o¤ers an alternative approach

for dimension reduction in KDA, exploiting the concept of central subspace in the

context of a classi…cation problem de…ned by the pairs (¼i,fi(x)), i = 1, ..., k. Di-

mension reduction in discriminant analysis by subspaces was already used in Flury,

Boukai and Flury (1997), who introduced the notion of discrimination subspace model

for separating two normal populations. For related work and applications of the con-

cept of dimension reduction subspace in classi…cation, see Cook and Yin (2001) and

Hastie and Zhu (2001).
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APPENDIX A: DIMENSION REDUCTION FUNCTIONALS

For (22), integrate in the decomposition below

log

·
fy(y)

fy;i(y)

¸
fy(y) = log

·
fy(y1, ..., ys)
fy;i(y1, ..., ys)

¸
fy(y)+

+ log

·
fy(ys+1; :::; yp jy1, ..., ys )
fy;i(ys+1; :::; yp jy1, ..., ys )

¸
fy(y1, ..., ys)fy(ys+1; :::; yp jy1, ..., ys ) . (51)

(27) follows from uncorrelation of the k £ 1 random vectors Gp(y) and Gp(y) ¡
Gs(y), as it can be checked using the law of iterated expectations as, for example,

in Billingsley (1995, chap. 6). Using properties of the relative entropy, Js(A) = 0

if, and only if, all conditionals fy;i(ys+1; :::; yp jy1, ..., ys ) are identical. If Ds(A) = 0,
this is because Gp(y) ¡ Gs(y) = 0 or, in other words, because, for i = 1, ..., k,

qi(y) = P [g = i jy ] = ´i(y1; :::; ys) = P [g = i jy1, ..., ys ]. From (8), (10) and (11) this
leads again to fy;i(ys+1; :::; yp jy1, ..., ys ) = fy(ys+1; :::; yp jy1, ..., ys ), for i = 1, ..., k.
Continuity ofHs(As) and Cs(As) inAs 2 Vs;p can be derived from their expressions

as functions of ´i(y1; :::; ys) = P [g = i jy1, ..., ys ]. After some algebra, one has

Hs(As) =
kX
i=1

¼iEf¡ log ´i[A
0
s§

¡1=2(x¡ ¹)]g ¡
kX
i=1

¼i[¡ log(¼i)] . (52)

By application of the bounded convergence theorem, Hs(As) is continuous if the

´i(y1; :::; ys) are uniformly continuous and bounded in the form 0 < c < ´i(y1; :::; ys) ·
1 for some c > 0. The case of Cs(As) can be treated similarly.

APPENDIX B: OBJECTIVE FUNCTIONS

For reasons of conciseness, only the case of the entropy criterion is treated. Ap-

proximate bHs(As) by the pseudo objective function

bHps
s (As) =
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=
kX
i=1

³ni
n

´
[
1

n

kX
l=1

nlX
j=1

¡ log
µ
(ni=n)fy;i(zlj)

fy(zlj)

¶
]¡

kX
i=1

³ni
n

´
[¡ log

³ni
n

´
] , (53)

where zlj = A
0
s§

¡1=2(xlj ¡ ¹), l = 1, ..., k, j = 1, ..., nl. The goal is to establish

max
As2Vs;p

¯̄̄ bHps
s (As)¡Hs(As)

¯̄̄
! 0 , a:s: , (54)

as n!1. From (52) and (53) it su¢ces to obtain, for i = 1, ..., k, the convergence

max
As2Vs;p

¯̄̄̄
¯1n

kX
l=1

nlX
j=1

f¡ log[´i(zlj)]g ¡ Ef¡ log[´i(y1; :::; ys)]g
¯̄̄̄
¯! 0 , a:s: . (55)

To do this, consider, for …xed ¹ and§, the function h(As ,x) = ¡ logf´i[A0
s§

¡1=2(x¡
¹)]g that has two arguments: As in the compact set Vs;p and x in Rp. Using h(As ,x),

(55) can be reexpressed in the form

max
As2Vs;p

¯̄̄̄
¯ 1n

kX
l=1

nlX
j=1

h(As ,xlj)¡ E[h(As ,x)]

¯̄̄̄
¯! 0 , a:s: . (56)

Under the regularity condition of appendix A on ´i(y1; :::; ys), (56) follows from the

uniform strong law of the large numbers in Rubin (1956, sec. 1). Recall that (54)

leads to bHs = maxAs2Vs;p bHs(As) »= maxAs2Vs;p bHps
s (As) »= maxAs2Vs;p Hs(As) = Hs.
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FIGURES AND TABLES

Trace Criterion Entropy Criterion

s bCs L
(R)
n

bLn;10 s: e: bHs L
(R)
n

bLn;10 s: e:

1 :9609 :0249 :0263 :0156 3:8217 :0278 :0306 :0219

2 :9740 :0132 :0277 :0152 5:1562 :0190 :0350 :0217

3 :9894 :0029 :0453 :0165 5:6754 :0059 :0407 :0228

4 :9978 :0044 :0468 :0215 5:8736 :0015 :0467 :0222

5 :9997 :0015 :0423 :0186 5:8850 :0000 :0467 :0250

6 :9997 :0029 :0467 :0202 5:8576 :0000 :0453 :0247

7 :9999 :0000 :0497 :0185 5:7738 :0000 :0408 :0201

8 :9995 :0015 :0423 :0228 5:5753 :0000 :0409 :0242

9 :9983 :0000 :0409 :0233 5:4777 :0000 :0409 :0233

Table 1. Wisconsin Breast Cancer Data: Sequential optimization of the trace and

entropy criterions and estimation of error rates.
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Figure 1: Trace ( s = 1 )

y1

   f1   
   f2   

-3 0 3 60

0.5

1
Figure 1: Entropy ( s = 1 )
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Figure 1. Wisconsin Breast Cancer Data: Density estimators for the

trace and entropy criterions for s = 1. For i = 1, 2, 0 fi 0 refers to estimatorbfy;i(y1;bA1;0).
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Figure 2: Trace ( s = 2 )
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Figure 2: Entropy ( s = 2 )
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Figure 2. Wisconsin Breast Cancer Data: Density estimators for the trace and

entropy criterions for s = 2. For i = 1, 2, 0 fi 0 refers to estimator bfy;i(y1,y2;bA2;0).
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Trace Criterion Entropy Criterion

s bCs L
(R)
n

bLn;m bHs L
(R)
n

bLn;m
1 :5573 :350 :398 2:900 :405 :435

2 :8357 :085 :165 9:393 :113 :162

3 :8645 :063 :174 9:006 :088 :164

4 :8977 :038 :177 8:739 :043 :174

5 :9316 :008 :186 8:471 :018 :185

6 :9645 :000 :192 8:372 :003 :192

7 :9842 :000 :209 8:247 :000 :200
...

...
...

...
...

...
...

21 1:0000 :000 :231 4:063 :000 :231

Table 2. Wave Form Data: Sequential optimization of the trace and entropy criterions

and estimation of error rates for the range 1 · s · 7. Row s = p = 21 corresponds
to the full KDA rule.

 f1 
 f2 
 f3 

-4 -2 0 2 40

0.5

1
Figure 3: Trace ( s = 1 )
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Figure 3: Entropy ( s = 1 )
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Figure 3. Wave Form Data: Density estimators for the trace and entropy

criterions for s = 1. For i = 1, 2, 3, 0 fi 0 refers to estimator bfy;i(y1;bA1;0).
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Figure 4: Trace ( s = 2 )
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Figure 4: Entropy ( s = 2 )
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Figure 4. Wave Form Data: Density estimators for the trace and entropy

criterions for s = 2. For i = 1, 2, 3, 0 fi 0 refers to estimator bfy;i(y1,y2;bA2;0).
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Trace Criterion

s bCs L(R)n
bLn;10 s: e.

1 :6846 :2113 :2030 :0211

2 :8681 :0589 :0701 :0207

3 :9538 :0234 :0320 :0118

4 :9657 :0117 :0260 :0124

5 :9722 :0108 :0420 :0298
...

...
...

...
...

18 :9867 :0593 :2688 :0957

Table 3. Image Segmentation Data: Sequential optimization of the trace criterion and

estimation of error rates for the range 1 · s · 5. Row s = p = 18 corresponds to the
full KDA rule.
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Figure 5: Trace ( s = 1 )
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Figure 5. Image Segmentation Data: Density estimators for the trace

criterion for s = 1. For i = 1; : : : ; 7, 0 fi 0 refers to estimator bfy;i(y1;bA1;0).
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Figure 6: Trace ( s = 2 )
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Figure 6. Image Segmentation Data: Density estimators for the trace

criterion for s = 2. For i = 1; : : : ; 7, 0 fi 0 refers to estimator bfy;i(y1,y2;bA2;0).
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