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1 INTRODUCTION

The issue of modelling financial duration processes is a fashionable area of research since Engle

and Russell (1998) introduced the Autoregressive Conditional Duration (ACD) model. Their

analysis is justified from an economic and a statistical point of view. On one hand, market

microstructure theory shows that time between events in a stock exchange market conveys

information and thus time has to be analyzed. On the other hand, since data are the ”so

called” tick-by-tick data, they are nothing else than a one dimensional point process (with

time as space). Thus time is the random variable of the point process and in each point there

is an associated vector of marks, and both time and the marks can be modelled.

Since the former model a plethora of modifications and alternatives have been proposed.

Among others, Bauwens and Giot (2000) introduced the Log-ACD model, which is an expo-

nential version of the ACD. Grammig and Mauer (2000) used a Burr distribution in the ACD

model. Zhang et al. (1999) introduced a threshold ACD. Drost and Werker (2001) provide

a method to obtain efficient estimators of the ACD model without need to specify the dis-

tribution. Camacho and Veredas (2001) consider the analysis of a bivariate duration process

using random aggregation techniques. Alternative models are the the Stochastic Conditional

Duration (SCD) model of Bauwens and Veredas (1999) and the Stochastic Volatility Duration

(SVD) model of Ghysels et al. (1998) which are both based on latent factor models. Almost

all these models are surveyed in Bauwens et al. (2000).

In most of the above studies, durations show a strong intradaily seasonality. In an explana-

tory graphic analysis the strong seasonal component is detected by the presence of the U (or

inverted U) shape that ultra high frequency financial variables exhibit during the day. For

example, in figure 5 it is shown the intradaily and intraweekly behaviour of trade durations

for Bankinter, a medium size Spaninsh bank traded at Bolsa de Madrid during January-March

1998.

The way to study this feature is well known when dealing with regularly spaced variables,

that is, when dealing with variables that are observed at equidistant periods of time. Moreover

this analysis has focused mainly on the volatility’s intradaily behaviour of either an stock

exchange market or a foreign exchange (FX) market. Engle et al. (1990) analyze how the

information flow is transmitted through world regions in the FX market using hourly data.

Harris (1986) does a panel data analysis using 15 minute interval returns data of firms traded

in NYSE. Baillie and Bollerslev (1990) studied the intradaily and inter-market FX volatility

using a qualitative approach with hourly data. Bollerslev and Domowitz (1993) do a similar

analysis but for returns and bid-ask spread of the deutsche mark-dollar exchange rate using

data recorded at 5 minute intervals. Andersen and Bollerslev (1997) used a frequency domain

approach for filtering the five minutes deutsche mark-dollar exchange rate and getting rid of

the seasonal pattern. Andersen and Bollerslev (1998) used a diffent approach and analyzed

the intradaily and intraweekly seasonality using spectral analysis and they took into account

macroeconomic announcements. Finally, Beltratti and Morana (1999) used half hour deutsche
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mark-dollar exchange rate and they modeled it following a structural approach ”à la Harvey”.

All these previous works have been done using regularly spaced data (hourly, half-hourly, 15

minutes or 5 minutes). For tick-by-tick data the most popular approach to deal with intradaily

seasonality was introduced by Engle and Russell (1998). The method consists in estimating the

intradaily seasonality by means of a piecewise cubic spline. Although Engle and Russell (1998)

apparently succeed in the joint estimation of the parameters of the cubic spline and the ACD

model, it is a hard task and the convergence towards a global maximun is not assured. For

these reasons most of other studies have focused in a two step procedure, where in the first step,

the inverted U shape is removed through some filter and, in a second step, the ACD model is

estimated by using the deseasonalized variables. The filter basically consists in calculating the

average durations every, say, 30 minutes and then smoothing this piecewise constant function

through cubic splines. Alternatively Gouriéroux et al. (1999) analyzed the intraday market

activity using kernels for the intraday intensity as well as for the survivor function, but they do

not differentiate between seasonal pattern and long-run dynamics since their analysis is purely

nonparametric. Gerhard and Haustch (2000) proposed a model for financial durations using a

proportional hazard model where seasonality is modeled using a flexible Fourier transform.

The two step procedure presents some serious drawbacks. Mainly it performs accurately

if both the seasonal and the non-seasonal components depend on some deterministic time

index, and the non-seasonal dynamics of the duration process is linear in the parameters to be

estimated. Otherwise, the two step estimation procedure can lead to serious misspecification

errors.

In this paper we assume that tick-by-tick processes can be decomposed in two components

that stand for the short-run and the long-run behaviours. The short-run refers to the intradaily

seasonality while the long-run can be considered as the core dynamics of the process.

In the standard theory of time series, two approaches exist for dealing with these com-

ponents. The first one considers that a time series can be analyzed by means of an ARMA

model that, using different lags in the polynomials and exogenous variables, account for the

components. The second approach assumes that the time series can be decomposed in latent

components which are not observed but have some dynamics and/or some cyclical patterns.

In the framework of tick-by-tick data, the ARMA approach is not feasible since one of the

main characteristics of these data is the lack of periodicity. Therefore we focus in the second

approach, assuming the decomposition of the time series in components that are estimated

separately but not independently. In order to do so, we rely on the assumption that the

conditional expectation of the duration can be decomposed in the two mentioned terms. Under

this assumption, they can be estimated simultaneously.

The short-run component is modeled nonparametrically and the long-run component is

assumed to belong to the parametric ACD family, specifically a Log-ACD model. Both com-

ponents are estimated simultaneously by maximizing alternatively a local and a global version

of the likelihood function. Under the correct choice of the smoothing parameter, this estima-
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tion method provides root-N consistent semiparametric estimators of the parameters of the

Log-ACD model. Furthermore, if the conditional likelihood is correctly specified the estimators

are efficient.

We also deal with durations equal to zero. These durations are often found in the trade

process. Previous studies eliminate them using the microstructure argument that all the trades

executed in the same second come from the same trader that has split a big order block in

small blocks. We show that this is not always true and, indeed, most of the times the null

durations are clustered around round prices due to the fact that the limit orders of the retail

traders are set for being executed at the round prices and hence trades executed in the same

second do not belong to the same trader but to many retail traders.

We apply the proposed methodology to Bankinter, a medium size spanish bank traded

at Bolsa de Madrid, an order driven market and hence its trading mechanism is equivalent

to the most important continental Europe exchanges (e.g. Brussels, Milan and Paris). For

comparing the goodness of fit of the proposed model we focus on forecasting in a twofold

exercise. On one hand the evaluation of the density forecast accuracy is done on the basis of the

technique proposed by Diebold et al. (1998). We show that the joint estimation of seasonality

and dynamics improves the density forecast. On the other hand we show as well that the

forecasting errors of the models adjusting data and forgetting the existence of seasonality have

some cyclical pattern that has not been captured by the model, whilst it is not the case for

the model proposed here.

The plan of the paper is a as follows. Section two develops a general framework for analyzing

tick-by-tick financial variables, decomposing the process in the two above mentioned terms and

in the framework of Generalized Linear Models. Notice that even if notation and empirical

application are done for duration processes, any other variable can be analyzed in the same

way. Section three is twofold. First it is analyzed each component introducing a modelling

strategy for them. Second the theoretical properties of the resulting estimators are studied.

Section four is devoted to the empirical application focusing on the nonparametric estimates

and the forecasting exercise. Section five concludes. Finally, the assumptions and proofs of

the main results are relegated to the Appendix.

2 BASIC ECONOMETRIC MODEL

In order to introduce the main contribution of our paper, we need to establish a basic econo-

metric framework. Following Engle and Rusell (1998) and Engle (2000), let ti be the time

at which the i-th trade occurs and let di = ti − ti−1 be the duration between trades. Let us

consider also that we have observed k marks, denoted yi, at the i-th event. For example, if di

are trade durations, the marks could be the price and the volume of the trade. Then, we have

available the following set of observations

{(di, yi)}i=1,··· ,n.
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Furthermore, assume that the i-th observation has the joint density conditional on the past

filtration as

(di, yi)| Ii−1 ∼ f
(
di, yi|d̄i−1, ȳi−1; δ

)
,

where (d̄i−1, ȳi−1) = z̄i = (zi, zi−1, · · · , z1) is the present and past information of the z stochas-

tic process and δ is a set of parameters in some possibly infinite dimensional space. Within

this statistical framework, our aim is to estimate this parameter vector δ (or any nonlinear

combination of its components) by using maximum likelihood techniques. To this end, we

construct the following likelihood function

Ln (d, y; δ) =
n∑

i=1

log f
(
di, yi|d̄i−1, ȳi−1; δ

)
. (1)

Following a reduction process we can considerably simplify the previous log-likelihood expres-

sion. Without loss of generality we can write

log f
(
di, yi|d̄i−1, ȳi−1; δ

)
= log p

(
di|d̄i−1, ȳi−1; δ1

)
+ log g

(
yi|d̄i, ȳi−1; δ2

)
,

where δ = (δ1, δ2). Moreover, if the parameters of interest are function of δ1 only, and the

marks, y, are weakly exogenous for these parameters, then its estimation can be based on the

following likelihood function

Ln (d, y; δ1) =
n∑

i=1

log p
(
di|d̄i−1, ȳi−1; δ1

)
. (2)

The exogeneity assumption is crucial and arguable. This relationship has been pointed out

by Ghysels (2000), among others, and in terms of market microstructure it seems that a joint

analysis of (di, yi) is more adequate. However, this is out of the scope of this paper and we

leave this issue for further research.

If the conditional density is correctly specified and standard regularity conditions apply, the

maximum likelihood estimator of δ1 is consistent and asymptotically normal. Alternatively,

as pointed out in Engle and Rusell (1998) and Engle (2000) it is of interest to have available

some estimation techniques that do not rely on the knowledge of the functional form of con-

ditional density function. Two alternative approaches that allow for consistent estimation of

the parameters of interest without specifying the conditional density are the Quasi Maximum

Likelihood technique, QML, (see Gouriéroux, Monfort and Trognon, 1984) and Generalized

Linear Models, GLM, (see McCullagh and Nelder, 1989). In both approaches, it is assumed

that the duration variable d, conditonally on past values of d and y depends on a scalar pa-

rameter θ = h
(
d̄i−1, ȳi−1; δ1

)
, and its distribution belongs to a one dimensional exponential

family with conditional density

p
(
di|d̄i−1, ȳi−1; θ

)
= exp (diθ − b(θ) + c(di)) ,

where b(·) and c(·) are known functions. The main difference between the QML and the GLM

approach is simply a different parametrization of this exponential family. Here in this paper we
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will adopt for convenience the GLM approach. Then it is straightforward to see that the Max-

imum Likelihood estimator of θ solves the following first order conditions:
∑

i {di − b′(θ)} = 0.

Furthermore, since by the properties of the exponential family,

E
[
di|d̄i−1, ȳi−1

]
= b′(θ) = µ

{
d̄i−1, ȳi−1; δ1

}
(3)

and

Var
[
di|d̄i−1, ȳi−1

]
= b′′(θ) = σ2V

{
µ(d̄i−1, ȳi−1; δ1)

}
, (4)

then the MLE estimator of θ can also be obtained from the solution of the following equation

n∑

i=1

(di − µ (θ))µ′ (θ)
V (µ (θ))

= 0. (5)

As it can be clearly realized from equations (3), (4) and (5) the estimation of the parameter of

interest θ (the so called canonical parameter) can be performed without needing to specify the

whole conditional distribution function. It is only necessary to specify the functional form of

the conditional mean, µ(·), and of the conditional variance V (·), but not the whole distribution.
Engle and Rusell (1998) propose to specify the conditional mean function by using the ACD

class of models that consists on parametrisations such as

E
[
di|d̄i−1, ȳi−1

]
= µ

(
d̄i−1, ȳi−1; δ1

)
= ϕ


ω +

J∑

j=1

αjg(di−j) +
K∑

k=1

βkµi−k


 , (6)

where the parameters of interest are δ1 = (ω, α1, · · · , αJ , β1, · · · , βK). The functions ϕ(·)
and g(·) take the values ϕ(s) = s and g(s) = s for the ACD model and ϕ(s) = exp(s) and

g(s) = ln(s) for the Log-ACD model. The relationship between the predictors in equation (6)

and the canonical parameter is given by the so called link function. This function is going to

depend on the member of the exponential family that we are going to use. For the exponential

distribution the link function is

θ = − 1

ϕ
(
ω +

∑J
j=1 αjg(di−j) +

∑K
k=1 βkµi−k

) . (7)

Noting that under this distribution µ(θ) = −θ−1 and V (µ (θ)) = µ2, then (5) are the first order

conditions for the maximization of the log-likelihood function for exponentially distributed

data.

As it has been pointed out in many recent studies, the ACD specification is sometimes too

simple since the expected duration can vary over time, or can be subject to many different time

effects. One way to extend the previous model is to decompose the conditional mean in different

effects. In the standard time series literature any stochastic process can be decomposed in a

combination (we adopt a multiplicative decomposition being the additive straightforward) of

cycle and trend, seasonal pattern and noise, i.e. Xt = XCT
t ·St ·εt. This decomposition, of long

tradition in time series analysis, has been already used in volatility analysis (see for example

Andersen and Bollerslev, 1998).

6



In this paper we propose the following nonlinear decomposition:

E[di|d̄i−1, ȳi−1] = ϕ
(
ψ(d̄i−1, ȳi−1;ϑ1), φ(d̄i−1, ȳi−1;ϑ2)

)
. (8)

The function ϕ(u, v) can nest a great variety of models. ϕ(u, v) = (u× v) stands for an ACD

representation whereas ϕ(u, v) = exp(u+ v) represents a Log-ACD representation. Then, fol-

lowing (8) the durations, volatility, trading intensity and volume (in a high frequency frame-

work) can be modelled as a possibly nonlinear function of two components that represents the

long-run, ψ(·;ϑ1) and the short-run, φ(·;ϑ2), respectively. The long-run component can be

considered as the core dynamics and on it the dynamics of the process are modelled. It can

be done using autoregressive models (like GARCH or ACD), latent factor models (like SV and

SCD) or any other alternative. The short-run component represents the seasonal pattern, that

can be intradaily and intraweekly.

Note that in previous research on ultra high frequency data, the ACD model has been

usually estimated using a duration time series that was already adjusted by seasonality. See,

among others, Engle and Russell (1997), and Bauwens and Giot (2000). In order to estimate

the parameters of interest in the ACD model, under the specification assumed in (8), the

previous filtration is not sucessful. The reason is that a mere nonparametric regression of ln di

into ti−1 does not identify separately both seasonal and long run components, and therefore

the filtration would remove more than just the seasonal component.

Finally, a third component could be added to (8) accounting for the news effect. It would

be the short-run component because since we are working with tick-by-tick data, short-run

means some hours and usually the effect of a news in the stock remains for no more than a

couple of hours, as documented by Payne (1996) and Almeida et al. (1996).

3 COMPONENTS’ SPECIFICATION AND ESTIMATION

The following natural question is how to model each of the components. As a first guess, we

should choose between a fully nonparametric approach, a semiparametric or a fully parametric.

Since we have to specify two different components it would be sensible to specify parametrically

those functions where a lot of information is available, whereas in the case of ignorance a fully

nonparametric approach is much more feasible. For the long-run component we adopt some

previous pre-specified parametric form. The seasonal component is much less investigated, and

to our knowledge there is no accepted standard form for this type of models. On these grounds,

we choose to leave it unspecified in the form of a nonparametric function. Furthermore, the

interest of the analyst is to predict the process as a whole, that is predict the raw data and not

the adjusted one. This is an additional reason for modeling parametrically the component that

conveys the past information whilst the deterministic pattern is approached nonparametrically.

For the long-run Engle and Russell (1998) introduced the ACD model that accounts for

these features. Since this model, more refined versions have appeared in the literature. See
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Bauwens et al. (2000) for a survey of these kind of models. A version of particular interest

is the Log-ACD model of Bauwens and Giot (2000). They model the expected duration ex-

ponentially, similarly to the EGARCH model for volatility. This model is useful because it

avoids the positivity restrictions of the parameters of the dynamic equation and it permits

the introduction of exogenous variables that are negatively correlated with the duration pro-

cess. Hence the specification of the long-run component is done by means of the log of the

conditional expectation of a Log-ACD model

ψ(d̄i−1, ȳi−1;ϑ1) = ω + α ln di−1 + βψi−1, (9)

where, for completeness of the model, we assume an exponential form for (8), i.e. ϕ(u, v) =

exp(u+ v).

With respect to the so called short-run component, φ(·, ϑ2), several alternative approaches

are available. When modelling seasonality, in this type of models, it is usually assumed that the

seasonal term is somehow related to the time ti at which the i-th transaction occurs through

some smooth function on time. As we have already indicated we let this function unspecified

and hence we estimate it nonparametrically by only assuming some smoothness conditions on

it. More precisely, we use a local likelihood method that is carefully explained in the sequel.

The choice of this method is justified both from theoretical and computational reasons.

Given the two proposed specifications for the components, (8) is adapted and then we have

E
[
di|d̄i−1, ȳi−1

]
= ϕ

(
ψ(d̄i−1, ȳi−1;ϑ1), φ(ti)

)
,

where the function ψ(·, ϑ1) is known and the other quantities, ϑ1 and the function φ(·) evaluated
at time points t1, · · · , tn need to be estimated. This estimation problem is semiparametric since

a nonparametric component, φ, needs to be estimated jointly with a parametric one ϑ1. Under

this setting standard (quasi-)maximum likelihood techniques do not apply directly and some

developments are needed. This extension is based on the so called conditionally parametric

approach introduced in Severini and Wong (1992). The basic idea of this method is to estimate

the nonparametric function φ(·) by maximizing a local likelihood function (see Staniswalis,

1989) and simultaneously estimate the parameter vector ϑ1 by maximizing the un-smoothed

likelihood function. If we specify only the conditional mean and the underlying density is

assumed to belong to the family of exponential densities, then maximum likelihood methods

are available (Severini and Staniswalis, 1994 ; Fan, Heckman and Wand, 1995). Unfortunately,

the statistical results from these papers do not apply directly in our case since they assume

independent observations. Nevertheless at the end of the section equivalent statistical results

are shown for the dependent case.

The (quasi-)log-likelihood function takes the form

Qn (d, ϕ) =
n∑

i=1

Q
(
ϕ
(
ψ(d̄i−1, ȳi−1;ϑ1), φ(ti)

)
; di
)
, (10)
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where the (quasi-)log-likelihood Q(·) is obtained by integrating (5), i.e.

Q (d, g) =

∫ d

g

(s− d)
V (s)

ds.

For fixed values of ϑ1, let us define φ̂ϑ1(τ) as the solution to the following optimization

problem

φ̂ϑ1(τ) = argmax
η

1

nh

n∑

i=1

K

(
τ − ti
h

)
Q
(
ϕ
(
ψ(d̄i−1, ȳi−1;ϑ1), η

)
; di
)

for τ ∈ [a, b]. Then φ̂ϑ1(τ) must fulfill the following first order conditions

1

nh

n∑

i=1

K

(
τ − ti
h

)
∂

∂η
Q
(
ϕ
(
ψ(d̄i−1, ȳi−1;ϑ1), η

)
; di
)
= 0. (11)

The estimator of ϑ1, ϑ̂1n, is obtained as the solution to the following (un-smoothed) opti-

mization problem

ϑ̂1n = argmax
ϑ1

n∑

i=1

Q
(
ϕ
(
ψ(d̄i−1, ȳi−1;ϑ1), φ̂ϑ1(ti)

)
; di

)
,

and ϑ̂1n must fulfill the following

n∑

i=1

∂

∂ϑ1
Q
(
ϕ
(
ψ(d̄i−1, ȳi−1;ϑ1), φ̂ϑ1(ti)

)
; di

)
= 0. (12)

As an example, set ϕ (u, v) = (u×v), the ACD representation, and µ = −θ−1 and V (µ) = µ2

(the exponential distribution). Then (10) corresponds to the log-likelihood function from an

exponential conditional distribution and an ACD representation, i.e.

−
n∑

i=1

[
log
{
ψ(d̄i−1, ȳi−1;ϑ1)× φ(ti)

}
+

di
ψ(d̄i−1, ȳi−1;ϑ1)× φ(ti)

]
(13)

and the first order condition (11), takes the explicit form

φ̂ϑ1(τ) =

∑N
i=1K

(
τ−ti
h

)
di

ψ(d̄i−1,ȳi−1;ϑ1)∑N
i=1K

(
τ−ti
h

) . (14)

Since a closed expression for the parametric part is not available, an iterative algorithm

must be used. Now, instead assume that ϕ(u, v) = exp(u + v), then (10) corresponds to the

log-likelihood function from an exponential distribution and a Log-ACD representation and

hence the first order condition (11), takes the explicit form

φ̂ϑ1(τ) = log





∑N
i=1K

(
τ−ti
h

)
di

exp{ψ(d̄i−1,ȳi−1;ϑ1)}∑N
i=1K

(
τ−ti
h

)



 . (15)

9



In some situations, it might be also of interest to use a more flexible density function that

does not belong to the exponential family. This could be the case when we are interested not

only in the values of the estimated parameters but also in density forecast. In this case, it is

possible to perform estimation under these distributions through the use of standard maximum

likelihood techniques. The densities used here are the generalized gamma, the Weibull and the

exponential. A brief summary of the definitions of the densities is gathered in the Appendix.

It is straightforward to show that under correct specification of the density the results we show

further hold. We now introduce the whole model with the error term

di = ϕ
(
ψ(d̄i−1, ȳi−1;ϑ1), φ(ti)

)
µε(ϑ3)

−1εi (16)

where ε is an i.i.d. random variable with density function p(εi;ϑ3). We introduce µε(ϑ3)
−1

due to identification reasons and to the fact that the conditional expectations of the durations

is equal to ϕ(·). Clearly ϑ3 is the set of parameters of the of the assumed distribution.

For example, for the generalized gamma with parameters ϑ3 = (1, γ, ν) by maximizing

the corresponding (smoothed) log-likelihood function we obtain the following nonparametric

estimator for the seasonal component in the Log-ACD representation

φ̂ϑ1(τ) =
1

γ
log





∑N
i=1K

(
τ−ti
h

)( diµε
exp{ψ(d̄i−1,ȳi−1;ϑ1)}

)γ

∑N
i=1K

(
τ−ti
h

)
ν




. (17)

Note that we attain the nonparametric seasonal estimator using the Weibull distribution

when ν = 1 (it coincides as well with the estimator in the Burr case). Finally, the previous

expressions have been obtained by assuming an intradaily seasonal component. However, it is

also possible to extend it to several seasonal effects. For example, if we consider intraweekly

seasonal effects, then we might identify five different seasonal patterns corresponding to each

day of the week. In this case, for s = 1, · · · , 5, we have in the exponential and the Log-ACD

representation

φ̂ϑ1(τ) = log





∑N
i=1K

(
τ−ti
h

) diµε
exp{ψ(d̄i−1,ȳi−1;ϑ1)}I (ti ∈ ∆s)

∑N
i=1K

(
τ−ti
h

)
I (ti ∈ ∆s)



 (18)

where ∆s is a subset in [a, b] that contains τ .

Hence, for any distribution we consider, the non parametric seasonal curve is estimated by

nothing else that a transformation of the Nadaraya-Watson estimator of the non parametric

regression of the duration adjusted by the long-run component on τ . This method is very

flexible since very mild assumptions (see Appendix) are needed. As we have already said within

this statistical framework, the results available in the literature are obtain under independent

observations. Therefore, they do not hold for tick-by-tick data. Nevertheless in the following

theorems we show the equivalent statistical results to make correct inference for the unknown

parameters of the Log-ACD model (proofs are given in the Appendix):
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Theorem 1 Under the conditions stated in the Appendix, and if h→ 0 and nh→∞ then,

sup
ϑ1

sup
τ
|φ̂ϑ1(τ)− φ(τ)| = op

(
n−1/4

)

as n tends to infinity.

Theorem 2 Under the conditions stated in Theorem 1 then,

√
n
(
ϑ̂1n − ϑ1

)
→d N

(
0,Σ−1ϑ1

)
,

where

Σϑ1 = −E
(

∂2

∂ϑ1∂ϑT1
Q
(
ϕ
(
ψ(d̄, ȳ;ϑ1), φ(t)

)
; d
))

,

as n tends to infinity

4 APPLICATION TO THE TRADE DURATION PROCESS

OF A STOCK IN AN ORDER DRIVEN MARKET

4.1 Data and transformations

In this section we apply the model proposed to a trade duration process. Data are trades

during January-March 1998 of Bankinter, a medium size Spanish bank traded at Bolsa de

Madrid. This stock exchange market is an order driven market and thus it works as some of

the most important stock markets in continental Europe like Brussels, Milan or Paris. In a

purely order driven market, there is no market maker and all the orders are entered in the

order book. When a buy and a sell order match the order is executed. These orders can be

either limit orders or market orders. A more detailed analysis on the functioning of an order

driven market can be found in Bauwens and Giot (2001).

The database is a trade database and thus it is not possible to know whether an order

comes from a bid or an ask, or from a limit or a market order. As we shall see later on, the

difference between limit and market orders is relevant when explaining why there are durations

equal to zero. From the original data base two transformations are required. The first has to

do with the opening effect while the second one is a way to deal with null durations.

When a trading day begins, before opening there is an auction in order to fix the opening

trading price. Once the auction price is fixed, all the remaining orders in the auction stay, not

being possible to introduce new orders or cancel the existing ones. Then the market opens and

all the orders from the auction are executed in the first minutes. Therefore these trades are

not informative about the dynamics of the process and they can be eliminated. Recent studies

have eliminated the first half hour of the day for avoiding the effects of the auction in the

trading day. Since the moment of time in which the auction orders are traded varies every day,

we believe that by adopting this approach we lose informative durations. Thus we adopt the

11



”second price” strategy, i.e. consider that the trading day begins from the second price since

all the orders traded with the first price correspond to the orders of the preopening auction.

This data transformation has an important effect on the number of null durations. Figure

1 shows this effect. It is the number of durations equal to zero every ten minutes from the

opening to the closing including the first trading day price (left plot) and excluding it (right

plot). In the case that we include the first price trades it is clear that we increase artificially

the number of trades as well as the number of zeros in the sample. Moreover the amount of

first price trades is important. In our sample they represent 9.32% of all the trades.

With respect to trades that occur at the same moment of time and are not due to the

preopening auction, previous studies have assumed that they come from a trader that wants to

buy or sell a big volume and hence the trader splits the order in small blocks that are sent to the

order book producing quick execution of some or all of the split orders. Under this assumption,

these studies eliminate these trades and thus no null durations remains in the sample. This

trading phenomena can be true in some cases but not in all. Indeed another feasible, and

certainly logic, explanation is that these null durations occur because retail traders post small

limit orders at a round price. In order to verify this conjecture we take a look to Figure 2. It

represents the number of durations equal to zero (y axis) for all observed prices (x axis). It

seems that as a round price happens, for example 1000 pesetas (6.04 euros), the number of

trades increases and thus the number of null durations also increases. This increasing of null

durations does not only happens around ”very round” prices. All the small pikes that can be

seen in the figure correspond to prices which are multiples of 50 pesetas (0.3 euros), two times

the tick (a tick is the minimum price variation). This confirms the hypothesis that almost all

the null durations occur at round prices and thus they are caused by retail traders that post

limit orders at these particular prices.

A drawback of the ACD and the Log-ACD models, as well as all financial duration models

existing in the literature, is that they do not permit durations equal to zero since the distri-

butions used for durations are not defined at zero (except the exponential distributions but

as we will see it is not the best choice). In the exchange markets this a quite common event

when dealing with transaction data, where several transactions occur at the same time. When

dealing with this particular type of durations we are willing to replace the durations equal to

zero by some quantity. This quantity can be either estimated or chosen ad hoc. We propose

the following strategy:

d∗i =





di if di > 0 and di−1 > 0

ci if di = 0

di −
∑J

j=1 cj if di > 0 and di−j = 0, j = 1, . . . J,

(19)

where J is the number of immediately past successive null durations. This transformation is

subject to the constraints ci > 0 and 0 <
∑J

j=1 cj ≤ 1. There is one special case when di = 1

and di−1 = 0. Then di is also considered as a duration zero but then if next duration, di+1, is

12



Figure 1: Intradaily seasonality of null durations. Left including first trading day price. Right

excluding it.

strictly positive it is not transformed. Notice that in order to maintain that the sum of all the

durations remains equal to the total time spell considered, the strictly positive duration that

occurs after successive null durations is also modified. In terms of time deformation it means

that null durations are enlarged while the next strictly positive duration is shrunk.

Thus, given this transformation, what is of interest is to set the values ci. There exists

several alternatives depending on the interest of the analysis. The first approach consists in

replacing ci by some ad hoc constant. The second approach is to estimate them. Estimation

can be done considering the model as a left censored model where the censoring is that we do

not observe values below one. Another possibility would be to consider that the DGP of null

durations differs from the DGP of the strictly positive durations. Then we can use a similar

technique to the hurdle models used in Tobit models and in count data (see Cragg, 1971, and

Mullahy, 1986 respectively). The principal drawback of these models is that we are dealing

with dynamical processes and hence either censoring or hurdle in these processes is not as easy

as in the static case since we have to integrate with respect to past censoring and tractability

is not assured (see, for example Wei, 1997, for a Bayesian approach to dynamic Tobit models).

Since 0 < ci ≤ 1 another possible functional form is by means of a logistic function whose

value may depend on extra variables such as the number of successive zeros, past durations,

prices, etc. These approaches are with no doubt cumbersome and they are themselves subject

of a proper research.

Hence, in our framework, since we are mainly interesting in analyzing the intradaily season-

ality but without despise the information content in null durations, we replace null durations

by cj = 1/J where J is the number of successive null durations. The drawback of this ap-

proach is that null durations are considered to be regularly spaced within the second in which

they occur. However, this transformation carries out the above scheme and the constraints are

fulfilled. We adopt the easiest approach not expecting great results and letting this subject

open for future research.
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Figure 2: Number of null durations for every price

4.2 Descriptive analysis

Figures 3 and 4 are the observed durations, the autocorrelogram and a kernel estimate of the

density. In Figure 3 there is also a piecewise constant line (the dashed line) indicating when a

day begins and ends. The lowest steps correspond to Mondays and they are increasing until

Friday. Obviously if one day is a holiday there is no piecewise line for that day. In order to see

clearly the intradaily seasonal pattern we just show the first month, January 1998. From this

figure we can see that for each day durations are generally small at the beginning and the end

of the day, and large in between, indicating the intradaily seasonality. The autocorrelogram of

hte durations (the left plot of Figure 4) confirms this feature. Even if we should use this plot

only for illustrative purposes (when dealing with point processes it has not an exact meaning

since data are irregularly spaced. A possible alternative is the variogram), one sees that there

is a clear seasonal pattern. Finally the right plot of Figure 4 shows a kernel estimate of the

density. It seems that the density has an asymptote at zero which is incompatible with the

exponential distribution and the Burr distribution can be redundant (in the sense that the

second parameter should not be significative and hence we attain the Weibull). Therefore a

priori the correct distributions could be either Weibull or generalized gamma.

In Table one we provide a few descriptive statistics of the durations. Numbers in paren-

thesis are the same statistics but eliminating null durations. The basic insights that can be

extracted from this table are: durations are overdispersed and highly autocorrelated as it was

expected given that they are financial processes. The number of durations equal to zero is
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Solid line are observed durations. Dashed line are the days of the week. Each piecewise is a day and it

is increasing from Monday up to Friday. The scheme is repeated every week. Only January has been

plotted

Figure 3: Observed duration and day of the week

very significative, 26.5% percent of the total. Eliminating them implies that the dynamical

properties of the process change. For example the Q-statistics are higher when only considering

strictly positive durations.

Since the aim of the paper is about (intradaily) seasonality, it is worthwhile compute the

diurnal component (i.e. the function φ̂a(τ) used to seasonally adjust data). Up to now this

function has been specified by means of cubic splines:

φ̂a(τ) =
J∑

j=1

1[∆j≤τ<∆j+1]

[
aj + bj (τ −∆j) + cj(τ −∆j)

2 + dj(τ −∆j)
3
]
, (20)

where ∆j are the knots and 1[∆j≤τ<∆j+1] is an indicator function for the j +1th segment. We

introduce a second estimator which is a standard Nadaraya-Watson estimator

φ̂a(τ) =

∑N
i=1K

(
τ−ti
h

)
di∑N

i=1K
(
τ−ti
h

) . (21)
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Density estimated non parametrically with a Gamma Kernel. See Chen (2000). The bandwidth is

(0.9σN−0.2)2 where σ is the standard deviation and N the number of observations.

Figure 4: Autocorrelogram and Marginal Density

Table 1: Information on Duration Data

No. Days No. Obs No. Durations=0 % Durations=0

61 (61) 27298 (20067) 7231 (0) 26.5 (0)

Mean S.d Q(1) Q(10)

55.82 (75.94) 102.28 (112.711) 364.57 (457.58) 2413.3 (2881.8)

Descriptive statistics for the trade durations of Bankinter during January - March

1998. Durations are measured in seconds. Q(k) is the Ljung-Box statistic for auto-

correlation of order k.

With respect to the latter estimator, the time variable is the number of cumulative seconds

from midnight every day. The kernel chosen is the quartic and the bandwidth is 2.78σN−1/5

where σ is the standard deviation of the data and N the number of observations. With respect

to the former estimator, the nodes are set every hour, as used in previous studies. Figure 5

represents the two diurnally estimators for the mean day and for the five days of the week

(excluding null durations).

From this figure it seems that the variation of the daily seasonal pattern is not clearly

significative across days. The Nadaraya-Watson estimator is smoother than the piecewise

cubic spline but the latter varies more within a day since it ranges from zero to approximately

90 while the Nadaraya-Watson ranges from approximately 30 to approx 90. The same exercise

has been done including null durations and results are very similar. This detail is important

since as it will be showed later there are remarkable differences between the estimated curves

when including and excluding the null durations.
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NW stands for Nadaraya-Watson and CS for Cubic Splines

Figure 5: Diurnal component

4.3 Estimation

We now proceed with estimation. Using the estimation method proposed in the former section,

we estimate the parameters of a Log-ACD model and the seasonal component under three al-

ternative specifications for the conditional distribution of the durations: exponential (QMLE),

Weibull and generalized gamma. For comparative purposes, we perform the estimation on the

raw data, the data adjusted for seasonality, both with and without null durations.

Results are in Tables 2 and 3. The first column is the estimation result when we do not

consider seasonality. In the next two columns the intradaily and the intraweekly nonparametric

estimators respectively are included. Last column is the result when we adjust durations by

the Nadaraya-Watson estimator.

The mean equation parameter values, (ω), α and β are as expected according to the prop-

erties of a financial duration process. The model is stationary and in all cases models capture

a strong persistence affect. Notice that ω is not present in the estimation with the seasonal

component since the nonparametric curve plays the role of a varying parameter. However α

and β are always present and their estimates are quite similar through model specifications.
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This effect can be explained as follows: Under the multiplicative specification introduced in

(16), and a pre-specified form for p(ε;ϑ3) then the likelihood function can be decomposed into

three components (see Appendix for further details)

Ln(d, ϑ1, ϑ3) = L1n(ϑ3)L2n(d, ϑ1, ϑ3)L3n(d, ϑ1, ϑ3, φ(ti)) (22)

Notice that the nonparametric curve estimator is only present in L3n. The idea behind the

similitude of the estimates of α and β is that L3n conveys few information about ϑ1 and ϑ3. In

order to verify this conjecture we use the Kullback discrepancy for measuring the information

carried by L3n. If the information is small means that φ(ti) is not crucial on the estimation of

ϑ1 and ϑ3. The discrepancy is

I = E
ϑ̂1,ϑ̂3

[
log

L1n(ϑ3)L2n(d, ϑ1, ϑ3)

Ln(d, ϕ, ϑ3)

]
(23)

Note that the expectation is with respect to the estimates under Ln(·). The discrepancy is

thus equal to

I = −E
ϑ̂1,ϑ̂3

[logL3n(d, ϕ, ϑ3)] (24)

As benchmark we use the generalized gamma since Weibull and exponential are nested on

it. Under some calculations (23) is equal to

I = φ(ti)γ̂ν̂ + 1 (25)

Applied to the trade duration process, the mean log-likelihood function is 18.9 while the

mean Kullback discrepancy is 2.2, i.e. L3n carries just 11.6% of the total information about

ϑ1 and ϑ3 which makes ϑ̂1 and ϑ̂3 to be close through model specifications. A direct conse-

quence of this result is that all the market microstructure’s testing done using the ACD family

models (Engle and Russell, 1998 and Bauwens and Giot, 1999 among others) are valid in this

framework.

Nevertheless it is worthwhile to explain why when the seasonal component is considered

the parameters γ and ν for the generalized gamma increases and decreases respectively. This

change can be explained in terms of hazard functions since it is the most important function

when dealing with durations. Left plot of Figure 6 shows the hazard functions for the gener-

alized gamma distributions when considering the seasonal component (dashed line) and when

ignoring it (solid). Although small, in this plot we can see the effect of including or not the

seasonal term. The hazard function is shifted down (from the solid to the dashed line) when

considering the seasonal component. This is due to the following: when getting rid of the

seasonal component in the long-run term we are excluding a part of the high activity in the

opening and the closing, related with the shorter durations. Equivalently for the lunch time:

it is expected that a part of the low trading activity is captured by the seasonal component,
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Left plot is the estimated hazard functions for the estimation without null durations and with and

without intradaily seasonal component (dashed and solid lines respectively) for the generalized gamma

distribution. Right plot is the estimated hazard functions for the Weibull and the generalized gamma

distributions (solid and dashed lines respectively) without null durations. The inserted window shows

a zoom of the graph close to the origin.

Figure 6: Estimated hazard functions

related with the longest durations. Therefore the seasonal term will capture a proportion of

the lowest and the highest trading activities implying that the hazard function, or the instan-

taneous probability, will decrease and, because the construction of the hazard functions, they

also decrease for medium durations.

The right plot can be used for looking at the differences between distributions. The solid

line represents the Weibull hazard function while the dashed line is the generalized gamma.

We estimate without zeros (the inserted window is a zoom of the area close to the origin).

The hazard function of the generalized gamma is above the hazard function of the Weibull.

It means that the generalized gamma distribution increases the instantaneous probability of

a trade. Finally, remark that as the distribution function becomes more flexible, the changes

in the hazard function when estimating with and without seasonal component increases. For

example, for the exponential the hazard function is equal through any specification (since it

is constant and equal to one), for the Weibull case it varies but very slightly while for the

generalized gamma changes are relevant as already explained.

With respect to the seasonal curve, Figure 7 shows the intradaily and intraweekly seasonal

patterns when using a Weibull distribution for the estimation with and without zeros (bottom

and top plots respectively). The patterns are centered i.e. the line represents φ(τ)− φ̄ where

φ̄ is the mean. The first thing that draws the attention is the different shape of the estimated

curves by including and excluding null durations. Although they have the same inverted U

shape, differences come from the intensity of the seasonality at different periods of the day. It

is particularly remarkable at the beginning of the day. In the bottom plots the deterministic

seasonality increases sharply at the beginning of the day while it is not the case for the top

estimated curves. It means that at the beginning of the day there exist a certain dynamics that

19



Table 2: Estimation Results excluding null durations

No Seaso Intraday Intraweek NW

Exp ω 0.0809
[0.0056]

0.0196
[0.0014]

α 0.0391
[0.0016]

0.0248
[0.0017]

0.0235
[0.0018]

0.0209
[0.0015]

β 0.9506
[0.0024]

0.9703
[0.0024]

0.9724
[0.0024]

0.9749
[0.0021]

Weibull ω 0.0915
[0.0088]

0.0234
[0.0023]

α 0.0439
[0.0025]

0.0285
[0.0027]

0.0268
[0.0027]

0.0249
[0.0025]

β 0.9443
[0.0037]

0.9655
[0.0038]

0.9680
[0.0039]

0.9694
[0.0035]

γ 0.7357
[0.0047]

0.7410
[0.0048]

0.7421
[0.0048]

0.7406
[0.0048]

GG ω 0.1002
[0.0101]

0.0261
[0.0027]

α 0.0472
[0.0024]

0.0308
[0.0030]

0.0288
[0.0031]

0.0276
[0.0029]

β 0.9398
[0.0043]

0.9622
[0.0044]

0.9651
[0.0044]

0.9658
[0.0042]

γ 0.5937
[0.0213]

0.6181
[0.0222]

0.6252
[0.0225]

0.6202
[0.0222]

ν 1.4313
[0.0861]

1.3517
[0.0804]

1.3286
[0.0790]

1.3429
[0.0796]

Estimation results ignoring the seasonal behaviour (termed No Seaso), with

the nonparametric estimator proposed accounting for the intradaily and the in-

traweekly pattern (termed Intraday and Intraweek respectively) and using a pre-

seasonal adjustment by means of the Nadaraya-Watson (NW) estimator. Exp,

Weibull and GG stand for exponential, Weibull and generalized gamma distri-

butions respectively. Numbers are the estimated parameters and in underneath

between brackets are heterokedastic-consistent standard deviations.
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Table 3: Estimation Results including null durations

No Seaso Intraday Intraweek NW

Exp ω 0.4209
[0.0187]

0.1149
[0.0041]

α 0.0696
[0.0023]

0.0731
[0.0025]

0.0751
[0.0025]

0.0734
[0.0025]

β 0.8528
[0.0060]

0.8204
[0.0074]

0.8129
[0.0075]

0.8137
[0.0077]

Weibull ω 0.5766
[0.0338]

0.2069
[0.0096]

α 0.1259
[0.0053]

0.1279
[0.0055]

0.1292
[0.0055]

0.1276
[0.0055]

β 0.7812
[0.0112]

0.7353
[0.0129]

0.7434
[0.0133]

0.7515
[0.0129]

γ 0.5117
[0.0028]

0.5158
[0.0028]

0.5168
[0.0028]

0.5152
[0.0028]

GG ω −0.354
[0.3160]

−0.489
[0.8623]

α 0.2096
[0.0066]

0.1537
[0.0034]

0.1496
[0.0032]

0.2060
[0.0066]

β 0.6678
[0.0130]

0.7023
[0.0023]

0.7004
[0.0023]

0.6495
[0.0138]

γ 0.0382
[0.0002]

0.7253
[0.0203]

0.7309
[0.0204]

0.0383
[0.0002]

ν 146.24
[0.1948]

1.1235
[0.1259]

1.1137
[0.1262]

146.08
[0.4274]

For explanation see previous table
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Top plots are the estimated seasonal intradaily and intraweekly centered components, i.e. φ(τ) − φ̄

where φ̄ is the mean. null durations are excluded. Bottom plots are the equivalent but including them.

Weibull distribution is used

Figure 7: Estimated seasonal curves

is captured by the parametric part in the semiparametric estimation only when excluding null

durations. A comparison can be done whith Figure 5. The ad hoc seasonal patterns (including

and excluding null durations) are very similar to the estimated curve when including null

durations. It means that when including null durations the ones produced in the first half

of the day are not informative and hence they are captured by the seasonal curve while it

is just the contrary for the null durations observed at the end of day since the second half

day seasonal pattern in similar in any plot. This permit us to conjecture that information

that occur during the period in which the market is closed is not informative of the stochastic

part of the process while the flow of information, either exogenous or endogenous (i.e. either

information generated in the market or outside the market), that arrives to the market, when

it is open, matters. After 13:00 there are no remarkable differences. At this time traders go

for lunch and just before they take positions, increasing again the trading intensity. Traders

lunch and the market remains relatively constant up to a bit before 15:30 when NYSE and

NASDAQ preopen and then the market becomes quickly very active as the trading activity

increases till the closing at 17:00.
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The fact that seasonal patterns when adjusting or estimating jointly are different is an

important empirical evidence that the dynamic and the seasonal components are not orthogonal

and hence they have to be estimated jointly. Moreover it verifies that a simple nonparametric

regression does not identify separately both components as previously advanced.

Additionaly, there is not a significative intraweekly pattern since the intradaily seasonality

across the days of the week is very similar. Finally, although it is not showed the seasonal

curve is almost identical for any of the three distributions, meaning that it is ”robust” with

respect to the distribution in the parametric part of the model.

4.4 Diagnosis

For testing the specification of the model we use density forecast. This technique is based

on the calculation of the probability integral transform and then test wether it is i.i.d and

uniformly distributed using histograms and autocorrelograms. It was introduced by Diebold et

al. (1998) in the context of GARCH models and extensively used by Bauwens et al. (2000) for

comparing different financial duration models. This technique is specially useful for evaluating

the forecasting performance of different non nested models although it can be used as well for

nested models.

Basically it works as follows: Let
{
fi(di | d̄i−1, ȳi−1)

}m
i=1

be a sequence of one-step-ahead

density forecasts produced by the model and let
{
pi(di | d̄i−1, ȳi−1)

}m
i=1

be the sequence of

densities defining the data generating process governing the duration series di. It can be showed

that the correct density will be preferred by all forecast users regardless of their loss functions

and hence it makes sense to test whether
{
fi(di | d̄i−1, ȳi−1)

}m
i=1

=
{
pi(di | d̄i−1, ȳi−1)

}m
i=1

.

This test is done using the probability integral transform

zi =

∫ di

−∞

fi(u)du,

that must be i.i.d. and uniformly distributed under the correct density. Hence when assuming

some mean equation and some distribution both independence and uniformity of the estimated

density can be checked.

Testing uniformity can be done using a histogram based on the computed z sequence. If the

density is correctly specified the histogram should be statistically flat. For the independence

checking, autocorrelation functions of various centered moments of the z sequence can reveal

some dependency. For further details see the two above references.

A remark must be done on the way to compute z in the present model and when adjusting

data. When estimation is joint z is computed on the raw data whilst in the adjusted case z

is computed for the seasonally adjusted durations. Notice that density forecast evaluation on

the adjusted data or on the raw data including the ad hoc seasonal component is done in the

same way. For example, in the Weibull case and with adjusted data z is equal to
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z = 1− e(−
da

eψi
)γ

(26)

where da denotes adjusted durations i.e. da = d/φ̂a(τ) and φ̂a(τ) denotes the seasonal filter

(20) or (21). Of course if we replace in z da by da = d/φ̂a(τ) a density forecast evaluation on

the raw durations but including the ad hoc seasonal component is obtained.

Figures 8 and 9 show the out-of-sample histograms of z and autocorrelograms of (zi − z̄).
Out-of-sample means that the estimation is performed on the first two-thirds of the sample,

and then the forecast densities and z are computed on the last third of the sample using

the estimates obtained on the first part. Figure 8 contains, from top to bottom, the density

forecast results when estimating without null durations and the three distributions. Last row

when considering null durations and the generalized gamma distribution. All estimations are

done with the intradaily component. On the contrary in Figure 9 we give the results with

the generalized gamma, the Nadaraya-Watson estimator and with and without null durations.

We do not show the autocorrelograms for other centered moments and using the intraweekly

component since results are similar in all cases.

From these figures some comments arise. Firstly in general the mean equation captures

correctly the dynamics in all cases since most of the autocorrelations remain in the 90% cofind-

ence bands. This result is also found in Bauwens et al. (2000) where they shown that the mean

equation choice in not crucial for determining the accuracy of the model. There is some residual

autocorrelation when null durations are included and when the seasonal curve is not estimated

jointly. Secondly there is in general a huge difference between the results with and without

the null durations. This is caused probably by the way in which null durations are dealt. As

explained we did not expect good results and thus we let the improvement on the treatment

of these data for future research. Nevertheless it is worthwhile to explain this shape. Indeed

a similar shape (bottom histogram in figure 8) has been found in Bauwens et al. (2000) when

dealing with price durations and previously adjusting data by means of a cubic spline. The

considered distributions are not able to account for durations very close to zero which is prob-

ably due to their high proportion in the sample. This is represented in the histogram by a

very small frequency for 0 < z < 0.05 and hence this lack of values at this range provokes an

over representation on the following bins. With respect to the distributional assumption, as

expected the exponential distribution does not make a good job while there other two behave

much better, especially the generalized gamma.

Related with the inclusion of the seasonal component differences are clear. When it is

included in the estimation, forecasting results are much better and z is uniformly distributed

(in the case of no null durations). When data are adjusted for seasonality the histogram is

much worse. Hence we assert that when including in the estimation the seasonal component

the forecasted probability integral transform is i.i.d. and uniformly distributed.

Remark that although the density forecast is much worse when data are adjusted, the

estimates on table two are similar through model specifications. This is due to the fact that
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even if L3n does not carry important information about ϑ1 and ϑ3, it is crucial in prediction

since z and L3n are strongly related (see Appendix).

In order to analyze deeply the cause of the rejection of the null hypothesis we on the

differences in forecasting errors, given by εi = di−E[di|d̄i−1], for different model specifications.

For example an interesting issue is to compare the differences in the forecasting errors of

models without taking into account the seasonality (denoted by εNSi ), adjusting ad hoc (εai )

and estimating jointly (εi). Notice that while εNSi and εi are computed as the above difference

between the observed duration and its conditional expectation, εai is computed multiplying

the conditional expectation of the adjusted durations by the diurnally component φ̂a(τ), i.e.

εai = di − E[dai |d̄i−1]φ̂a(τ). In figure 10 there are the differences of different forecasting errors

(due to representation purposes only the first 18 days are plotted), in all cases using the

generalized gamma distribution and excluding null durations. Left plot represent (εi − εNSi ).

When not taking into account seasonality there is a clear seasonal pattern not captured by

the model and hence captured by εNSi . It makes sense since the model for εNSi just forgets

the existence of seasonality. Right plot represents (εi − εai ). There is as well a clear cyclical

pattern although not so remarkable. This again a proof that seasonally adjusting data is not

the most efficient way of dealing with seasonality.

5 CONCLUSIONS

In this paper we have proposed a component model for the analysis of financial durations. The

components are the long-run dynamics and the seasonality. The later is left unspecified and

the former is assumed to fall within the class of ACD (log-ACD) models. Joint estimation of

the parameters of interest and the smooth curve is performed through a local (quasi-)likelihood

method. For alternative specifications of the conditional density the resulting nonparametric

estimator of the seasonal component shows a closed form expression that is a function of the

Naradaya-Watson estimator.

A further advantage of this semiparametric component model is that under this approach

any other tick-by-tick variable can be analyzed. The only requirements are define properly the

dynamical component and the distribution. For example the analysis of tick-by-tick volatility

could be succesfully done using the above methodology.

The empirical application in on the trade duration process of Bankinter, a medium size

spanish bank traded in Bolsa de Madrid. The results shows significant differences with respect

to previous alternative approaches.
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APPENDIX

Definitions and assumptions

In order to prove the results claimed in Theorems 1 and 2 we need to establish some definitions

and assumptions. The proofs follow the same lines as in Severini and Staniwallis (1994).

(A.1) The random variable t takes values in a compact set T ⊂ R. The marks y take values

in a compact set Y ⊂ Rp.

(A.2) The observations {(di, yi, ti)}i=1,··· are a sequence of stationary and ergodic random

vectors.

(A.3) ϑ10 takes the values in the interior of Θ, a compact subset in Rp and φ takes the values

in the interior of Λ, a compact subset of R.

Λ =
{
f ∈ C2[a, b] : f(t) ∈ int (Λ) for ∀t ∈ [a, b]

}
.

(A.4) Let Ξ be a compact subset of R such that ϕ
(
ψ(d̄, ȳ;ϑ1), φ(t)

)
∈ Ξ for all t ∈ T, y ∈ T,

ϑ1 ∈ Θ and φ ∈ Λ.

(A.5) The matrix

Σϑ1 = E

(
∂2

∂ϑ1∂ϑT1
Q
(
ϕ
(
ψ(d̄, ȳ;ϑ1), φ(t)

)
; d
))

is positive definite.

(B.1) The kernel function K(·) is of order k > 3/2 with support [−1, 1] and it has bounded

k + 2 derivatives.

(B.2) For r = 1, · · · , 10 + k the functions ∂rϕ(m)/∂mr and ∂rV (µ)/∂µr exist and they are

bounded in their respective supports.
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(B.3) d is a strong mixing process where the mixing coefficients must satisfy for some p > 2

and r being a positive integer

∞∑

i=1

ir−1α(i)1−2/p <∞.

Furthermore, for some even integer q satisfying (k+2)(3+2k)
(2k−3) ≤ q ≤ 2r

E |d|q < ν,

where ν is a constant not depending on t.

(B.4) The conditional density of t, given the information set Ii−1, f(t), and the conditional

density of d given t and Ii−1 has k + 2 bounded derivatives uniformly in t ∈ T, y ∈ Y

and d ∈D.

(B.5) Let

M (η;ϑ1, t) = E

{
∂

∂η
Q
(
ϕ
(
ψ(d̄, ȳ;ϑ1), η

)
; d
) ∣∣ȳ, d̄

}
.

For each fixed ϑ1 and t, let φϑ1(t) the unique solution to M (η;ϑ1, t) = 0. Then for any

ε > 0 there exists a δ > 0 such that

sup
ϑ1∈Θ

sup
t∈T

|φϑ1(t)− φ(t)| < ε

whenever

sup
ϑ1∈Θ

sup
t∈T

|M (φ(t);ϑ1, t)| < δ.

(B.6) The sequence of bandwidths must satisfy h = O(n−α) where

1

4k
< α <

1

4

q − (2 + p)

q + (2 + p)
.

Proof of Theorem 1

The proof of this theorem follows the same steps as in the proof of Lemma 5 from Severini

and Wong (1992), p. 1784. The bias term must be treated in the same way as they do.

With respect to the variance term an additional result must be included to account for the

dependence. Consider the following expression

1

nh

n∑

i=1

[
K

(
τ − ti
h

)
ϕ
(
ψ(d̄, ȳ;ϑ1), η

)
− E

{
K

(
τ − t
h

)
ϕ
(
ψ(d̄, ȳ;ϑ1), η

)}]

and define

Wi =
1

h
K

(
τ − ti
h

)
ϕ
(
ψ(d̄, ȳ;ϑ1), η

)
− E

{
K

(
τ − t
h

)
ϕ
(
ψ(d̄, ȳ;ϑ1), η

)}
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Then, under assumptions (A.2) and (B.3) the process W1, · · · ,Wn is strong mixing and there-

fore theorem 1 from Cox and Kim (1995) applies and the following sequence of inequalities

hold. For ε > 0

P

{∣∣∣∣
1

n

∑
Wj

∣∣∣∣ > ε

}
≤ E [(

∑
Wi)

q]

nqεq
≤

1

nqεq
C



n

q/2
∞∑

i=P

iq/2−1α(i)1−2/p +

q/2∑

j=1

njP q−jνj





for any integers n and P with 0 < P < n. Then using assumptions (B.1) to (B.6) and

proceeding as Severini and Wong (1992) in the proof of Lemma 8, the proof is closed.

Proof of Theorem 2

The proof of this theorem relies consists in verifying conditions I (Identification), S (Smooth-

ness) and NP (Nuissance Parameter) fromm Severini and Wong (1992). Condition NP(a) is

the result already shown in Theorem 1. Condition NP(b) (least favorable curve) is inmediate

from Lemma 6 of Severini and Wong (1992). This is due to the fact that we assume that the

conditional density function belongs to the exponential family. By assuming (A.1) to (A.4) the

smoothness condition holds. Finally, assumption (A.5) implies I. Then, using both a Uniform

Weak Law of Large Numbers and a Central limit theorem for a stationary and ergodic process

(see for example Wooldridge, 1994) propositions 1 and 2 from Severini and Wong (1992) apply

and the proof is done.

Distributions

The generalized gamma density function for d > 0 is

fGG(d) =
c−γνγεγν−1

Γ(ν)
exp

(
− ε
c

)γ
, (27)

where ν > 0, γ > 0, c > 0 and Γ(.) denotes the gamma function. For the Log-ACD model the

parameter c is equal to

c =
exp(ψ(ϑ1) + φ(τ))

µε(ϑ3)
, (28)

where ϑ3 = (1, γ, ν). Rearranging terms the density can be expressed as

fGG(d) = f1(ϑ3)f2(ϑ3, ϑ1)f3(ϑ3, ϑ1, φ(τ)), (29)

where

f1(ϑ3) = γ
Γ(ν)µ(ϑ3)

γν

f2(ϑ3, ϑ1) =
(

1
eψ(θ)

)γν
dγν−1

f3(ϑ3, ϑ1, φ(τ)) = e
−φ(τ)γν−

(
dµ(ϑ3)

eψ(θ)eφ(τ)

)γ
.

(30)
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The mean and the distribution function (cdf) are given by

µ(c, γ, ν) = c
Γ(ν+ 1

γ
),

Γ(ν)

FGG(d) = Γ(ν,(d/c)γ)
Γ(ν)

(31)

and for computing Γ(ν, x) numerical integration is needed.

The Weibull density and its mean are attained when ν = 1. The cdf is

FW (d) = 1− exp
(
− ε
c

)γ
. (32)

Finally the exponential density and its mean are attained when γ and ν are equal to one.

The cdf is derived from (32).
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Histograms and autocorrelograms for z. Intradaily component used. Top three without null dura-

tions. Bottom one with null durations. Distributions from up to down: generalized gamma, Weibull,

exponential and generalized gamma.

Figure 8: Density forecast evaluation for raw durations
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Histograms and autocorrelograms for z. Adjusted for seasonality using the Nadaraya-Watson estimator

and the generalized gamma distribution. Top without null durations. Bottom with.

Figure 9: Density forecast evaluation for seasonally adjusted durations

Left plot are differences in the forecasting errors of the model without seasonal component and without

adjusting data and the model with seasonal component. Right plot are the differences in the forecasting

errors of the model without seasonal component but adjusting data and the model with seasonal

component. Vertical lines represent the moment of time in which a day begins. Only the first 18 days

of the sample are plotted.

Figure 10: Differences on forecasting errors
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