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Abstract

This paper studies the problem of multiple changepoints in rate parameter of a Poisson

process. We propose a binary segmentation algorithm in conjunction with a cumulative sums

statistic for detection of changepoints such that in each step we need only to test the presence

of a simple changepoint. We derive the asymptotic distribution of the proposed statistic, prove

its consistency and obtain the limiting distribution of the estimate of the changepoint. A Monte

Carlo analysis shows the good performance of the proposed procedure, which is illustrated with

a real data example.
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1 Introduction

The problem of estimation of the rate parameter of a Poisson process when the rate is piecewise

linear with unknown number of pieces and locations is a widely studied problem in different dis-

ciplines. Maguire et al (1952), Akman and Raftery (1986), Worsley (1986) and Siegmund (1988)

gave frequentist analysis by proposing several statistics to test for one changepoint at a given loca-

tion. Lately, most of the works dealing with changepoints in Poisson processes are from a Bayesian

perspective. Raftery and Akman (1986), Carlin et al (1992) and Raftery (1994) study the single

changepoint case. Multiple changepoints are analyzed by Green (1995), who proposed a reversible

jump Markov chain Monte Carlo method for locating the multiple changepoints and estimating
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the corresponding rate parameters. Chib (1998) proposed a hidden Markov model an a MCMC

algorithm for its estimation. Finally, Yang and Kuo (2001) proposed the use of a Bayesian binary

segmentation algorithm based on a sequence of nested hypothesis tests using Bayes factors and a

BIC approximation to the Bayes factors.

The propose of this paper is to develop a cumulative sum approach for detection of several

changepoints at unknown locations in Poisson processes using a binary segmentation procedure.

This type of algorithm has been extensively used in changepoint detection and Vostrikova (1981)

proves its consistency for detecting changepoints in multidimensional random processes under mild

conditions. This algorithm is based on consecutive divisions of the whole sample into pieces after

detecting one change, such that it is only required testing for zero changes against one change in

each step. This overcomes the complexity of testing for several changes at the same time. To test

for the presence of a changepoint, we use a cumulative sums statistic for which we have derived its

asymptotic distribution and proved the consistency of the estimate of the changepoint. We also have

obtained the distribution of the estimate of the changepoint, that can be used for obtain confidence

intervals of the locations of the changepoints. The procedure here proposed is efficient, fast and

very easy to implement. The binary segmentation algorithm in conjunction with cumulative sums

statistics have been used previously by Inclán and Tiao (1994), Carnero et al (2003) and Galeano

et al (2004), to locate multiple mean and variance changepoints in univariate and multivariate

time series. Other successfully implementations of the algorithm can be found in Chen and Gupta

(1997), Yang and Kuo (2001) and Yang (2004).

The rest of this article is organized as follows. In section 2, we present a cumulative sum

statistic that can be used for testing for changes in the rate parameter of a Poisson process, obtain

its asymptotic distribution, prove its consistency and obtain the limiting distribution of the estimate

of the location of the changepoint. In section 3, a binary segmentation procedure for detection and

estimation of these changes is proposed. In section 4, we study the performance of the procedure

in several Monte Carlo experiments for different models, sample sizes, number and location of the

changepoints. We conclude that the proposed procedure yields satisfactory results for changepoints

detection in all the situations considered. Finally, section 5 illustrates the procedure by means of
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a real data example.

2 Testing for a change in the rate parameter of a Poisson process

Suppose that we observe n independent events occurring in the interval (0, T ], x = (x1, . . . , xn)′,

such that 0 < x1 ≤ . . . ≤ xn < T , taken from a Poisson process with rate parameter λ (t), given by:

λ (t) =





λ0 h0 < t ≤ h1

...
...

λp hp < t ≤ hp+1

(1)

where h0 = 0 < h1 < · · · < hp < hp+1 = T , λj 6= λj+1, j = 0, . . . , p − 1 and p are unknown

parameters. Here p is the number of changepoints and hi is the location of the j−th changepoint.

The problem is to estimate the true number and locations of the changepoints based either on

the arrival times, x = (x1, . . . , xn)′, or the interarrival times between consecutive events, y =

(y1, . . . , yn)′, given by y1 = x1, yi = xi − xi−1, for i = 2, . . . , n. These interarrival times are

independent, identically distributed exponential random variables with rate parameter λ (t). Let,

Di =
√

n

(
xi

xn
− i

n

)
=
√

n

(∑i
j=1 yj∑n
j=1 yj

− i

n

)
(2)

be the centered and normalized cumulative sums of the interarrival times. The statistic Di compares

the cumulative sum of the interarrival times until time xi with respect to the cumulative sum of all

the interarrival times. In the case of a constant rate, the ratio between both cumulative sums should

be around i/n, but if the rate is piecewise linear, the ratio can be very different from i/n. To see this,

we explore the behavior of the statistic Di in (2) under several situations which are illustrated in

Figure 1. The three columns in this matrix of plots represents three different generating processes.

The first column corresponds to the case of constant rate, λ (t) = 1. The second column corresponds

to the case of a single change in the rate at h1 = x[n/2], where the rate changes from λ (t) = 1 to

λ (t) = 2. The third column corresponds to the case of two changes, the first at h1 = x[n/3], where

the rate changes as in the previous case, and the second at h2 = x[2n/3], where the rate goes back to
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be λ (t) = 1. The rows represent the cumulative sums of the time events from the Poisson process

and the corresponding statistics Di. The first row in Figure 1 shows n = 500 time events generated

from the first process, and the second row shows the Di statistic computed with the event times in

the same column. In the first column in Figure 1, the constant rate case, the statistics plotted in the

second row are under the two straight lines computed as explain next as for the 95% critical value

of the distribution of the maximum of the statistics Di in absolute value. In the second column,

a single change at h1 = x250, the maximum of the statistics in absolute value is around the event

i = 250, and is larger than the critical value, so the hypothesis of no change is rejected. In the third

column, two rate changes at h1 = x166 and h2 = x333, which appear as two significant extremes

around the times of the changes. This behavior leads to search for a changepoint as follows. Let

imax be the value of i at which maxi {|Di| : i = 1, . . . , n} is achieved. If this maximum exceeds a

given boundary, we may conclude that there exists a changepoint and that ximax is the estimate of

its location.

In the next section, we propose a binary segmentation algorithm such that in each step we need

only to test the null hypothesis of no change against the alternative of one change at an unknown

point in different pieces of the data. Therefore, we only need to explore the asymptotic behavior

of the statistic (2) under the null hypothesis of no change and the alternative hypothesis of one

change, respectively. First, we show that under the null hypothesis, the statistic (2) behaves like a

Brownian bridge asymptotically. The proofs of Lemma 1 and Theorem 2 are in the appendix.

Lemma 1 Let x = (x1, . . . , xn)′ be n events occurring in the interval (0, T ] such that 0 < x1 ≤
. . . ≤ xn < T , taken from a Poisson process with constant rate parameter λ (t) = λ0 and let

y = (y1, . . . , yn)′ be the corresponding interarrival times. Then, for every i = 1, . . . , n,

E [Di] = o
(
n−

1
2

)
.

Consequently, the mean of the statistic Di is asymptotically 0 for every i = 1, . . . , n. Let M be

a Brownian motion process verifying E [M (r)] = 0, and E [M (r) M (s)] = s, where 0 ≤ s < r ≤ 1.

Let M0 denote a Brownian bridge given by M0 (r) = M (r) − rM (1), verifying E
[
M0 (1)

]
= 0,
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Figure 1: Three different Poisson processes (up) and the corresponding Dh statistics for change-
points detection (down). The first column is the no changes case, the second column a change at
h = 250 and the third to two changes at h = 166 and h = 333.

E
[
M0 (r) M0 (s)

]
= s (1− r), 0 ≤ s < r ≤ 1, and M0 (0) = M0 (1) = 0, with probability 1. The

asymptotic distribution of the statistic Di is obtained in the following theorem.

Theorem 2 Under the conditions of Lemma 1, the statistic Di
d−→ M0.

As we mention previously, we are interested in the maximum of the absolute value of statistics

(2) which is given by,

Λmax (imax) = max {|Di| , 1 ≤ i ≤ n} , (3)

where imax is the point in which the statistic |Di| achieves its maximum, and ximax is the estimate of

the location of the changepoint. The distribution of Λmax in (3) is asymptotically the distribution
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of sup
{∣∣M0 (r)

∣∣ : 0 ≤ r ≤ 1
}

which is given by (see, Billingsley, pg. 85, 1968),

P
{
sup

∣∣M0 (r)
∣∣ ≤ a : 0 ≤ r ≤ 1

}
= 1 + 2

∞∑

j=1

(−1)j exp
(−2j2a2

)
,

and critical values can be obtained from this distribution.

Next, we study the behavior of the statistic (3) under the alternative hypothesis of one change

at t = h. Let W be a two-sided Brownian motion process defined in the interval [−w, w] for every

w > 0, such that W (w) = M1 (−w) for w < 0 and W (w) = M2 (w) for w ≥ 0, where M1 and M2

are two independent Brownian motions. Let ih = arg min {|xi − h| : i = 1, . . . , n} and assume that

ih → ∞ and n → ∞, such that ih/n = τh, a constant. The following theorem, which proof is in

the appendix, states that imax estimated according to (3) is consistent to the true changepoint, h,

with probability approaching 1 as n →∞, and obtain the limiting distribution of the changepoint

estimator imax.

Theorem 3 Let x = (x1, . . . , xn)′ be n events occurring in the interval (0, T ] such that 0 < x1 ≤
. . . ≤ xn < T , taken from a Poisson process with rate parameter λ (t) given by,

λ (t) =





λ0 0 < t ≤ h

λ1 h < t ≤ T
(4)

and let y = (y1, . . . , yn)′ be the corresponding interarrival times. Let h be the true position of the

changepoint under (4). Let ximax be the estimate of h given by (3). Assume that imax/n = τmax

and ih/n = τh. Then,

1. τmax is a consistent estimator of τ with,

|τmax − τh| = Op

(
n−1 |λ0 − λ1|−1

)
. (5)

2. If in addition, we assume that,

(a) |λ0 − λ1| depends on n such that |λ0 − λ1| → 0, if n →∞, and,
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(b) n
1
2 |λ0 − λ1| / (log n)

1
2 →∞,

therefore,

n
∣∣∣λ̂0 − λ̂1

∣∣∣
2
(τmax − τh)

σ̂2
y

d−→ arg max
v

{
W (v)− 1

2
|v|

}
, (6)

where W (v) is a two-sided Brownian motion, λ̂1 = yimax
, λ̂2 = y∗imax

, where yimax
and y∗imax

are the means of the sequences {y1, . . . , yimax} and {yimax+1, . . . , yn}, respectively, and σ̂2
y is

the estimated variance of {yi : i = 1, . . . , n}.

Therefore, accordingly with Theorem 3, under the alternative hypothesis of one change, the

statistic (3) will detect the presence and location of the changepoint asymptotically. As n →
∞ implies T → ∞, (xih − h) /T → 0. The rate of convergence (5) is a typical rate associated

with changepoint estimators, while the limiting distribution (6) can be used to obtain confidence

intervals for the location of the changepoint. For that, an expression of the cumulative distribution

function of arg maxv

{
W (v)− 1

2 |v|
}

can be found in Bai (1997). Finally, the limiting distributions

of λ̂1 = yimax
and λ̂2 = y∗imax

are given in Theorem 4.

Theorem 4 Under the conditions of Theorem 3,

1. n
1
2 λ̂1/λ1 has a limiting Gamma distribution with mean n

1
2 and variance 1/τh.

2. n
1
2 λ̂2/λ2 has a limiting Gamma distribution with mean n

1
2 and variance 1/ (1− τh).

Thus, we can estimate consistently the rate parameters λ1 and λ2. Moreover, the limiting

distributions are the same as if h is assumed known.

3 Detection of multiple changes: Binary segmentation algorithm

If several changes have occurred in the data, the usefulness of the statistic (3) is questionable

due to the possibility of masking effects. Edwards and Cavalli-Sforza (1965) proposed a binary

segmentation algorithm as a method for splitting data into clusters, while Vostrikova (1981) used

it for detection of changepoints in multidimensional random processes. It is based on splitting the
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data into two pieces when a change is detected, thus the algorithm tries to isolate each changepoint.

The proposed algorithm proceeds as follows:

1. Let i1 = 1. Obtain Λmax (imax) in (3) for i = 1, . . . , n. If Λmax (imax) > Cα, where Cα is

the asymptotic critical value for a critical level, α, go to step 2. If Λmax (imax) < Cα, it is

assumed that there is not a change in the sequence and the procedure ends.

2. Step 2 has three substeps:

(a) Obtain Λmax (imax) for i = 1, . . . , i2, where i2 = imax. If Λmax (imax) > Cα, redefine

i2 = imax and repeat Step 2(a) until Λmax (imax) < Cα. When this happens, define

ifirst = i2 where i2 is the last value such that Λmax (imax) > Cα.

(b) Repeat a similar search in the interval i2 ≤ i ≤ n, where i2 is the point imax obtained

in Step 1. For that, define i1 = imax + 1, where imax = arg max {|Di| : i = i1, . . . , n} and

repeat it until Λmax (imax) < Cα. Define ilast = i1 − 1, where i1 is the last value such

that Λmax (imax) > Cα.

(c) If |ilast − ifirst| < d, there is just one change point and the algorithm ends here. Other-

wise, keep both values as possible changepoints and repeat Steps 1 and 2 for i1 = ifirst

and n = ilast, until no more possible change points are detected. Then, go to step 3.

3. Define a vector ` = (`1, . . . , `s) where `1 = 1, `s = n and `2, . . . , `s−1 are the points detected

in Steps 1 and 2 in increasing order. Obtain the statistic Di in each one of the intervals

(`i, `i+2) and check if its maximum in absolute value is still significant. If it is not, eliminate

the corresponding point. Repeat Step 3 until the number of possible changepoints does not

change, and the points found in previous iterations do not differ from those in the last one.

The vector (`2, . . . , `s−1) are the final changepoints.

4. Finally, we estimate the rate parameter (1) by means of the sample mean in each of the

intervals between changes.

Some comments regarding the proposed binary segmentation algorithm are in order. First, the

critical values used in the procedure are the asymptotic critical values of the maximum absolute
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value of a Brownian Bridge. In the next section we provide some of them. Second, we use different

critical values depending on the number of changepoints detected in each step of the algorithm. If we

use the same critical value in steps 1 and 2, this can leads to overdetect the number of changepoints.

To see this point, assume that we use the same critical value, Cα, for a given critival level, α. In step

1, the probability of detecting one changepoint, unless it does not exist, is 1− (1− α). Assume now

that we detect a changepoint. Therefore, the probability of detecting at least a second changepoint,

unless it does not exist, is 1− (1− α)2 > α, and this can be repeated iteratively. Therefore, each

time that we detect a new changepoint, there is an increasing probability of detecting a spurious

changepoint in after splitting the data again. To avoid this problem, we proceed by taking a critical

value, denoted by αm, after detecting the m changepoint, verifying α0 = 1−(1− αm)m+1, where α0

is the critical level used in step 1, usually α0 = 0.05. This ensures that the probability of detecting

a false changepoint is always the same in each step. Third, as in Inclán and Tiao (1994), we include

the step 3 in the procedure for avoiding any remaining false change. In this step, we use the critical

level α0. Finally, we require a minimum distance between changes larger than an positive integer

number d. In the Monte Carlo experiments and the real data example of the next sections we have

taken d = n/10 because this election works well in the simulations.

4 Monte Carlo experiments

The Monte Carlo results in this section and the analysis of the real data example in the next one

have been carried out by means of various routines written by the author in MATLAB (developed

by The MathWorks, Inc). Although the asymptotic distribution of the statistic Λmax in (3) is

known, we study the finite sample behavior of the quantiles of this statistic under the hypothesis

of no change. For that, we generate 10000 realizations from an exponential distribution with rate

parameter λ (t) = 1, which are considered as the interarrival times of the Poisson Process, for each

of the sample sizes, n = 100, 200, 500 and 1000 and compute the statistics (3). Table 1 provides

some quantiles of the distribution of Λmax for different sample sizes under the null hypothesis of no

change in the rate parameter. As we can see, the finite sample quantiles are always smaller than
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Table 1: Empirical quantiles of the Λmax statistics based on 10000 realizations for n = 100, 200,
500 and 1000.

Probability 0.05 0.50 0.95 0.975 0.983 0.987 0.990 0.991 0.992 0.993 0.994 0.995
n=100 0.453 0.754 1.280 1.395 1.461 1.502 1.538 1.568 1.598 1.613 1.632 1.648
n=200 0.471 0.784 1.316 1.430 1.504 1.541 1.577 1.597 1.628 1.634 1.651 1.670
n=500 0.491 0.797 1.324 1.449 1.515 1.567 1.594 1.623 1.640 1.652 1.668 1.680
n=1000 0.501 0.804 1.336 1.458 1.519 1.570 1.598 1.632 1.652 1.657 1.672 1.694
n=∞ 0.520 0.828 1.358 1.478 1.544 1.590 1.624 1.652 1.675 1.694 1.712 1.728

Table 2: Results for type I errors.

λ n h frequency
0 1 ≥ 2

1 100 — 96.3 3.6 0.1
1 200 — 96.1 3.8 0.1
1 500 — 95.8 4.0 0.2
1 1000 — 95.4 4.2 0.4

the asymptotic ones implying that the use of the asymptotic quantile is a conservative decision and

therefore, the type I error will not increase.

First, we analyze the type I error of the proposed procedure by generating 10000 realizations

from a Poisson process with constant rate parameter λ (t) = 1 for each of the sample sizes n = 100,

200 and 500 and apply the proposed procedure with the critical values from Table 1, starting with

Cα0 = 1.358 which corresponds to the critical level α0 = 0.05. The results are shown in Table 2,

where columns 4 to 6 report the number of changepoints detected by the algorithm. The type I

errors are around 5 % in all the sample sizes considered.

Next, we consider the case of one changepoint and make a Monte Carlo experiment in order

to study the size and power of the proposed procedure. For that, for each n = 100, 200 and 500,

we consider three locations of the change point, h = x[0.25n], x[0.50n] and x[0.75n]. The changes are

introduced by transforming the original rate parameter λ (t) = 1, into one of the rates, λ1 = 0.5,

λ2 = 0.25, λ3 = 2 and λ4 = 4. For each case, we generate 10000 realizations. Then, we apply

the proposed procedure with the critical values from Table 1, starting with Cα0 = 1.358 which
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Table 3: Results for one changepoint.

λ n h frequency ĥ λ n h frequency ĥ

0 1 ≥ 2 Mod. Med. Mad 0 1 ≥ 2 Mod. Med. Mad
25 29.3 70.0 0.7 25 25 3 25 57.5 41.9 0.6 25 38 9

λ1 100 50 14.2 84.5 1.4 50 48 3 λ3 100 50 14.7 84.2 1.1 50 52 3
75 57.5 41.7 0.8 75 63 9 75 29.6 69.5 0.9 75 75 3
50 0.0 97.8 2.2 50 50 1 50 13.6 84.0 2.4 50 60 9

λ1 200 100 0.0 97.1 2.9 100 99 1 λ3 200 100 0.7 97.2 2.1 100 102 3
150 0.0 97.0 3.0 150 145 5 150 4.6 93.9 1.5 150 150 3
125 0.0 97.1 2.9 125 125 4 125 0.0 96.1 3.9 125 135 10

λ1 500 250 0.0 96.6 3.4 250 248 3 λ3 500 250 0.0 96.5 3.5 250 252 3
375 0.0 96.7 3.3 375 365 10 375 0.0 97.1 2.9 375 375 4
25 0.1 98.8 1.2 25 25 1 25 0.8 96.8 2.4 25 29 4

λ2 100 50 0.0 98.0 2.0 50 49 1 λ4 100 50 0.0 97.5 2.5 50 51 1
75 0.8 97.2 2.0 75 71 4 75 0.1 98.7 1.3 75 75 1
50 0.0 97.7 2.3 50 50 1 50 0.0 97.0 3.0 50 54 4

λ2 200 100 0.0 96.8 3.2 100 99 1 λ4 200 100 0.0 97.0 3.0 100 101 1
150 0.0 97.1 2.9 150 145 5 150 0.0 97.9 2.1 150 150 1
125 0.0 96.6 3.4 125 125 1 125 0.0 96.6 3.4 125 130 5

λ2 500 250 0.0 96.1 3.9 250 249 1 λ4 500 250 0.0 96.0 4.0 250 251 1
375 0.0 96.9 3.1 375 370 5 375 0.0 96.8 3.2 375 375 1

correspond to the critical level α0 = 0.05. The results are shown in Table 3, where columns 4 to 6

and 13 to 15 report the number of rate changes detected by the algorithm and columns 7 to 9 and

16 to 18 show the mode, median and mean absolute deviation of the estimates of the locations of

the changepoints for each case. From Table 3, we conclude that the procedure performs quite well

with most of the cases over the 90% of detection frequency. As the sample size increases and the

change is larger the procedure works better. The results also suggest that the procedure detects

more frequently the changes located at the middle of the sample when the sample size and the size

of the change are small. We note that, in all the experiments considered, the estimated modes of

the locations of the changepoints coincide with the true locations.

For two changepoints, we consider the same sample sizes and the situation of the changepoints

at (h1, h2) =
(
x[0.33n], x[0.66n]

)
. Each changepoint is associated with two rates λi, i = 1, 2, 3, 4,

which give the rate parameter of the process after each change. Four combinations are considered.
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Table 4: Results for two changepoints.

λ1 λ2 n h1 h2 frequency ĥ1 ĥ2

0 1 2 ≥ 3 Mod. Med. Mad Mod. Med. Mad
100 33 66 2.1 59.9 37.2 0.8 33 31 2 66 67 1

0.5 2 200 66 133 0.2 15.4 81.9 2.5 66 64 3 133 134 1
500 166 333 0.1 0.0 95.4 4.5 166 164 3 333 334 1
100 33 66 0.3 25.4 72.8 1.4 33 32 1 66 67 1

0.25 4 200 66 133 0.2 3.0 94.2 2.6 66 65 1 133 134 1
500 166 333 0.1 0.0 95.3 4.6 166 165 1 333 334 1
100 33 66 1.6 40.8 57.2 0.4 33 35 2 66 65 1

2 0.5 200 66 133 0.0 7.7 90.6 1.7 66 68 3 133 132 1
500 166 333 0.0 0.0 96.8 3.2 166 168 3 333 332 1
100 33 66 0.0 0.3 98.7 1.0 33 34 1 66 65 1

4 0.25 200 66 133 0.0 0.0 97.9 2.1 66 67 1 133 132 1
500 166 333 0.0 0.0 97.0 3.0 166 167 1 333 332 1

For each case, we generate 10000 realizations with the corresponding changes. Then, we apply the

proposed procedure with the same critical values that in the previous case. The results are shown

in Table 4. Columns 6 to 9 in the table are the number of rate changes detected by the algorithm,

and columns 10 to 15 show the mode, median and mean absolute deviation of the estimates of the

change points. For two changepoints, the proposed procedure works quite well, with several cases

over the 90 % of detection frequency. As in the previous case, as the sample size increases and

the size of the change is larger, the procedure works better. It also appears that the estimate of

the second changepoint has smallest mad, suggesting that the procedure detects more precisely the

change at the end of the series. The median of the estimates are quite closed to the real locations

of the changepoints, except with the smallest sample size and the smallest changes. As in the case

of one changepoint, the modes of the estimated locations coincide with the true ones. Finally,

the percentage of false changepoints detected in both cases, one and two changepoints, is always

smaller than the nominal 5%.
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Figure 2: Coal Mining disasters.

5 A real data example

The point processes of dates of serious British coal-mining disasters is a data set frequently used

in illustrating methods for changepoint analysis. The data was initially gathered by Maguire et

al (1952), corrected by Jarrett (1979) and finally extended by Raftery and Akman (1986) to the

period between January 1, 1851, and December 31, 1962. Figure 2 shows the dates of the 192

disasters together with the cumulative counting process. With the final set, Raftery and Akman

(1986) assumed a single changepoint and estimated the posterior mode of the location of the

change between the 124th and 125th accidents. Carlin et al (1992), assuming a single changepoint,

estimated the mode of the change around the 127th accident. Green (1995) illustrated the reversible

jump markov chain Monte Carlo method with this dataset and concluded that a model with two

changepoints has the largest posterior mode. The posterior modes of both changepoints are about

the 122th and 182th accidents, respectively. Yang and Kuo (2001), using the Binary segmentation
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Figure 3: Summary of the proposed procedure.

algorithm with the Bayes factors, found one changepoint between the 124th and 125th accidents,

but using a BIC approximation to the Bayes factors found two changepoints around the 124th and

186th accidents.

Here we illustrate the proposed procedure applied to the coal-mining disasters data. Figure 3

summarize the procedure. We start obtaining the value of the statistics in (2) for all the data and

are plotted in absolute value at the first row in Figure 3. We find a possible changepoint at i = 124

or h = x124, where the value of the statistic (3) is 4.152. Then, we cut the data and consider the

accidents in the interval [0, x124]. The statistics (2) in this period are plotted in second row in

Figure 3. The value of the statistic (3) is 0.447 at i = 104, so that ifirst = 124. Now we consider

the second part, where the statistics (2) are plotted in the last row of Figure 3. The value of the

statistic (3) is 1.110 at i = 186, so that ilast = 125. We conclude that the proposed procedure

supports that there exists only one changepoint between the 124th and 125th accidents, as in

Raftery and Akman (1986) and Yang and Kuo (2001). A confidence interval for the changepoint

14



can be found based on the limiting distribution given in Theorem 3. In this case, (117, 131) and

(x117, x131) are the confidence intervals at the 95 % significance level for the index event and time

event of the changepoint, respectively. This interval is somewhat shorter that the ones given by

Akman and Raftery (1986), Raftery and Akman (1986) and Green (1995). The estimated expected

value between consecutive accidents are λ̂1 = 114.83 and λ̂2 = 391.54 in both periods, respectively.

Based on the limiting distributions given in Theorem 4, confidence intervals at the 95 % significance

level for λ̂1 and λ̂2 are (97.03, 138.07) and (330.83, 470.75), respectively.
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6 Appendix

Proof of Lemma 1. The second order Taylor expansion of the ratio xi/xn about the value

(E [xi] , E [xn]) is:

E

[
xi

xn

]
=

E [xi]
E [xn]

− E [xixn]
E [xn]2

+
E [xi] E

[
x2

n

]

E [xn]3
+ o

(
n−1

)
.

Taking into account that E [xi] = iλ, and

E [xixn] = E


xi




i∑

j=1

yj +
n∑

j=i+1

yj





 = E

[
x2

i

]
+ E




i∑

j=1

yj


E




n∑

j=i+1

yj


 =

= iλ2 + i2λ2 + i (n− i) λ2 = (n + 1) iλ2,

the ratio E [xi/xn] can be written as:

E

[
xi

xn

]
=

i

n
− (n + 1) i

n2
+

(n + 1) i

n2
+ o

(
n−1

)
=

i

n
+ o

(
n−1

)
,
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and therefore,

E [Di] = E

[√
n

(
xi

xn
− i

n

)]
= o

(
n−

1
2

)
.

Proof of Theorem 2. Let ξi = yi − λ, such that E [ξi] = 0 and E
[
ξ2
i

]
= λ2. Let Xn (r) =

1
λ
√

n
S[nr] + (nr − [nr]) 1

λ
√

n
ξ[nr]+1, where Sn =

∑n
i=1 ξi. By Donsker’s Theorem, Xn

d−→ M , so

{Xn (r)− rXn (1)} D−→ M0, see Billingsley (1968, Th. 10.1 and Th. 5.1). Let nr = i, i = 1, . . . , n.

Then,

Xn (r)− rXn (1) =
1

λ
√

n
S[nr] + (nr − [nr])

1
λ
√

n
ξ[nr]+1 − r

1
λ
√

n
S[n] =

=
1

λ
√

n

(
Si − i

n
Sn

)
=

i

λ
√

n
(yi − y)

Finally, as 1
n

∑n
j=1 yj → λ,

i

λ
√

n
(yi − y) =

i√
n

y

λ

(
yi

y
− 1

)
d−→ M0,

that proves the stated result.

Proof of Theorem 3. The proof of this Theorem is similar to the proofs of Proposition 2,

Proposition 3 and Theorem 1 in Bai (1994) after some preliminar results, so we only show here

these preliminar results to save space and refer to Bai (1994) for a more detailed proof. First, the

statistic (2) can be written as follows:

Di =
i√
ny

(yi − y) =
√

n

y

i

n

(
1− i

n

)
(yi − y∗i ) ,

where y∗i is the sample mean of {yi, . . . , yn}. Defining Vi = bi (yi − y∗i ), where bi = i
n

(
1− i

n

)
, we

get,

imax = arg max
i

|Di| = arg max
i

|Vi| .

The expression Vi is similar to the one used in Bai (1994) except for the term bi. Second, define,

zi = yi − λi, i = 1, . . . , n. Due to the Kolmogorov-Hájek-Rényi inequality (see, Whittle (1976), for
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instance),

Pr


 max

m≤i≤n
ci

∣∣∣∣∣∣

i∑

j=m

zj

∣∣∣∣∣∣
> α


 ≤ 1

α2

n∑

j=m

(
c2
jE

[
z2
j

]) ≤ λ2
max

α2

n∑

j=m

c2
j (7)

where {cj : j = m, . . . , n} is a sequence of decreasing positive constants and λ2
max = max

{
λ2

1, λ
2
2

}
.

Due to (7), by taking cj = 1/j, and because
∑∞

j=m j−2 = O
(
m−1

)
, we have,

Pr


max

m≤i

1
i

∣∣∣∣∣∣

i∑

j=m

zj

∣∣∣∣∣∣
> α


 ≤ C1

α2m
, (8)

for some C1 > 0. By taking cj = 1/
√

j, and because
∑n

j=1 j = O (log n), we have,

Pr


 max

1≤i≤n

1√
i

∣∣∣∣∣∣

i∑

j=1

zj

∣∣∣∣∣∣
> α


 ≤ λ2

max

α2

n∑

j=1

j ≤ C2 log n

α2
, (9)

for some C2 > 0. Now, using the expressions (7), (8) and (9), the rest of the proof is similar to the

proofs of Proposition 2, Proposition 3 and Theorem 1 in Bai (1994).

Proof of Theorem 4. Consider the case of λ̂1 = yi. Let:

n
1
2


 1

imax

imax∑

j=1

yj − 1
ih

ih∑

j=1

yj


 = I (imax ≤ ih)


n

1
2
ih − imax

imaxih

imax∑

j=1

zj − n
1
2

1
imax

ih∑

j=imax+1

zj


+

+I (imax > ih)


n

1
2
ih − imax

imaxih

imax∑

j=1

zj + n
1
2

1
imax

ih∑

j=imax+1

zj + n
1
2
ih − imax

imaxih
(λ2 − λ1)


 , (10)

and as imax = ih + Op

(
(λ2 − λ1)

−2
)

and n (λ2 − λ1)
2 →∞, then (10) is

(
n

1
2 (λ2 − λ1)

)−1
Op (1),

which converges to 0 in probability. This implies that yimax
and yih

have the same asymptotic

distributions. As yj , j = 1, . . . , ih are exponential distributed with mean λ1, yih
has a Gamma

distribution with mean ih and variance λ2
1/ih, and thus, the distribution of n

1
2 λ̂1/λ1 is the stated

in the Theorem. The proof in the case of λ̂2 is similar.
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