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Abstract

In this paper, we are concerned with predicting the number of
faults N and the time to next failure of a piece of software. Infor-
mation in the form of software metrics data is used to estimate the
prior distribution of N via a Poisson regression model. Given failure
time data, and a well known model for software failures, we show how
to sample the posterior distribution using Gibbs sampling, as imple-
mented in the package “WinBugs”. The approach is illustrated with
a practical example.
Keywords: software metrics, principal components, software reli-

ability, Jelinski Moranda model, Bayesian inference, Gibbs sampling,
WinBugs.

1 Introduction
Software reliability can be de…ned as “the probability of failure-free oper-
ation of a computer code for a speci…ed mission time in a speci…ed input
environment”, (Singpurwalla and Wilson 1999).
The majority of software reliability models are concerned with the predic-

tion of interfailure times, say T1; T2; : : :, see for example Littlewood (1989)
or Singpurwalla and Wilson (1994). It would seem plausible that failure
times are related to the number of faults (or bugs) in the software, say N ,
and various models have been developed which are based on a bug counting
approach. Speci…c examples are the models of Jelinski and Moranda (1972),
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Goel and Okumoto (1978), Schick and Wolverton (1978) and Musa and Oku-
moto (1987). See Singpurwalla and Wilson (1999) for a general review and
comments about alternative approaches to failure time prediction.
A second method for reliability assessment, which we do not consider in

this article, uses random or partition testing methods to estimate the failure
rate or probability that an input to the program from the operational pro…le
will produce an erroneous output. See for example Musa (1993) and Hierons
and Wiper (1997).
A third approach to assessing software reliability, particularly in the soft-

ware development process, concentrates on the measurement of character-
istics of a piece of software, called software metrics. The most well known
software metrics are probably the simple lines of code (LOC) and McCabe’s
(1976) cyclomatic complexity measure1. A great many other metrics have
also been de…ned. See, for example, Fenton and P‡eeger (1997) for a review.
Various models have been used in order to predict the number of bugs

(or other measures of quality such as cost, amendements etc.) in a piece of
software using software metrics data. For example, Mayer and Sykes (1991),
Wiper et al (1992) etc. used (classical) logistic regression approaches, normal
regression models have also been used (Compton and Withrow 1990) and
Khoshgoftaar et al (1995) introduced a neural net approach.
In this paper we are concerned with prediction of the number of bugs in

a piece of software and the time to next failure given both failure time infor-
mation and metrics data. Our objective is to introduce Bayesian inference
techniques in order to combine the two sources of information.
In Section 2, we introduce on of the most well known software reliability

models and comment on Bayesian inference for this model. In Section 3,
we introduce a Bayesian logistic regression model for the number number
of faults in a piece of software and combine this model with that of the
previous section and illustrate how to carry out Bayesian inference using
Gibbs sampling. In Section 4, we illustrate our approach with an example
using real software metrics data and in Section 5 we consider some possible
extensions.

2 A simple model for software falures
The Jelinski Moranda (1972) model for software reliability is one of the sim-
plest. It supposes that the distribution of the j’th interfailure time is given

1This measure is based on the representation of the code as a directed graph and is
equal to be the number of edges minus the number of nodes plus 2.
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by
TjjN; Á » E ((N ¡ j + 1)Á) ;

an exponential distribution with mean 1=(N ¡ j + 1)Á.
The underlying (possibly unrealistic) assumptions of this model are:

1. The program contains an initial number of faults N .

2. Each bug contributes the same amount to the failure rate.

3. After each observed failure, a bug is detected and corrected.

Bayesian inference for the Jelinski Moranda model is considered by, for
example, Meinhold and Singpurwalla (1983) who introduce the following nat-
ural independent prior distributions for N and Á:

N » P(¸) a Poisson distribution

Á » G(®; º) a gamma density

Given the observation of n failures, then the likelihood function is, for
N ¸ n,

l(N; Ájdata) / N !

(N ¡ n)!Á
n exp

0@¡ nX
j=1

(N ¡ j + 1)tjÁ
1A

so that, for example, the full conditional posterior distributions are easily
evaluated:

N ¡ njdata; Á » P (¸ exp(¡n¹tÁ)) where ¹t = 1
n

Pn
j=1 tj

Ájdata; N » G
0@®+ n; º + nX

j=1

(N ¡ j + 1)tj
1A :

Thus, it is easy to set up a Gibbs sampling scheme to sample the posterior
distribution of (N; Á)2

One problem with this model is the possible sensitivity to the election
of the prior distribution, see, e.g Wiper et al (1998), Wilson and Wiper
(2000). In particular, it is unclear how to elect the prior parameters ¸; ®; º.
Given little prior knowledge, it would be natural to elect an uninformative,
improper, prior distribution for (N; Á) but it is easy to show that in this
case, the posterior distribution is also improper, see e.g. Wilson and Wiper
(2000).
In the following section, we illustrate how software metrics data might be

used to provide information about the prior distribution for N .
2The marginal posteriors of N and Á can also be derived up to truncation of a one

dimensional summation.
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3 Software Metrics
In this section, we consider …rst a di¤erent problem, that of predicting the
number of faults in a software program given metrics data.
Suppose that, for a collection of programs m, we calculate k software

metrics Xi = (Xi1; : : : ; Xik), where i = 1; : : : ;m.
Let Ni be the number of faults in program i. Then the following logistic

regression is a natural model relating faults to software metrics:

Nij¸i » P(¸i) as in the previous section

log¸i = ¯0 +Xi1¯1 + : : :+Xik¯k

Given fault data N1 = n1; : : : ; Nm = nm; various authors have used classi-
cal logistic regression to estimate the unknown parameters ¯, see e.g. Mayer
and Sykes (1991), Wiper et al (1992). In this case we consider a Bayesian
approach, which, as far as we know, has not been considered previously for
metrics data.
Given a prior distribution for ¯, for example a normal distribution ¯ »

N (b;B) then it can be shown that all of the conditional posterior parameter
distributions are log concave (see Dellaportas and Smith 1993) and so the
adaptive rejection algorithm (Gilks and Wild 1992) can be used to sample
from the posterior distribution. This scheme is preprogrammed into the
Gibbs sampling package WinBugs (Spiegelhalter et al 1999).
One problem with metrics data is that typically, software metrics are

very highly correlated with program size, see e.g. Wiper et al (1992). Thus,
rather than use the raw metrics data, to avoid problems of colinearity, it is
normal to transform the metrics using, for example, principal components.
Typically, we will have little prior information concerning these components
and thus it is normal to use a relatively di¤use prior distribution for ¯.
Assuming that both sources of information are available, the logistic re-

gression model for metrics data can be combined with the Jelinski Moranda
model for failure times. Figure 1 shows a directed graph ( a ”Doodle”
in ”Winbugs”) which illustrates the dependence structure of the combined
model. (In the diagram, we have used Nnew instead of N for the number of
bugs we are trying to predict.) Using the graph, distributional assumptions
for each node can be speci…ed within Winbugs.
We illustrate the approach with an example using real metrics data and

simulated failure time data in the following section.
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for(i IN 1 : n)

for(i IN 1 : m)

X[i]

beta

Xnew

N[i]

lambda[i]

lambdanew

phi

Nnew

mu[i]

t[i]

Figure 1: Doodle of Model Structure.

4 Example
Ten metrics (Basili Hutchens, depth of nesting, LOC, McCabe, YAM etc.)
and the number of amendments were collected from 36 unstructured software
programs. A simple correlations analysis showed that the metrics were very
highly correlated and thus, a principal components analysis was undertaken,
which showed that virtually all (99%) of the variance in the metrics data was
explained by the …rst …ve principal components.
Here we use amendments to represent faults and assume the logistic re-

gression model of section 3 for the mean number of amendments where the
vector X contains the …rst …ve principal components and ¯ = (¯0; :::; ¯5).
Independent, relatively uninformative, normal distributions with mean 0 and
precision 10¡5 were chosen for each ¯i.
5 interfailure times were also generated using the Jelinski Moranda model

(with Á = 0:1) from a program containing 9 amendments / bugs.
A relatively uninformative gamma prior distribution G(:001; :001) was
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used for Á: A Gibbs run of 5000 iterations to ”burn in” the chain and 25000
iterations in equilibrium was used. (Using the usual checks, the chain could
be seen to have coverged before 5000 iterations).
In this case, the posterior mean estimate for ¯ coincides almost exactly

with the classical logistic regression estimate based on the 36 metric data,
which we would expect given the use of noninformative prior distributions.
In Figures 2 and 3, we illustrate the estimated posterior densities for N
(Nnew) and Á:

Nnew sample: 25000

4 10 20 30

    0.0
   0.05
    0.1

   0.15

Figure 2: Posterior density of N:

Values of N between 6 and 9 have posterior probabilities greater than
0.1. The posterior mean is E[N jdata] ' 9:4 (standard deviation 3.7) and a
95% probability interval for N is [5,19]. Thus, the true value of N has been
well estimated given the metrics and failure data.

phi sample: 25000
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Figure 3: Posterior density of Á:
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The posterior mean of Á is E[Ájdata] ' 0:102 (standard deviation 0:072)
which again coincides very well with the true generating value.
Finally, Figure 4 illustrates the reliability function for the time to next

(sixth) failure of the program: P (T6 > tjdatos): It can be seen that there is
a positive probability that the program will not fail again, which is equal to
the posterior probability that the program contained only the …ve discovered
faults.
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Figure 4: Reliability function for the time to next failure.

5 Conclusions and Extensions
In this paper we have shown how Bayesian inference concerning the number
of bugs and the time to next failure of a piece of software can be carried out
given both failure time and software metrics data. Here we have supposed
the Jelinski Moranda model for failure times, but the same basic techniques
may be applied to other models. Work is currently in progress on Bayesian
inference for these models.
When there are a selection of possible models, the problem of model

choice becomes important. Theoretically, di¤erent models may be assessed
from a Bayesian perspective via the use of Bayes factors, see e.g. Kass and
Raftery (1995). A practical problem is that Bayes factors are di¢cult to
calculate solely from the WinBugs output and thus, the programming task
is somewhat more complicated.
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