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1 Introduction

The comparison of two or more time series is a problem of great interest in many practical

situations: (i) in geology, for example, it is interesting to detect the differences between the

waves produced by earthquakes and by mining explosions; (ii) in medicine, the comparison of

different sections of a biomedical signal is used as a diagnostic procedure; (iii) in economics,

it is interesting to compare the interest rates or the inflation rates in different regions or

countries.

In this paper, we propose a procedure based on subsampling for testing the equality of the

generating processes of two stationary time series that are not necessarily independent. The

proposed procedure is different from the methods of Basawa et al. (1984), Maharaj (1996),

Guo (1999) and Maharaj (2000) since it does not require the selection and the estimation

of models. Also, it is different from the methods of Coates and Diggle (1986), Swanepoel

and Van Wyk (1986) and Timmer et al. (1999) since it does not require spectral estimation.

With the exception of Maharaj (2000), the above–mentioned methods are only applicable to

independent series. In Section 3, we will see that the procedure based on subsampling is valid

for both independent and dependent series and it is free of model or spectral estimation.

The paper is organized as follows. Section 2 presents the general approach for hypothesis

testing using subsampling (as in Politis et al. (1999)). In Section 3 we develop the procedure

of testing the equality of generating processes. Section 4 is devoted to the consistency study

of the proposed method. Finally, in Section 5, we includes the results of a Monte Carlo study

of the properties of the test.

2 Subsampling method

Politis and Romano (1994) introduce the subsampling method in homogeneous stochastic fields

that includes, as a particular case, the strictly stationary series. For simplicity, we describe
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the method in the stationary series case:

Let XXX = (X1, X2, . . . , Xn) be a vector of observations from a stationary series

following certain probabilistic model P . The null hypothesis, H0, establishes that

P ∈ PPP 0 while the alternative hypothesis, H1, is P ∈ PPP 1, where PPP 0 and PPP 1 are

disjoint subclasses of PPP such that PPP 0 ∪PPP 1 = PPP . Let XXXj = (Xj , Xj+1, . . . , Xj+l−1)

be blocks or subsamples of l consecutive observations with j = 1, 2, . . . , n− l + 1.

Let Tn = τntn(X1, X2, . . . , Xn) be the test statistic where τn is a nonrandom

normalizing sequence, then we can define the j-th subsampling statistic, T
(j)
l =

τltl(XXXj), as the test statistic T evaluated at the subsample XXXj . The subsampling

estimator of the distribution of Tn is:

Ĝn,l(x) =
1

n− l + 1

n−l+1∑
j=1

I
{

T
(j)
l ≤ x

}
, (1)

where I{E} denotes the indicator of the event E. Given the estimated sampling

distribution, the critical value the test is obtained as the 1− α quantile of Ĝn,l(·)

defined by:

gn,l(1− α) = inf
{

x : Ĝn,l(x) ≥ 1− α
}

. (2)

Finally, we reject the null hypothesis with a nominal level α if and only if Tn >

gn,l(1− α).

The main hypothesis in subsampling is that Gn(·, P ) converges weakly to a limit distribu-

tion, G(·, P ). The Theorem 3.5.1 of Politis et al. (1999) establishes that gn,l(1−α) converges in

probability to the 1−α quantile of G(·, P ) for P ∈ PPP 0 assuming that {Xt}t∈Z is α-mixing with

some restrictions on the normalizing sequences and the subsamples size; specifically τl/τn → 0,

l →∞ and l/n → 0.
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3 Hypothesis testing procedure

Let {Xt}t∈Z and {Yt}t∈Z be two strictly stationary processes that follow the models PX and

PY , respectively. Let XXX = (X1, X2, . . . , Xn) and YYY = (Y1, Y2, . . . , Yn) be vectors of observations

from {Xt}t∈Z and {Yt}t∈Z, respectively. We are interesting on the following hypothesis test:

H0 : PX = PY

H1 : PX 6= PY

, (3)

i.e., we want to test if the generating process is the same in both series. It is known that the

complete probabilistic structure of a stochastic process {Zt}t∈Z is determined by the set of all

finite collections Zt’s. In linear processes (and particularly, in Gaussian linear processes) much

of the information in these joint distributions can be described in terms of the process mean

µZ = E[Zt] and the autocovariance function, γZ,k = Cov(Zt, Zt+|k|) where k ≥ 0. In this paper,

we consider the test (3) using a statistic defined as function of the estimated autocorrelations

calculated on the samples XXX and YYY under the (simplifying) assumption that µX = µY .

The proposed test statistic is the following:

Tn,m = n

m∑
k=1

(ρ̂X,k − ρ̂Y,k)2, (4)

where ρ̂X,k, ρ̂Y,k are the k-th estimated autocorrelations using XXX and YYY , respectively, n is the

sample size and m is the maximum considered lag. In Appendix we provide the theoretical basis

for the subsampling method using the statistics (4). In this case the normalizing constant τn =

n. Notice that the statistic, Tn,m, is just the squared Euclidean distance (properly normalized)

between the autocorrelation vectors (ρ̂X,1, ρ̂X,2, . . . , ρ̂X,m) and (ρ̂Y,1, ρ̂Y,2, . . . , ρ̂Y,m). This fact

suggests the study of others distances as well.

The general approach presented in Section 2 is applied to the statistic Tn,m as follows:

1. Let XXXj = (Xj , Xj+1, . . . , Xj+l−1) and YYY j = (Yj , Yj+1, . . . , Yj+l−1) with j = 1, 2, . . . , n−

l + 1 be the subsamples of l consecutive observations from XXX and YYY , respectively. We
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calculate the j-th subsampling statistic, T
(j)
l,m, by:

T
(j)
l,m = l

m∑
k=1

(ρ̂Xj ,k − rρ̂j ,k)2, (5)

where ρ̂Xj ,k and ρ̂Yj ,k are the k-th estimated autocorrelations using the subsamples XXXj

and YYY j , respectively.

2. We calculate gn,l(1− α) the 1− α quantile of Ĝn,l(·) using the expression (2).

3. We reject H0 if and only if Tn,m > gn,l(1− α).

Notice that the proposed algorithm is valid for dependent series since the subsamples

(XXXj ,YYY j) can be considered as a vector of size l from the bidimensional process {(Xt, Yt)}t∈Z.

In the other hand, when the processes {Xt}t∈Z and {Yt}t∈Z are independent, we can consider

a larger number of subsamples modifying the above algorithm as follows:

1. Let XXXi = (Xi, Xi+1, . . . , Xi+l−1) with i = 1, 2, . . . , n − l + 1 and YYY j = (Yj , Yj+1, . . . ,

Yj+l−1) with j = 1, 2, . . . , n− l + 1 be the subsamples of l consecutive observations from

XXX and YYY , respectively. We calculate the (i, j)-th subsampling statistic, T
(i,j)
l,m , by:

T
(i,j)
l,m = l

m∑
k=1

(ρ̂Xi,k − ρ̂Yj ,k)2, (6)

where ρ̂Xi,k and ρ̂Yj ,k are the k-th estimated autocorrelations using the subsamples XXXi

and YYY j , respectively.

2. We calculate gn,l(1− α) the 1− α quantile of Ĝn,l(·) using the following expression:

Ĝn,l(x) =
1

(n− l + 1)2

n−l+1∑
i=1

n−l+1∑
j=1

I
{

T
(i,j)
l,m ≤ x

}
. (7)

3. We reject H0 if and only if Tn,m > gn,l(1− α).

4 Consistency results

The asymptotic validity of subsampling method for hypothesis testing is provided by the

Theorem 5.1 of Politis et. al. (2001):
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Theorem 5.1 (Politis et. al. (2001)):

(i) Assume, for P ∈ PPP 0, Gn(P ) converges weakly to a continuous limit law G(P ), whose

corresponding cumulative distribution function is G(·, P ) and whose 1 − α quantile is

g(1−α, P ). Assume that l/n → 0 and l →∞ as n →∞. Also assume that αZ(k) → 0 as

k →∞, where αZ(·) is the mixing sequence corresponding {Zt}. If G(·, P ) is continuous

at g(1− α, P ) and P ∈ PPP 0 then gn,l(1− α) → g(1− α, P ) in probability and PrP {Tn >

gn,l(1− α)} → α as n →∞.

(ii) Assume the test statistics is constructed so that tn(X1, X2, . . . , Xn) → t(P ) in probability,

where t(P ) is a constant which satisfies t(P ) = 0 if P ∈ PPP 0 and t(P ) > 0 if P ∈ PPP 1.

Assume that l/n → 0, l → ∞ and τl/τn → 0 as n → ∞. Also assume that αZ(k) → 0

as k →∞, where αZ(·) is the mixing sequence corresponding {Zt}. Then if P ∈ PPP 1, the

rejection probability satisfies PrP {Tn > gn,l(1− α)} → 1 as n →∞.

The following proposition and its corollaries establish the required assumptions of the

previous theorem for the statistics defined by (4).

Proposition 1: Suppose that (X1, X2, . . . , Xn) and (Y1, Y2, . . . , Yn) are samples of two sta-

tionary zero mean processes with strong mixing coefficient αX(·) and αY (·), respectively. Also,

assume that one of the two following conditions hold:

(A) Pr{|X1| ≤ c} = 1 and Pr{|Y1| ≤ c} = 1 for some c ∈ (0,∞), and
∑∞

k=1 αX(k) < ∞ and∑∞
k=1 αY (k) < ∞.

(B) E|X1|4+2δ < ∞ and E|X1|4+2δ < ∞ and
∑∞

k=1 αX(k)δ/(2+δ) < ∞ and
∑∞

k=1 αY (k)δ/(2+δ) <

∞ for some δ ∈ (0,∞).

Then, for any fixed nonnegative integer m,

n1/2(γ̃X,0 − γX,0, γ̃X,1 − γX,1, . . . , γ̃X,m − γX,m, γ̃Y,0 − γY,0, γ̃Y,1 − γY,1, . . . , γ̃Y,m − γY,m) (8)
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is asymptotically normal with mean zero and covariance matrix CCCX,Y , where CCCX,Y is a 2(m+

1)× 2(m + 1) matrix with entries given by (13) and (14).

Proof : For sake of simplicity we present the proof for the following vector:

n1/2(γ̃X,i − γX,i, γ̃X,j − γX,j , γ̃Y,k − γY,k, γ̃Y,l − γY,l), (9)

where indexes i, j, k and l are in {0, 1, . . . ,m}.

In order to prove that (9) is asymptotically normal with mean zero and covariance matrix

CCC =


cX,i,i cX,i,j cXY,i,k cXY,i,l

cX,j,i cX,j,j cXY,j,k cXY,j,l

cXY,k,i cXY,k,j cY,k,k cY,k,l

cXY,l,i cXY,l,j cY,l,k cY,l,l


, (10)

we will use a Cramer-Wold argument, i.e., we will consider arbitrary linear combination and

establish the asymptotical univariate normality.

Let be λi, λj , λk and λl arbitrary real constants, then the linear combination of (9) satisfies,

n1/2 (λi(γ̃X,i − γX,i) + λj(γ̃X,j − γX,j) + λk(γ̃Y,k − γY,k) + λl(γ̃Y,l − γY,l))

= n1/2
( ∑n−m

t=1 λi(XtXt+i − γX,i) +
∑n−m

t=1 λj(XtXt+j − γX,j)

+
∑n−m

t=1 λk(YtYt+k − γY,k) +
∑n−m

t=1 λl(YtYt+l − γY,l)
)

= n1/2
∑n−m

t=1

(
λi(XtXt+i − γX,i) + λj(XtXt+j − γX,j)

+λk(YtYt+k − γY,k) + λl(YtYt+l − γY,l)
)
.

(11)

We define Zt = λi(XtXt+i− γX,i) + λj(XtXt+j − γX,j) + λk(YtYt+k − γY,k) + λl(YtYt+l − γY,l).

Then, {Zt} is a zero mean stationary process with mixing coefficient satisfying:

αZ(h) ≤ αX(h− i) + αX(h− i) + αY (h− k) + αX(h− l). (12)

The definition of Zt and (12) implies that if {Xt} and {Yt} satisfy the condition (A) or (B)

then {Zt} also satisfies similar conditions. In the case of condition (B) we have E|Z1|2+δ < ∞.

Hence we can apply a central limit theorem for strong mixing process (see, v.g., Theorem A.8
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of Lahiri (2003)) to conclude that n1/2
∑n−m

t=1 Zt is asymptotically normal with mean zero and

variance σ2
∞ =

∑∞
t=−∞ cov(Z1, Z1+t) = λλλ′CCCλλλ, where λλλ = (λi, λj , λkλl)′. Then, the Cramer-

Wold theorem implies that (9) is asymptotically normal with mean zero and covariance matrix

CCC. It only rest to give the expression for the entries of matrix CCC.

For indexes in X or Y , i.e., (i, i), (i, j), (j, j), (k, k), (k, l) or (l, l), the expression coincide

with the original Bartlett’s formula:

cX,i,j ≡ limn→∞ n cov(γ̃X,i, γ̃X,j)

= limn→∞ n−1
∑n−m

t=1

∑n−m
s=1 γX,s−tγX,s−t+j−i + γX,s−t+jγX,s−t−i+

+κX(s− t, i, j − i)

=
∑∞

t=−∞ γX,tγX,t+j−i + γX,t+jγX,t−i + κX(t, i, j − i),

(13)

where κX(t, i, j − i) denotes the fourth joint cumulant of the distribution of (Xh, Xh+i, Xh+t,

Xh+t+j). Notice that the double sum is simplified by noting that in each term s and t only

occur in the form s−t, see Section 5.3.3 of Priestley (1981). Similar expressions can be obtained

for the others pairs of indexes.

For indexes in X and Y , i.e., (i, k), (j, k), (i, l) or (j, l) we can use the expression (5.3.16)

in Section 5.3.3 of Priestley (1981) to obtain:

cXY,i,k = limn→∞ n cov(γ̃X,i, γ̃Y,k)

= limn→∞ n−1
∑n−m

t=1

∑n−m
s=1 γXY,s−tγXY,s−t+j−i + γXY,s−t+jγXY,s−t−i+

+κXY (s− t, i, j − i)

=
∑∞

t=−∞ γXY,tγXY,t+i−j + γXY,t−jγXY,t+i + κX,Y (t, i, j − i),

(14)

where γXY,· denotes the cross–covariance function of and κX,Y (t, i, j − i) denotes the fourth

joint cumulant of the distribution of (Xh, Xh+i, Yh+t, Yh+t+j). Notice that the double sum is

simplified by noting that in each term s and t only occur in the form s− t, see Section 5.3.3

of Priestley (1981). Similar expressions can be obtained for the others pairs of indexes. Notice

that cXY,i,k are zero for independent processes. �
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Remark 1: Notice that the above proposition was established for the modified covariance

estimator γ̃X,j = n−1
∑n−m

t=1 XtXt+j , i.e. assuming a known process mean, instead of the

usual covariance estimator γ̂X,j = n−1
∑n−j

t=1 (Xt − X̄n)(Xt+j − X̄n). It is straightforward to

establish that γ̃X,j and γ̂X,j have the same limit distribution by using n1/2(γ̃X,j − γ̃X,j) =

n1/2X̄2
n − n−1/2X̄n

∑n−j
t=1 (Xt +Xt+j) + oP (n−1).

Remark 2: The Proposition 1 is a generalization of Theorem 3.1 in Romano and Thombs

(1996) for bivariate stationary processes. Notice that condition (B) is used in Romano and

Thombs (1996) but the results using condition (A) are new. The condition (A) is weaker than

(B) in the restriction imposed on the mixing sequences.

Corollary 1: Under the assumptions of Proposition 1, for any fixed nonnegative integer m,

we have,

n1/2(ρ̃X,1 − ρX,1, ρ̃X,2 − ρX,2, . . . , ρ̃X,m − ρX,m, ρ̃Y,1 − ρY,1, ρ̃Y,2 − ρY,2, . . . , ρ̃Y,m − ρY,m) (15)

is asymptotically normal with mean zero and covariance matrix RRRX,Y , where RRRX,Y is a 2m×2m

matrix with entries given by (19) and (20).

Proof : Since ρ̃X,i = γ̃X,i/γ̃X,0 and ρ̃Y,k = γ̃Y,k/γ̃Y,0 we can use expression (5.3.34) in Section

5.3.4 of Priestley (1981) to obtain:

n1/2(ρ̃X,i − ρX,i) = γ−1
X,0n

1/2(γ̃X,i − γX,i)− ρX,iγ
−1
X,0n

1/2(γ̃X,0 − γ−1
X,0) + oP (1) (16)

and

n1/2(ρ̃Y,k − ρY,k) = γ−1
Y,0n

1/2(γ̃Y,k − γY,k)− ρY,kγ
−1
Y,0n

1/2(γ̃Y,0 − γ−1
Y,0) + oP (1). (17)

Then, from Proposition 1 we have that the vector:

n1/2(ρ̃X,i − ρX,i, ρ̃X,j − ρX,j , ρ̃Y,k − ρY,k, ρ̃Y,l − ρY,l), (18)
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is asymptotically normal with mean zero and covariance matrix RRR with entries defined by

rX,i,j ≡ limn→∞ n cov(ρ̃X,i, ρ̃X,j)

= limn→∞ γ−2
X,0ncov(γ̃X,i − ρX,iγ̃X,0, γ̃X,j − ρX,j γ̃X,0)

= γ−2
X,0(cX,i,j − ρX,icX,0,j − ρX,jcX,0,i + ρX,iρX,jcX,0,0),

(19)

where cX,·,· is obtained from (13), and

rXY,i,k ≡ limn→∞ n cov(ρ̃X,i, ρ̃Y,k)

= limn→∞ γ−1
X,0γ

−1
Y,0ncov(γ̃X,i − ρX,iγ̃X,0, γ̃Y,k − ρY,kγ̃Y,0)

= γ−1
X,0γ

−1
Y,0(cXY,i,k − ρX,icXY,0,j − ρY,kcXY,i,0 + ρX,iρX,jcXY,0,0),

(20)

where cXY,·,· is obtained from (14).

As in Proposition 1, we only derive the expression for the pairs of indexes (i, j) and (i, k)

but similar expressions can be obtained for the others pairs of indexes. �

Remark 3: Using a similar argument to Remark 1, we can establish that the modified cor-

relation estimator ρ̃X,j and the usual correlation estimator ρ̂X,j = γ̂X,j/γ̂X,0 have the same

limit distribution.

Remark 4: The Corollary 1 is a generalization of Theorem 3.2 in Romano and Thombs (1996)

for bivariate stationary processes.

Corollary 2: Under the assumptions of Proposition 1, for any fixed nonnegative integer m, we

have that Tn,m is asymptotically distributed, under H0 : ρX,1 = ρY,1, ρX,2 = ρY,2, . . . , ρX,m =

ρY,m, as a
∑m

k=1 λkχ
2
1, where each χ2

1 variate is distributed independently of every other and the

λ’s are the real nonzero eigenvalues of the matrix RRRX,Y HHH. RRRX,Y is the asymptotical covariance

matrix of (15) and HHH =

 IIIm −IIIm

−IIIm IIIm

, where IIIm is the m×m identity matrix.
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Proof : Tn,m can be written as follows

Tn,m = n
∑m

k=1

(
(ρ̂X,k − ρX,k)− (ρ̂Y,k − ρY,k)− (ρY,k − ρX,k)

)2

= n
∑m

k=1

(
(ρ̂X,k − ρX,k)− (ρ̂Y,k − ρY,k)

)2 + n
∑m

k=1(ρY,k − ρX,k)2+

+n
∑m

k=1(ρY,k − ρX,k)(ρ̂X,k − ρX,k) + n
∑m

k=1(ρY,k − ρX,k)(ρ̂Y,k − ρY,k)

= S1 + S2 + S3 + S4.

(21)

The first summand, S1, can be expressed as

S1 = n1/2(ρ̂ρρ− ρρρ)′HHHn1/2(ρ̂ρρ− ρρρ), (22)

where (ρ̂ρρ− ρρρ) denotes the following 2m× 1 vector

(ρ̂X,1 − ρX,1, ρ̂X,2 − ρX,2, . . . , ρ̂X,m − ρX,m, ρ̂Y,1 − ρY,1, ρ̂Y,2 − ρY,2, . . . , ρ̂Y,m − ρY,m)′. (23)

Then, from the Theorem 2.1 of Box (1954) on quadratic forms and the Remark 3 it follows

that S1 is asymptotically distributed as a
∑m

k=1 λkχ
2
1, where each χ2

1 variate is distributed

independently of every other and the λ’s are the real nonzero eigenvalues of the matrix RRRX,Y HHH.

The second summand, S2 = n
∑m

k=1(ρY,k − ρX,k)2, is zero under H0.

For the third and the fourth summands, Corollary 1 implies that S3 = OP (n−1/2) and S4 =

OP (n−1/2) since they are linear combination of vectors (ρ̂X,1 − ρX,1, ρ̂X,2 − ρX,2, . . . , ρ̂X,m −

ρX,m) and (ρ̂Y,1 − ρY,1, ρ̂Y,2 − ρY,2, . . . , ρ̂Y,m − ρY,m), respectively.

Finally, the Slutsky’s lemma establish that Tn,m and S1 have the same limit distribution,

under H0. �

Remark 5: The Corollary 2 establishes the required assumption for Theorem 5.1(i) of Politis

et al. (2001), i.e., the distribution of Tn,m, Gn(P ), converges weakly to a continuous limit law

G(P ) =
∑m

k=1 λkχ
2
1.
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Corollary 3: Under the assumptions of Proposition 1, for any fixed nonnegative integer m, we

have that tn = tn(X1, X2, . . . , Xn, Y1, Y2, . . . , Yn) converges, in probability, to a constant t(P )

which satisfies t(P ) = 0 under H0 : ρX,1 = ρY,1, ρX,2 = ρY,2, . . . , ρX,m = ρY,m, and t(P ) > 0

under H1 : ρX,k 6= ρY, for some k ∈ {1, 2, . . . ,m}.

Proof : From (21) we have

tn = n−1(S1 + S2 + S3 + S4), (24)

and from the proof of Corollary 2 we have that n−1S1 = OP (n−1), S3 = OP (n−3/2) and

S4 = OP (n−3/2). Then, tn =
∑m

k=1(ρY,k − ρX,k)2 + OP (n−1). It is clear that constant t(P ) =∑m
k=1(ρY,k − ρX,k)2 satisfies t(P ) = 0 under H0, and t(P ) > 0 under H1. �

Remark 6: The Corollary 3 establishes the required assumption for Theorem 5.1(ii) of Politis

et al. (2001).

5 Simulation results

In this section, we study the behavior of the proposed testing procedure in terms of size and

power for finite samples. We will use the following models:

Model 1: Xt = φXt−1 + εt, with φ = 0, 0.2, 0.4, 0.6, 0.8

and where εt i.i.d. N (0, σ2
ε) and σ2

ε is fixed such that Var(Xt) = 1. We consider two sample

sizes, n = 256 and 512, the nominal size α = 0.05 and the maximum lag m = 10. In future

research, we will study the selection of m. We expect that the power of the test based on

Tn,m will decrease with m, as in the case in goodness–of–fit test (see, v.g. Peña and Rodŕıguez

(2002)).

In this paper, we present the simulations results for independent series using the algorithm

based on the estimation (7). Notice that the number of subsamples, (n− l + 1)2, can be high,
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e.g., with n = 256 and l = 32 we have 50625 subsamples, therefore we will use B = 1000

random subsamples to approximate the expression (7).

In Tables 1 and 2, we present the results for the size of the test using l = 4, 8, 16, 32, 64, 128

for n = 256 and l = 4, 8, 16, 32, 64, 128, 256 for n = 512. To estimate the sizes we use 1000 inde-

pendent replicas; therefore the estimated sizes between 0.0365 and 0.0635 are not significantly

different from the nominal 0.05. In the cases l = 4 and 8, we use m = 3 and 7, respectively. In

the fourth column of both tables we report the size of the test using the calibration procedure

proposed in Politis et al. (1999). Additionally, we present the results for the procedures pro-

posed by Diggle and Fisher (1991) and Maharaj (2000) in the second and the third column,

respectively.

======> Tables 1 and 2 around here. <======

As we expect, the results are dependent on the subsample lengths. We obtain sizes near to

the nominal value, 0.05, for the larger values of l. The calibration procedure, in almost all the

cases, obtains a size values not statistically different from the nominal value. The Maharaj’s

procedure tends to overestimate the size of the test (in all the cases for n = 256 and in three

cases for n = 512). Notice that the Maharaj’s method uses the additional information of the

autoregressive structure of the generating process. Also the Diggle and Fisher’s procedure

tends to overestimate the size of the test when the sample size is 512. Notice that the Diggle

and Fisher’s method is only applicable to independent series.

In Tables 3 and 4, we present the results of the power of the following hypothesis test: H0 :

AR(1) with φ = 0.0 (white noise) against H1 : AR(1) with φ 6= 0.0 taking φ = 0.2, 0.4, 0.6

and 0.8. As we expect, we observe that the power increases as φ increases since the models

in the alternative hypothesis are more different from the model in the null hypothesis. For

the sample size n = 256 with φ ≥ 0.6 and for n = 512 with φ ≥ 0.4, the powers with the
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calibration procedure are close to 1. Notice that Diggle and Fisher’s and Maharaj’s methods

have higher powers than the proposed procedure but their size are generally overestimated.

======> Tables 3 and 4 around here. <======

6 Conclusion

In this paper we have proposed a procedure based on the subsampling techniques for the

comparison of stationary time series that are not necessarily independent. We have established

the asymptotical consistency of the proposed method. In the simulation experiments, we have

confirmed the competitive behavior of the subsampling test procedure with regard to the

procedures proposed by Diggle and Fisher (1991) and Maharaj (2000).
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AR(1) : φ DDF DM lcal l = 4 l = 8 l = 16 l = 32 l = 64 l = 128
0.0 0.060 0.080 0.051 0.642 0.654 0.335 0.121 0.062 0.067
0.2 0.058 0.069 0.062 0.642 0.647 0.336 0.155 0.092 0.087
0.4 0.055 0.082 0.047 0.608 0.675 0.388 0.153 0.069 0.070
0.6 0.064 0.073 0.057 0.583 0.664 0.458 0.224 0.086 0.066
0.8 0.061 0.069 0.073 0.558 0.702 0.506 0.285 0.121 0.091

Table 1: Estimated size of the test (n = 256).

AR(1) : φ DDF DM lcal l = 8 l = 16 l = 32 l = 64 l = 128 l = 256
0.0 0.065 0.073 0.046 0.655 0.322 0.127 0.064 0.047 0.069
0.2 0.080 0.053 0.068 0.685 0.404 0.173 0.090 0.071 0.071
0.4 0.103 0.073 0.048 0.657 0.384 0.182 0.086 0.048 0.060
0.6 0.083 0.066 0.050 0.711 0.466 0.234 0.108 0.057 0.069
0.8 0.110 0.055 0.051 0.670 0.501 0.277 0.116 0.060 0.072

Table 2: Estimated size of the test (n = 512).

AR(1) : φ DDF DM lcal l = 4 l = 8 l = 16 l = 32 l = 64 l = 128
0.2 0.526 0.619 0.212 0.891 0.868 0.660 0.393 0.246 0.205
0.4 0.977 0.994 0.761 1.000 0.999 0.987 0.930 0.806 0.627
0.6 0.998 1.000 0.988 1.000 1.000 1.000 1.000 0.991 0.944
0.8 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995

Table 3: Estimated power of the test (n = 256).

AR(1) : φ DDF DM lcal l = 8 l = 16 l = 32 l = 64 l = 128 l = 256
0.2 0.771 0.908 0.420 0.978 0.890 0.688 0.543 0.432 0.343
0.4 1.000 1.000 0.975 1.000 1.000 0.999 0.995 0.977 0.899
0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997
0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 4: Estimated power of the test (n = 512).
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