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Abstract

In this paper, we provide a method for constructing con�dence in-

tervals for the variance that exhibit guaranteed coverage probability for

any sample size, uniformly over a wide class of probability distribu-

tions. In contrast, standard methods achieve guaranteed coverage only

in the limit for a �xed distribution or for any sample size over a very

restrictive (parametric) class of probability distributions. Of course, it

is impossible to construct e�ective con�dence intervals for the variance

without some restriction, due to a result of Bahadur and Savage (1956).

However, it is possible if the observations lie in a �xed compact set. We

also consider the case of lower con�dence bounds without any support

restriction. Our method is based on the behavior of the variance over

distributions that lie within a Kolmogorov-Smirnov con�dence band for

the underlying distribution. The method is a generalization of an idea

of Anderson (1967), who considered only the case of the mean; it ap-

plies to very general parameters, and particularly the variance. While

typically it is not clear how to compute these intervals explicitly, for the

special case of the variance we provide an algorithm to do so. Asymp-

totically, the length of the intervals is of order n�1=2 (in probability), so

that, while providing guaranteed coverage, they are not overly conser-

vative. A small simulation study examines the �nite sample behavior

of the proposed intervals.

1 Introduction

Suppose X1; : : : ; Xn are independent and identically distributed (i.i.d.) ac-

cording to a cumulative distribution function (c.d.f) F on the line. Consider

the problem of constructing a level 1 � � con�dence interval for �2(F ), the

variance of F . The distribution F is assumed to belong to a large class F of

distributions. Clearly, F must be restricted somewhat since we are assuming

that �2(F ) exists and is �nite. For a general parameter �(F ), if In is a random
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interval, de�ne its coverage level over F to be

inffProbFf�(F ) 2 Ing : F 2 Fg:

In fact, even if we assume F consists of all distributions F having �nite mo-

ments of all orders, Bahadur and Savage (1956) proved the negative result

that it is impossible to construct an e�ective nonparametric con�dence inter-

val for �(F ), the mean of F . That is, if In is a random interval (depending

on X1; : : : ; Xn) such that, even for one F , the probability under F that In is a

bounded set is one, the the coverage level for �(F ) over F is zero. Thus, one

cannot �nd an interval that is bounded (with probability one) whose coverage

is at least the nominal level 1 � �. Similar arguments can be constructed to

show that it is impossible to construct a conservative, yet bounded interval for

�2(F ).

It is well-known that there are many inference methods that yield valid

inference for �xed F , such as Efron's (1979) bootstrap, methods based on

Edgeworth expansion, likelihood, and other resampling re�nements. Typically,

these methods yield intervals In of nominal level 1� � satisfying, for �xed F ,

jProbFf�
2(F ) 2 Ing � (1� �)j = O(n�p); (1)

for some p > 0. In fact, p = 1 for intervals that are �rst-order accurate (that

is, whose coverage error is of the same order as that provided by the normal

approximation if the parameter of interest is �(F )), p = 2 for higher-order

accurate intervals such as the symmetric bootstrap-t interval, and p can even

be bigger by bootstrap iteration (under assumptions to ensure the validity of

Edgeworth expansions). Unfortunately, all these intervals have the property

that their coverage level over a nonparametric class F is zero.

The technical reason why these methods can misbehave so badly yet still

satisfy (1) is that the convergence result holds for each �xed F rather than

uniform over F. Moreover, the result is of asymptotic nature ensuring, in

general, correct coverage in the limit only. How soon the asymptotics `kick in'

is unknown in practice, since the answer not only depends on the parameter of

interest and the interval type used, but also on the unknown distribution F .
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The practical consequence is that, even with moderate sample sizes, methods

that satisfy (1) with p = 1 or bigger can yield intervals that undercover by

quite a bit; for example, see Section 4.4 of Shao and Tu (1995) and Section 4

of this paper.

Alternatively, there exist methods to construct con�dence intervals with

guaranteed coverage probability when the class of distributions is restricted to

certain parametric families. A standard example is the normal theory interval

(based on a chi-squared distribution of the scaled sample variance) which is

exact in case the underlying distribution is normal. However, the disadvantage

of these methods is that they lack robustness of validity in the sense that the

coverage is not near the nominal level, unless the parametric assumptions are

met. For example, the normal theory interval can undercover even in the limit

if the underlying distribution is not normal.

The objective of this paper is to derive an interval with guaranteed �nite

sample coverage, satisfying

sup
n

inffProbFf�(F ) 2 Ing : F 2 Fg � 1� �; (2)

as well as being not too big in terms of its length. Because of the Bahadur

and Savage result, some restriction has to be made, at least when two-sided

con�dence intervals are desired. The assumption imposed then is that the

unknown F has support in a �xed compact set, which we take to be [0; 1]

without loss of generality; otherwise, F is arbitrary. In the special case of

lower one-sided intervals, we also consider F having support (�1;1), so

that no restrictions need to be made.

The remainder of the paper is organized as follows. Section 2 provides a

general result for constructing con�dence intervals for an arbitrary parame-

ter �(F ). The problem is that it is not clear how to compute these intervals in

general. In Section 3, this result is applied to the special case �(F ) = �2(F )

and it is shown that an explicit computation of the intervals is indeed possible.

The intervals not only have guaranteed coverage, but their length is of order

n�1=2 in probability. This order is of course the smallest possible because, even

for the subfamily of normal distributions, the optimal intervals have lengths
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of this same order. Section 4 provides some small sample considerations via a

simulation study. Finally, some conclusions are given in Section 5. All tables

appear at the end of the paper.

2 General Con�dence Intervals with Guaran-

teed Coverage

The goal of this section is to present a general method to construct conser-

vative con�dence intervals, that is, con�dence intervals with guaranteed cov-

erage. As will be seen shortly, while the method is valid in theory for an

arbitrary parameter �(P ), it typically does not lead to intervals that can be

computed explicitly. However, the explicit computation is feasible for the vari-

ance �2(F ) (and it is actually trivial for the mean �(F )). The method is based

on restricting attention to distributions lying within a level 1�� Kolmogorov-

Smirnov (KS) con�dence band for the c.d.f F . For c.d.f.s F and G, de�ne the

sup distance

dKS(F;G) = sup
x2R

jF (x)�G(x)j:

Let F̂n be the empirical c.d.f., that is, the discrete distribution which places

mass 1=n at each of theXi. The statistic dKS(F̂n; F ) was introduced in the fun-

damental paper of Kolmogorov (1933) who also obtained the limiting distribu-

tion of n1=2dKS(F̂n; F ). Note that the sampling distribution of n1=2dKS(F̂n; F )

and its limiting distribution do not depend on F as long as F is continuous; for

example, see Cs�aki (1984). Denote by cn(1� �) the 1� � quantile of the dis-

tribution of n1=2dKS(F̂n; F ) under F when F is any continuous distribution.

This leads to the following KS uniform con�dence bands for F of nominal

level 1� �.

R̂n;1�� = fF 2 F : n1=2dKS(F̂n; F ) � cn;1��g:

Note that for any F (continuous or otherwise)

ProbFfF 2 R̂n;1��g � 1� �;

where the inequality is an equality if and only if F is continuous.
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This con�dence band for F leads to the following construction of a conser-

vative con�dence set In;1�� for a general real-valued parameter �(F ). In words,

the value � is contained in In;1�� if and only if there is some distribution G in

Rn;1�� for which � = �(G). In general, this prescription gives a con�dence set

which need not be a con�dence interval. For well-behaved parameters �(F ),

on the other hand, this construction reduces to an interval given by

In;1�� = [ inf
G2Rn;1��

�(G); sup
G2Rn;1��

�(G)]: (3)

The proof of the following proposition is immediate.

Proposition 2.1 In;1�� is conservative in the sense that it satis�es (2).

Another nice property this construction possesses is the following. If g(�)

is a monotone function of �, then the interval for g(�) is the interval for �

transformed by g(�).

The idea of constructing conservative con�dence intervals in this way is

not a new one and dates back to Anderson (1967) who considered intervals

for the mean �(F ). However, for a general parameter �(P ) it is not clear

how to compute the interval, since formula (3) involves �nding the in�mum

and the supremum over an in�nitely dimensional set. On the other hand, for

certain parameters the explicit computations become feasible, and one of these

parameters will be seen to be �2(F ).

3 Explicit Computation for the Variance

As mentioned before, the Bahadur and Savage (1956) result essentially implies

that when two-sided con�dence intervals for �2(F ) are desired, one has to

restrict the support of F to be bounded. Hence, we take the support to be [0; 1]

without loss of generality. Later, we shall consider one-sided lower con�dence

intervals for �2(F ) which allows the distribution to have unbounded support.
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3.1 Distributions with Compact Support

The family F0 is now taken to be the set of all distribution functions having

support [0; 1]. We now need to be more speci�c about the KS uniform con�-

dence band R̂n;1��. The empirical c.d.f. based on the observations X1; : : : ; Xn

is de�ned by

F̂n(t) =
#fXi � tg

n
:

Since F0 has compact support, the upper and lower bounds of the KS band can

be taken to be proper distribution function themselves denoted by F̂n;1��;up

and F̂n;1��;low, say. Let Y1; : : : ; Ym be the distinct values of fX1; : : : ; Xn; 0; 1g,

ordered from smallest to largest. Note that if F is a continuous distribution,

then m = n + 2 with probability one. On the other hand, if F is discrete, m

can be smaller than n + 2. Then, F̂n;1��;up and F̂n;1��;low are step functions

with jumps at the Yj only and

F̂n;1��;U(Yj) = minfF̂n(Yj) + cn(1� �); 1g j = 1; : : : ; m (4)

and

F̂n;1��;L(Yj) = maxfF̂n(Yj)� cn(1� �); 0g j = 1; : : : ; m� 1; (5)

F̂n;1��;L(1) = 1:

For convenience of notation, in the remainder of the paper we shall suppress

the subscript 1� � and write F̂n;L and F̂n;U .

According to the general Proposition 2.1, we can construct a conservative

two-sided con�dence interval for �2(F ) along the lines of (3), with �(F ) re-

placed by �2(F ), provided that the calculations can be carried out explicitly.

We will now demonstrate that this indeed is possible. First of all note that, due

to the assumption of the support being the compact set [0; 1], one can replace

the in�mum by a minimum and the supremum by a maximum in formula (3),

so the interval of interest becomes

In;1�� = [ min
G2R̂n;1��

�2(G); max
G2R̂n;1��

�2(G)]

� [�̂2
n;Min; �̂

2
n;Max]: (6)
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Next, we state a general result that will be needed shortly.

Proposition 3.1 If F is in F0, then

(i) �(F ) = 1�
R 1
0 F (x)dx:

(ii) For any constant a, EF ((Xi � a)2) = (1� a)2 � 2
R 1
0 (x� a)F (x)dx:

Proof of Proposition 3.1. Let G(x) be a nonnegative function satisfying

G(x) = c+
R x
0 g(t)dt. Then, by the general integration by parts formula (18.15)

of Billingsley (1986) we get

Z
(0;1]

G(x)dF (x) = F (1)G(1)� F (0)G(0)�

Z 1

0
g(x)F (x)dx: (7)

To prove (ii), choose G(x) = (x� a)2 = a2 +
R x
0 2(t� a)dt. Equation (7) then

implies

EF ((Xi � a)2) = a2F (0) +

Z
(0;1]

(x� a)2dF (x)

= a2F (0) + (1� a)2F (1)� a2F (0)�

Z 1

0
2(x� a)F (x)dx

= (1� a)2 � 2

Z 1

0
(x� a)F (x)dx:

The proof of (i) is analogous, choosing G(x) = x =
R x
0 dt.

We now consider the minimum variance �̂2
n;Min. Intuition suggests that

�̂2
n;Min will be the variance of a c.d.f. that among all c.d.f.s F 2 F0 distributes

as much mass as possible at a single point. Hence, it should be su�cient to

restrict our attention to the class F̂n;jump = fF̂n;jump;t : 0 � t � 1g, where

F̂n;jump;t(x) =

8>>><
>>>:

F̂n;L(x) for x < t

F̂n;U(t)� F̂n;L(t) for x = t

F̂n;U(x) for x > t

(8)

We note the following elementary fact.

Fact 3.1 Consider the function gn(t) = �(F̂n;jump;t), 0 � t � 1. Then, gn(�) is

strictly increasing and continuous. In addition, gn(0) = �(F̂n;U) and gn(1) =

�(F̂n;L).
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The next proposition shows that we can indeed restrict attention to the class

F̂n;jump in �nding �̂2
n;Min.

Proposition 3.2 Let G be a c.d.f. in R̂n;1��. Then, �
2(F̂n;jump;�(G)) � �2(G).

Proof: By construction, we have

G(x) � F̂n;jump;�(G)(x) for x < �(G) and G(x) � F̂n;jump;�(G)(x) for x > �(G):

(9)

Using part (ii) of Proposition 3.1 twice yields

EF̂n;jump;�(G)
[(Xi � �(G))2]� �2(G)

= 2

Z 1

0
(x� �(G))(G(x)� F̂n;jump;�(G)(x))dx

= 2

Z �(G)

0
(x� �(G))(G(x)� F̂n;jump;�(G)(x))dx+

2

Z 1

�(G)
(x� �(G))(G(x)� F̂n;jump;�(G)(x))dx:

Relation (9) implies that both summands in the last equation are less than or

equal to zero. The proof is completed by noting that �2(F̂n;jump;�(G)) is less

than or equal to EF̂n;jump;�(G)
((Xi � �(G))2).

Therefore, �̂2
n;Min = minf�2(F̂n;jump;t) : 0 � t � 1g. At �rst sight, it is not

clear how to compute this minimum over an in�nite set. However, the solution

turns out to be quite simple and insightful at the same time. The �rst step

is to minimize over the jump functions that only jump at the Yj. Recall that

Y1; : : : ; Ym are the distinct values of fX1; : : : ; Xn; 0; 1g in increasing order. So

consider

�̂2
n;Min;approx = minf�2(F̂n;jump;Yj) : 1 � j � mg: (10)

Also, denote the minimizing index by j�, so �̂2
n;Min;approx = �2(F̂n;jump;Yj�). We

ask whether we can further reduce the variance by moving the jump point to

the left or to the right of Yj�.

Denote the mass of F̂n;jump;Yj� at Yj� by m, that is, m = F̂n;jump;Yj�(Y
�

j )�

F̂n;jump;Yj�(Yj��1). If, starting with F̂n;jump;Yj� , we shift mass m from Yj� to
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Yj�+�, then the mean will increase bym� and the (uncentered) second moment

will increase by m(2� Yj� + �2). Therefore, the variance will increase by

m(2� Yj� + �2)� 2m� �̂j� �m2�2; (11)

where �̂j� denotes the mean of F̂n;jump;Yj� . Di�erentiating with respect to �

and equating to zero yields

� =
�̂j� � Yj�

1�m
: (12)

Taking the second derivative veri�es this as a minimum. What have we

learned? If �̂j� = Yj�, the minimum variance is already achieved. Other-

wise, we jump at Yj� + � rather than Yj�. However, it is now easy to see that

the overall minimum variance is given by �2(F̂n;jump;t�), where t
� is the unique

solution of t = �(F̂n;jump;t); the existence and uniqueness of this solution fol-

lows from Fact 3.1. Indeed, repeating the minimization exercise, starting with

�2(F̂n;jump;t�) instead of F̂n;jump;Yj� , will obviously yield a shift of zero. Thus,

we have the nice feature that the c.d.f. with the minimizing variance has the

jump point at its mean. In summary, we have proven the following proposition.

Proposition 3.3 Among all c.d.f.s in R̂n;1��, the minimum variance is given

by

�̂2
n;Min = �2(F̂n;jump;t�);

where t� is the unique solution of t = �(F̂n;jump;t).

To summarize, one would use the following algorithm to compute �̂2
n;Min

in practice.

Algorithm 3.1 (Computation of �̂2
n;Min)

1. Denote by Y1; : : : ; Ym the distinct elements of fX1; : : : ; Xn; 0; 1g in in-

creasing order.

2. Compute �̂n;Min;approx = minf�(F̂n;jump;Yj) : 1 � j � mg Let j� be the

corresponding maximizing index and compute t� = Yj� + � with � given

by (12).
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3. We have �̂2
n;Min = �2(F̂n;jump;t�).

We now turn our attention to �̂2
n;Max. Intuitively, we should be able to

restrict ourselves to c.d.f.s that allocate as much mass as possible in both

tails. After all, without any restrictions we could maximize the standard

deviation by placing mass 0.5 at 0 and mass 0.5 at 1. In this spirit, we will

de�ne a class of \cross functions" that start out as F̂n;U , then stay at (or

\cross over") at level p until hitting F̂n;L, and �nish as F̂n;L. More formally,

let F̂n;cross = fF̂n;cross;p : 0 � p � 1g, where

F̂n;cross;p(x) = maxfminfp; F̂n;U(x)g; F̂n;L(x)g; 0 � x � 1: (13)

We note the following elementary fact.

Fact 3.2 Consider the function hn(p) = �(F̂n;cross;p), 0 � p � 1. Then hn(�) is

strictly decreasing and continuous. In addition, hn(0) = �(F̂n;L) and hn(1) =

�(F̂n;U).

Before we can verify our intuition, one more result is needed. Denote by

[L̂n;cross;p; Ûn;cross;p) the interval where F̂n;cross;p is equal to p. More formally,

[L̂n;cross;p; Ûn;cross;p) = f0 � x � 1 : F̂n;cross;p(x) = pg:

Note that for p = 1 this would be a closed interval.

Proposition 3.4 Let G be a c.d.f. in R̂n;1��. Then there exists a F̂n;cross;p 2

F̂n;cross such that

G(x) � Fn;cross;p(x) for x � �(F̂n;cross;p),

G(x) � Fn;cross;p(x) for x � �(F̂n;cross;p): (14)

Proof: By construction, for any Fn;cross;p 2 F̂n;cross, we have

G(x) � Fn;cross;p(x) for x � Ûn;cross;p,

G(x) � Fn;cross;p(x) for x � L̂n;cross;p:
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Hence, we just need to show that one can �nd a Fn;cross;p 2 F̂n;cross for which

�(F̂n;cross;p) 2 [L̂n;cross;p; Ûn;cross;p]: (15)

We trivially have that for p1 < p2, L̂n;cross;p1 � L̂n;cross;p2 and Ûn;cross;p1 �

Ûn;cross;p2. Also, as p ranges from 0 to 1, the union of all [L̂n;cross;p; Ûn;cross;p) is

[0; 1]. Together with Fact 3.2, this implies that at least one F̂n;cross;p satisfying

relation (15) must exist.

The next proposition shows that we can indeed restrict our attention to the

class F̂n;cross in �nding �̂2
n;Max.

Proposition 3.5 Let G be a c.d.f. in R̂n;1��. Then, there exists a F̂n;cross;p 2

F̂n;cross such that �2(F̂n;cross;p) � �2(G).

Proof: By Proposition 3.4 one can �nd a F̂n;cross;p such that relation (14) is

satis�ed; denote its mean by �̂p for notational convenience. For this F̂n;cross;p

we then have by part (ii) of Proposition 3.1

�2(F̂n;cross;p)� EG((Xi � �̂p)
2) = 2

Z 1

0
(x� �̂p)(G(x)� F̂n;cross;p(x))dx

= 2

Z �̂p

0
(x� �̂p)(G(x)� F̂n;cross;p(x))dx +

2

Z 1

�̂p
(x� �̂p)(G(x)� F̂n;cross;p(x))dx:

Since relation (14) is satis�ed, it follows that both summands in the last equa-

tion are bigger than or equal to zero. The proof is completed by noting that

EG((Xi � �̂p)
2) is bigger than or equal to �2(G).

Therefore, �̂2
n;Max = maxf�2(F̂n;cross;p) : 0 � p � 1g. At �rst sight, it is not

clear how to compute this maximum over an in�nite set. While the explicit

maximization can be done, it is, unfortunately, not as simple and insightful

as in the case of �̂2
n;Min. To see why, start with a particular F̂n;cross;p and ask

whether one can increase the variance by changing p to p + �. Let us assume

that the resulting change only means that the mass at L̂n;cross;p increases by �

while the mass at Ûn;cross;p decreases by � (this will in general not be true;
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e.g., decreasing a mass by � could result in a negative mass). For notational

convenience, let u = Ûn;cross;p, l = L̂n;cross;p, and �̂p = �(F̂n;cross;p). Then

the mean will increase by �(l � u) and the (uncentered) second moment will

increase by �(l2 � u2). Therefore, the variance will increase by

�(l � u)� 2 �̂p �(l � u)� �2(l � u)2:

Di�erentiating with respect to � and equating to zero yields

� =
�̂p � (l + u)=2

u� l
:

Taking the second derivative veri�es this as a maximum. Hence, if �̂p =

(l + u)=2, the maximum is already achieved. The �rst thought is there-

fore that the maximum variance is given by �2(F̂n;cross;p�), where p� is the

unique solution of �(F̂n;cross;p) = (L̂n;cross;p + Ûn;cross;p)=2. However, such a

solution does not always exist, although it is unique if it does. The reason

is that �(F̂n;cross;p) decreases continuously as p increases from 0 to 1 while

(L̂n;cross;p + Ûn;cross;p)=2 is an increasing jump function; both L̂n;cross;p and

Ûn;cross;p are increasing and can only be 0, one of the Xi, or 1. Even though

not presented here, a counterexample can easily be constructed, that is, a case

where �(F̂n;cross;p) = (L̂n;cross;p + Fn;cross;p)=2 does not have a solution. If the

solution exists, it has the nice interpretation that in order to maximize the

variance we have to distribute the total mass in the left and right tail only,

in such a way that the left and right masses start equally far away from the

mean.

In practice, one can compute �̂2
n;Max using the following algorithm.

Algorithm 3.2 (Computation of �̂2
n;Max)

1. As before, denote by Y1; : : : ; Ym the distinct elements of fX1; : : : ; Xn; 0; 1g

in increasing order. De�ne pj;L = F̂n;L(Yj) and pj;U = F̂n;U(Yj) for

1 � j � m.

2. Compute �̂n;Max;approx = maxf�(F̂n;cross;pj;E) : 1 � j � m;E = L; Ug Let

pj;E be the corresponding maximizing index and �̂pj;E = �(F̂n;cross;pj;E).

Find j1 and j2 satisfying Yj1 = L̂n;cross;pj;E and Yj2 = Ûn;cross;pj;E .
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3. In case E = U ,

� if (Yj1 + Yj2)=2 � �̂pj;E � (Yj1+1 + Yj2)=2, we have �̂2
n;Max =

�2(F̂n;cross;pj;E).

� if �̂pj;E < (Yj1 + Yj2)=2, we have �̂
2
n;Max = �2(F̂n;cross;pj;E��), where

� =
(Yj1 + Yj2)=2� �̂pj;E

Yj2 � Yj1
:

� if �̂pj;E > (Yj1+1+Yj2)=2, we have �̂
2
n;Max = �2(F̂n;cross;pj;E+�), where

� =
�̂pj;E � (Yj1+1 + Yj2)=2

Yj2 � Yj1+1

:

4. In case E = L,

� if (Yj1 + Yj2�1)=2 � �̂pj;E � (Yj1 + Yj2)=2, we have �̂2
n;Max =

�2(F̂n;cross;pj;E).

� if �̂pj;E < (Yj1+Yj2�1)=2, we have �̂
2
n;Max = �2(F̂n;cross;pj;E��), where

� =
(Yj1 + Yj2�1)=2� �̂pj;E

Yj2�1 � Yj1
:

� if �̂pj;E > (Yj1 + Yj2)=2, we have �̂
2
n;Max = �2(F̂n;cross;pj;E+�), where

� =
�̂pj;E � (Yj1 + Yj2)=2

Yj2 � Yj1
:

The rationale behind this somewhat complicated algorithm is as follows. Let p�

be the maximizing level, that is, �̂2
n;Max = �2(F̂n;cross;p�). From the previous

discussion we know that p� satis�es �(F̂n;cross;p�) = (L̂n;cross;p� + Ûn;cross;p�)=2,

provided that such a solution exists. When such a solution does not exist, we

already found the maximum standard deviation by �2(F̂n;cross;pj;E). However,

when the solution does exist, we can �nd it by updating pj;E properly, as

outlined in the algorithm.

Proposition 3.6 Among all c.d.f.s in R̂n;1��, the maximum variance is �̂2
n;Max

as computed in Algorithm 3.2.

Proof: The proof is analogous to the proof of Proposition 3.3, though some-

what more lengthy, and it is thus omitted.
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3.2 Length of the Interval

We now show that the con�dence interval for �2(F ) has length that is of order

n�1=2 in probability.

Theorem 3.1 For any F in F0, n
1=2(�̂2

n;Max� �̂2
n;Min) is bounded in probabil-

ity.

To prove the theorem, the following lemma is needed. Let mk(F ) = EF (X
k
i )

be the kth moment of F .

Lemma 3.1 Suppose F and G are in F0 and dKS(F;G) � �.

(i) Then, jmk(F )�mk(G)j � � for any k � 0.

(ii) Hence, j�2(F )� �2(G)j � 3 �.

The proof of (i) follows by integration by parts (see Proposition 3.1 of Romano

and Wolf, 2000). The proof of (ii) follows by writing �2(F ) as a function of

moments and applying the triangle inequality.

Proof of Theorem 3.1: For any F 2 R̂n;1��, dKS(F̂n; F ) � n�1=2cn;1�� so

that by part (ii) of Lemma 3.1 for such an F ,

j�2(F )� �2(F̂n)j � 3n�1=2cn;1��:

Hence, the triangle inequality implies n1=2(�̂2
n;Max � �̂2

n;Min) � 6 cn;1��. But

cn;1�� is bounded because cn;1�� ! c(1��), the 1�� quantile of the limiting

distribution of the Kolmogorov-Smirnov statistic.

3.3 Distributions with In�nite Support

The family F1 is now taken to be the set of all distribution functions having

support (�1;1) and �nite variance. For the reasons mentioned before, it is
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no longer possible to construct two-sided conservative con�dence intervals for

the variance with �nite length. However, it will still be possible to construct

one-sided lower con�dence intervals with guaranteed coverage, also based on

Proposition 2.1.

Since F1 has in�nite support, the upper and lower bounds of the KS band|

again denoted by F̂n;up and F̂n;low, respectively|are no longer proper distri-

bution functions themselves. More speci�cally, they are step functions with

jumps at the data points Xi only and

F̂n;U(Xi) = minfF̂n(Xi) + cn;1��; 1g i = 1; : : : ; n (16)

and

F̂n;L(Xi) = maxfF̂n(Xi)� cn;1��; 0g i = 1; : : : ; n: (17)

It is obvious that the interval of Proposition 2.1 (applied to the variance)

now yields in�nity as the upper bound resulting, e�ectively, in a one-sided

lower con�dence interval. As in the case of bounded distributions, the exact

computation of the lower bound, that is, the minimum variance �̂2
n;Min within

the KS band is possible.

As before, it is intuitively clear that �̂2
n;Min will be the variance of a c.d.f.

that among all c.d.f.s F 2 F1 distributes as much mass as possible at a single

point. Hence, it should be su�cient again to restrict our attention to the class

F̂n;jump = fF̂n;jump;t : �1 < t <1g, where

F̂n;jump;t(x) =

8>>><
>>>:

F̂n;L(x) for x < t

F̂n;U(t)� F̂n;L(t) for x = t

F̂n;U(x) for x > t

(18)

Not surprisingly, it turns out that the minimum variance can be found in

basically the same way as in the case of distributions with bounded support.

The proof of the following proposition is analogous to the proof of Proposi-

tion 3.3 and it is thus omitted.
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Proposition 3.7 Among all c.d.f.s in R̂n;1��, the minimum variance is given

by

�̂2
n;Min = �2(F̂n;jump;t�);

where t� is the unique solution of t = �(F̂n;jump;t).

It is obvious thatX(1) � t� � X(n) and therefore essentially the same algorithm

as in the case of bounded distributions can be used to �nd t� in practice. The

only di�erence is that we do not add the values 0 and 1 to the observed

data points, that is, now Y1; : : : ; Ym are the distinct values of X1; : : : ; Xn only,

arranged in increasing order.

4 Simulation Study

The goal of this section is to shed some light on the small sample properties

of con�dence intervals for the variance by means of simulations. We consider

estimated coverage probability of intervals with nominal con�dence levels 90%

and 95% for samples of sizes n = 10, n = 30, and n = 60; we also look at

estimated mean length of two-sided intervals. In addition to the conservative

intervals proposed in this paper, we include the well-known normal theory

interval|based on a chi-square distribution of the (scaled) sample variance

in case of normal data|and the percentile and hybrid bootstrap intervals

(e.g., Hall, 1992). The corresponding intervals are denoted by CONS, NORM,

BOOTP , and BOOTH , respectively. Note that the bootstrap intervals are

based on B = 1; 000 resamples and that estimated coverage probabilities are

based on 1,000 simulations for each scenario (the various con�dence interval

types are computed from the same simulated data).

We start by considering distributions with support [0; 1] and two-sided con-

�dence intervals for the variance. The distributions included in the study are

Uniform on [0; 1], the triangle distribution on [0; 1] (which is the distribution of

the average of two i.i.d. Uniform on [0; 1] random variables), and a two-point

distribution placing mass 0.95 at 0 and mass 0.05 at 1. The corresponding
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variances are easily seen to be 1/12, 1/24, and 19/400. Note that the normal

and the hybrid bootstrap intervals are truncated at 0 and at 0.25 if necessary.

The results are presented in Table 1. It is seen that our interval is the only

which is conservative, that is, which always meets or exceeds the nominal cov-

erage level. The bootstrap intervals undercover consistently while the normal

theory interval is conservative for the �rst two distributions but undercovers

for the two-point distribution. The price that our interval pays in achieving

guaranteed coverage is that the intervals are quite wide in the sense that the

estimated coverage probability is always equal to 1.

Note that we also considered the mean length of the intervals and the cor-

responding results are given in Table 2. Our interval is, of course, wider than

the normal and the bootstrap intervals. However, apart from the two-point

distribution where larger sample sizes seem to be needed, the length is seen

to decrease with the sample size (according to the asymptotic theory). There-

fore, our interval clearly improves upon the trivial interval with guaranteed

coverage given by [0, 0.25].

Next, we consider distributions with in�nite support and one-sided lower

con�dence intervals for the variance. The distributions included in the study

are Normal(0, 1), Exponential(1), and a three point distribution placing mass

0.1 at 0 and mass 0.4 at both �1 and 1. The corresponding variances are

easily seen to be 1, 1, and 0.9. The results are presented in Table 3. Now,

our interval and the percentile bootstrap interval are the only two which are

conservative. As with bounded distributions, the price that our interval pays

lies in the fact that the estimated coverage probability is always equal to 1.

5 Conclusions

In this paper, we have provided a method for constructing con�dence intervals

for the variance which exhibit guaranteed coverage probability for any (�nite)

sample size, uniformly over a large class of probability distributions. This is

in contrast to standard methods that provide correct coverage only asymp-
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totically for �xed distributions (`pointwise asymptotics'), such as bootstrap

intervals. In addition, standard classical methods provide correct coverage for

any (�nite) sample size only over a very restrictive class of probability distribu-

tions, such as the normal theory interval for the class of normal distributions.

Our method is a simple application of a more general result that allows one

to construct conservative con�dence intervals for an arbitrary parameter of an

unknown distribution by restricting attention to distributions that lie within

a Kolmogorov-Smirnov con�dence band for the unknown distribution function

and computing the in�nimum and the supremum of the parameter as function

of these distributions. Note that in general it is not clear how to carry out

this computation, since it involves maximizations over an in�nite-dimensional

set. However, in the special case of the variance, the computation can be done

explicitly and we provided an algorithm to this end. When the underlying

distribution has in�nte support, the resulting interval will necessarily be a one-

sided lower interval. However, when the underlying distribution has bounded

support, the interval turns out be two-sided. In the latter case, the length of

the interval is of order n�1=2 (in probability), so that the interval is nontrivial.

We examined the �nite sample properties of our interval by a simulation

study that also included the normal theory interval and two bootstrap inter-

vals. It was seen that our interval is the only one which is conservative, that

is, which always meets or exceeds the nominal coverage probability. As to be

expected, this achievement comes at the price of the interval being quite wide

in general.
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Table 1: Estimated coverage probabilities of various two-sided con�dence in-

tervals with nominal levels 90% and 95%.

Uniform distribution

n Level CONS NORM BOOTP BOOTH

10 0.90 1.00 0.99 0.77 0.80

30 0.90 1.00 0.99 0.85 0.87

60 0.90 1.00 0.99 0.88 0.89

10 0.95 1.00 1.00 0.83 0.84

30 0.95 1.00 1.00 0.91 0.93

60 0.95 1.00 1.00 0.93 0.94

Triangle distribution

n Level CONS NORM BOOTP BOOTH

10 0.90 1.00 0.95 0.74 0.76

30 0.90 1.00 0.95 0.85 0.84

60 0.90 1.00 0.95 0.87 0.87

10 0.95 1.00 0.98 0.78 0.80

30 0.95 1.00 0.98 0.89 0.89

60 0.95 1.00 0.98 0.93 0.92

Two-point distribution

n Level CONS NORM BOOTP BOOTH

10 0.90 1.00 0.00 0.38 0.32

30 0.90 1.00 0.60 0.76 0.71

60 0.90 1.00 0.95 0.79 0.24

10 0.95 1.00 0.31 0.40 0.31

30 0.95 1.00 0.60 0.76 0.75

60 0.95 1.00 0.95 0.79 0.62
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Table 2: Estimated mean lengths of various two-sided con�dence intervals with

nominal levels 90% and 95%. TRIVIAL corresponds to the interval [0, 0.25].

Uniform distribution

n Level TRIVIAL CONS NORM BOOTP BOOTH

10 0.90 0.25 0.23 0.17 0.07 0.07

30 0.90 0.25 0.17 0.08 0.04 0.04

60 0.90 0.25 0.13 0.05 0.03 0.03

10 0.95 0.25 0.25 0.19 0.09 0.09

30 0.95 0.25 0.19 0.10 0.05 0.05

60 0.95 0.25 0.14 0.06 0.04 0.04

Triangle distribution

n Level TRIVIAL CONS NORM BOOTP BOOTH

10 0.90 0.25 0.21 0.09 0.04 0.04

30 0.90 0.25 0.14 0.04 0.03 0.03

60 0.90 0.25 0.11 0.03 0.02 0.02

10 0.95 0.25 0.25 0.11 0.05 0.05

30 0.95 0.25 0.16 0.05 0.03 0.03

60 0.95 0.25 0.12 0.03 0.02 0.02

Two-point distribution

n Level TRIVIAL CONS NORM BOOTP BOOTH

10 0.90 0.25 0.25 0.07 0.08 0.07

30 0.90 0.25 0.25 0.05 0.09 0.08

60 0.90 0.25 0.25 0.02 0.06 0.06

10 0.95 0.25 0.25 0.08 0.09 0.07

30 0.95 0.25 0.25 0.05 0.10 0.08

60 0.95 0.25 0.25 0.03 0.07 0.07
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Table 3: Estimated coverage probabilities of various one-sided con�dence in-

tervals with nominal levels 90% and 95%.

Normal distribution

n Level CONS NORM BOOTP BOOTH

10 0.90 1.00 0.89 0.98 0.92

30 0.90 1.00 0.90 0.97 0.94

60 0.90 1.00 0.90 0.97 0.95

10 0.95 1.00 0.95 1.00 0.98

30 0.95 1.00 0.94 0.98 0.97

60 0.95 1.00 0.95 0.98 0.97

Exponential distribution

n Level CONS NORM BOOTP BOOTH

10 0.90 1.00 0.83 0.99 0.93

30 0.90 1.00 0.77 0.97 0.94

60 0.90 1.00 0.80 0.99 0.97

10 0.95 1.00 0.88 0.99 0.94

30 0.95 1.00 0.85 1.00 1.00

60 0.95 1.00 0.82 0.99 0.99

Three point distribution

n Level CONS NORM BOOTP BOOTH

10 0.90 1.00 1.00 1.00 0.77

30 0.90 1.00 1.00 1.00 0.85

60 0.90 1.00 1.00 0.99 0.88

10 0.95 1.00 1.00 1.00 0.78

30 0.95 1.00 1.00 1.00 0.90

60 0.95 1.00 1.00 1.00 0.91
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