
 
 
Working Paper 03-44  
Statistics and Econometrics Series  10 
September 2003 
 

Departamento de Estadística y Econometría 
Universidad Carlos III de Madrid 

Calle Madrid, 126 
28903 Getafe (Spain) 

Fax (34) 91 624-98-49 
 

 
BAYESIAN CURVE ESTIMATION BY MODEL AVERAGING 

Daniel Peña and M. Dolores Redondas* 

Abstract 
A bayesian approach is used to estimate a nonparametric regression model. The main 
features of the procedure are, first, the functional form of the curve is approximated by a 
mixture of local polynomials by Bayesian Model Averaging (BMA); second, the model 
weights are approximated by the BIC criterion, and third, a robust estimation procedure 
is incorporated to improve the smoothness of the estimated curve. The models  
considered at each sample points are polynomial regression models of order smaller that 
four, and the parameters of each model are estimated by a local window. The estimated 
value is computed by BMA, and the posterior probability of each model is 
approximated by  the exponential of the BIC criterion. The robustness is achieved by  
assuming that the noise follows a scale contaminated normal model so that the effect of 
possible outliers is downweighted. The procedure provides a smooth curve and allows a 
straightforward prediction and quantification of the uncertainty. The method is  
illustrated with  several examples and some Monte Carlo experiments. 
 

 
 
Keywords: Bayesian model averaging, BIC criterion, Robustness, Non parametric 
curve fitting, Local polynomial regression. 
 
 
 
 
 
 
*Peña, Departamento de Estadística y Econometría, Universidad Carlos III de Madrid, C/ 
Madrid, 126, 28903 Getafe. Madrid, e-mail: dpena@est-econ.uc3m.es; Redondas, 
Departamento de Estadística y Econometría, Universidad Carlos III de Madrid, e-mail: 
redondas@est-econ.uc3m.es.  



Bayesian Curve Estimation by Model

Averaging

Daniel Peña a, Dolores Redondas a,∗

aDepartment of Statistics, Universidad Carlos III de Madrid, c/Madrid 126,

28903, Getafe, Madrid, Spain.

Abstract

A Bayesian approach is used to estimate a nonparametric regression model. The

main features of the procedure are, first, the functional form of the curve is approx-

imated by a mixture of local polynomials by Bayesian Model Averaging (BMA);

second, the model weights are approximated by the BIC criterion, and third, a

robust estimation procedure is incorporated to improve the smoothness of the esti-

mated curve. The models considered at each sample points are polynomial regression

models of order smaller that four, and the parameters of each model are estimated

by a local window. The estimated value is computed by BMA, and the posterior

probability of each model is approximated by the exponential of the BIC criterion.

The robustness is achieved by assuming that the noise follows a scale contaminated

normal model so that the effect of possible outliers is downweighted. The procedure

provides a smooth curve and allows a straightforward prediction and quantification

of the uncertainty. The method is illustrated with several examples and some Monte

Carlo experiments.

Key words: Bayesian model averaging, BIC criteron, Robustness, Non parametric

curve fitting, Local polynomial regression



1 Introduction

A Bayesian approach is used to estimate non parametrically a regression model

yi = m (xi) + εi i = 1, . . . , n

given the bivariate data (x1, y1) , . . . , (xn, yn) . We are interested in estimating

the functional relationship m, between the variable y and the explanatory

variable x, and to predict the response for new values of the covariate. The

functional form of m (·) is unknown and it is approximated by a mixture of

local polynomials estimators.

Both parametric and nonparametric techniques are commonly used to find

the regression function m (·) . There is an extensive literature for non para-

metric techniques, see for example Eubank (1988), Wahba (1990), Hastie and

Tibshirani (1990) and Green and Silverman (1994) for a complete survey. The

first parametric approach was to use polynomial regression, by selecting the

best order of the polynomial to fit the data, see Anderson (1962), Guttman

(1967), Hager and Antle (1968), Brooks (1972) and Halpern (1973). The limi-

tations for the polynomial regression are due its global nature, that is, we may

need a high order polynomial to approximate the data in the whole range of

data and even then the approximation can be poor in wiggly curves. Second,

the procedure is very non robust and a simple observation can exert a big

influence on the estimated curve. Some better alternatives are the piecewise

polynomials, the splines smoothers and the local polynomial regression. The
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first two methods require to select the number and positions of the knots.

Smith and Kohn (1996) use a Bayesian approach to splines smoother to select

the number of knots over a large number of knots. Liang et al. (2001) propose

an automatic prior setting for the multiple linear regression and they applied

the method to Bayesian curve fitting with regression splines. With regards to

piecewise polynomials, Mallick (1998) makes the polynomial estimation of the

curve by taking the order of the polynomial as a random variable, and making

inference of the joint distribution of both the order of the polynomial and the

polynomials coefficients and Denison et al. (1998) select the knots using re-

versible jump Markov chain Monte Carlo to obtain the posterior probabilities

for the joint distribution of the both the number and the position of the knots.

These authors use piecewise polynomials instead of splines because the first

are more flexible to modelize curves that are not smooth. Local polynomial

regression was used by Cleveland (1979) who proposed a method which uses

local regression with a kernel around the point of interest and it is made ro-

bust by using a weighted regression. This method has been widely used by its

good results and its simplicity.

In this work we also use local polynomial regression but introduce some mod-

ifications over previous methods. The functional form of the curve is approxi-

mated by a mixture of local polynomials by Bayesian model averaging (BMA).

Bayesian model averaging leads to forecasts which are a weighted average of

the predictive densities obtained by considering all possible polynomial de-

grees with weights equal to the posterior probabilities of each degree. BMA

takes into account the uncertainty about the different models, as was pointed

out in the seminal work of Leamer (1978). George (1999) reviews Bayesian

model selection and discuses BMA in the context of decision theory. For lin-
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ear regression models there is an extensive literature, see e.g. Raftery et al.

(1997) and Fernández et al. (2002). Liang et al. (2001) propose an automatic

prior setting for the parameters of linear regression which allow to implement

MCMC methods for a big class of models. In our case BMA is implemented

by fitting local polynomial regression models of degree going from zero to d to

the data in a window around each observation, and estimating the unknown

regression function by a weighted sum of the values corresponding to the poly-

nomials, with weights equal to the posterior probabilities of each polynomial

model. These weights are approximated by the exponential of the BIC crite-

rion (Schwarz, 1978) which approximates the Bayes factor. The model is made

robust by assuming that the noise may be contaminated. Then the Bayesian

estimation provides and automatic downweighting of large observations.

The proposed procedure is completely automatic, very simple to apply and

to program. Bayesian inference over the model allows us make predictions

and optimal credible intervals: on the one hand, the use of the BIC criterion

guarantee that if the true model is a polynomial model of degree smaller than

d, then the true model will be use to estimate, and on the other hand, if the

true model is not a polynomial, the use of BMA allows us to build credible

interval that take into account the variability due the uncertainty about the

model and gives us better predictive capability than using a single model

(Madigan and Raftery (1994)). Another advantage of the proposed method is

that we obtain the best model (for the BIC criterion) for each point of the

sample, which provides an intuitive notion of the fitted curve.

The rest of the paper is organized as follows. Section 2 describes the proposed

method and presents its main properties. Section 3 presents the modification

of the method to make it robust to outliers. Section 4 analyzes some real data
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sets to illustrate the behavior of the procedure and provides a Monte Carlo

comparison with other methods using several simulated benchmark examples

proposed in the literature. Finally, section 5 presents some concluding remarks.

2 The Proposed Method

Suppose that we have n observations (xi, yi) which are a sample of independent

and identically distributed data from a random variable (X,Y ) . We assume

that the observations are related by

yi = m (xi) + εi, i = 1, . . . , n (1)

where E (εi) = 0, V ar (εi) = σ2, and X and ε are independent. Further we

suppose that m (·) is a smooth function. It is well know, that the family of

polynomials of degree smaller than d, for d large enough, can capture the local

structure of any curve. Given a value of d, to be discuss below, we consider

polynomial models MJ of the forms

yi =
J∑

j=0

βJj (xi − x)j + εi, J = 0, . . . , d. (2)

where x is the mean of the x variable in the sample considered, and approxi-

mate locally the general form m (xi) by linear combinations of these polyno-

mials. Thus, we compute the posterior probabilities for different polynomial

degrees and then estimate m (xi) at each point by forecasting using Bayesian

model averaging (BMA).

The procedure is applied as follows. Suppose that the x observations are or-

dered, that is, x1 < x2 < . . . < xn, then for a given observation xi, we define
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the symmetric nearest neighborhood around this point as

SNN (xi, w) = {xk : xi−w ≤ xk ≤ xi+w}

where w is the bandwidth of the window. Note that we are supposing that the

observations are not repeated, if they are, we define the SNN over the set of

different observations of x. As we may have repeated values, the number of

observations in the window is at least 2w + 1. We assume that w is chosen so

that the number of different values of xk in SNN (xi, w) is at least d+1 so that

the polynomial of degree d can be fitted using the data in the window. To take

into account the left and right endpoints, where the windows contain fewer

observations, we redefined the first and the last windows as SNN (xi, w) =
{
xk : xmax(1,i−w) ≤ xk ≤ xmin(n,i+w)

}
.

In this work we make all the inference for the predicted value of a future

observation yfi
= m (xi) corresponding to a given value xi, although the

same analysis can be applied for a new observation x0 belonging to the range

of the data, x0 ∈ (x1, xn) , by defining SNN (x0, w) = SNN (xi, w) where

xi = min
k
‖xk − x0‖ . Then, defining Di = {(xk, yk) : xk ∈ SNN (xi, w)} , the

predictive distribution for a new observation at yfi
is given by

p (yfi
|Di) =

d∑

J=0

pJp (yfi
|Di,MJ)

where pJ = P (MJ |Di ) is the posterior probability for the polynomial model

of degree J, MJ , given the data in the window Di. The prediction under

quadratic loss will be given by m̂ (xi |Di ) = E(yfi
|Di) and we have that

m̂ (xi |Di ) =
d∑

J=0

pJm̂ (xi |Di,MJ ) , (3)

where m̂ (xi |Di,MJ ) = E(yfi
|Di,MJ) is the expected value for the predictive

conditional to the model.
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To make the inference about the polynomial models (2), we consider a refer-

ence prior distribution by taking a priori the elements of βJ = (βJ0, . . . , βJJ)′

and σJ independently and uniformly distributed,

p (βJ , σJ) ∝ 1

σJ

.

Then, the predictive distribution for a new observation, p (yfi
|Di,MJ ) , is

a t-Student distribution with v = n0 − (J + 1) degrees of freedom, where

n0 is the sample size of SNN (xi), mean E (yfi
|Di,MJ ) = xiβ̂J , where

β̂J =
(
β̂J0, . . . , β̂JJ

)′
is the vector of usual least-squares estimators for the pa-

rameters of the polynomial of degree J, xi =
(
1, (xi − xi) , . . . , (xi − xi)

J
)
and

xi = {∑ xk/n0 : xk ∈ SNN (xi)} , and variance given by V ar (yfi
|Di,MJ ) =

v
v−2

s2
J

(
1 + (xi − xi) (X′

JXJ)−1 (xi − xi)
)

where vs2
J is the standard sum of the

squared residuals and XJ is the design matrix of the polynomial model (2) of

degree J fitted to the data in Di.

The posterior probability for a model MJ is approximated by the exponential

of the BIC criterion, which as Kass and Raftery (1995) pointed out, approx-

imates the Bayes factor with a relative error O(1) . The Schwarz criterion

(Schwarz, 1978) for MJ is defined as

S (MJ) = log p
(
y|β̂J

)
− 1

2
(J + 1) log n0,

where p
(
y|β̂J

)
is the likelihood of the model MJ , β̂J is the MLE of the param-

eter vector under model MJ , n0 is the sample size of SNN (xi) as before and

(J + 1) is the dimension of the vector β̂J . The Bayesian information criterion

(BIC) of a model MJ is BIC (MJ) = −2S (MJ) , and exp (S (MJ1)− S (MJ2))

approximates the Bayes factor BJ1J2 with a relative error O (1) . Thus, we can
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approximate the Bayes factors by

BBIC
J1J2

= exp (S (MJ1)− S (MJ2)) =
exp (−0.5BIC (MJ1))

exp (−0.5BIC (MJ2))

and obtain the posterior probability for a model by

p (MJ |Di) ∝ p (MJ)
{
log p

(
y|β̂J

)
− 1

2
(J + 1) log n0

}

where p (MJ) is the prior probability for the polynomial model. The likelihood

for a normal linear model evaluated at the MLE estimator is easily seen to be

p
(
y|β̂J

)
= (2π)−n0/2

(
vs2

J

n0

)−n0/2

exp
{
−n0

2

}
,

and the posterior probability of MJ may be approximated, after absorbing

common constants, by p (MJ |Di) = KBICp (MJ) (vs2
J)
−n0/2

n
−(J+1)/2
0 , where

KBIC is obtain by the condition
d∑

J=0
p (MJ |Di) = 1. Then we approximate the

posterior probability of the models by

p (MJ |Di) ∝ s−n0
J n

−(J+1)/2
0 . (4)

In order to apply this method several decisions must be made. First we have

to decide about the maximum degree d of the polynomials to be fitted. We

propose to take d = 3. We have found that this value is large enough to fit

very well any curve locally and it avoids the problem of overfitting. Second,

we have to decide on the a priori probabilities of the models. Two possible

choices are uniform, p(MJ) = (d + 1)−1 or decreasing with the polynomial

degree. We propose the uniform prior for simplicity. The third choice is the

bandwidth parameter w. A classical solution is to choose this parameter by

cross-validation as follows. Let ŷw
i the estimated value of m (xi) with band-

width w, where the observed value yi is omitted in the estimation of ŷw
i . Then,
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the value for w is chosen to minimize the mean squared error

MSEw =
1

n

n∑

i=1

(m (xi)− ŷw
i )2 .

We have check by simulation that the results are not very sensible to the choice

of the parameter w. This fact can be explained by the work of Fan and Gijbels

(1995). They proposed a method which replaces an adaptive bandwidth by

an adaptive order of the polynomial to be fitted, and observed that if the

bandwidth parameter is large, then the order chosen for the polynomial order

is high, whereas when a small bandwidth is used the order chosen was low. This

same effect has been observed in the proposed method, and this compensation

effect make the procedure fairly robust to the bandwidth parameter chosen.

With regard to the consistency of the proposed method, it can be showed by

the consistency of the each polynomial model approach. Also, we can obtain

the expressions of the bias and the variance based on the theorem 3.1, pg. 62,

in Fan and Gijbels (1996)

E [m̂ (x)−m (x) |X ] = E

[{
3∑

i=0

pim̂i (x)

}
−m (x) |X

]

=
(

p0 + p1

2

)
w2

3
m′′ (x) +

(
p2 + p3

2

)
w4

140
miv (x) + op

(
w4

)

V ar [m̂ (x)] = V ar

[
3∑

i=0

pim̂i (x)

]

=

{(
p2

0 + p2
1

2

)
+ 9

(
p2

2 + p2
3

2

)} (
σ2

c

1

nw

)
+ op

(
1

nw

)

where σ2 is the residual variance, pJ are the posterior probability of the poly-

nomials models, w is the bandwidth, n is the sample size and mi (x) indicates

the ith derivate of the m (x) function. We are supposing that the marginal

density of the observations x, f (x), is uniform over the range of the data,

f (x) = c and f ′ (x) = 0.
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In order to have a smoother curve the procedure described can be iterated

as follows. Let ỹ(1) by the predicted value obtained by (3), then the observed

values (x, y) are replaced by
(
x, ỹ(1)

)
to obtain ỹ(2), and in the same way ỹ(k)

can be computed by using
(
x, ỹ(k−1)

)
as the observed values. In practice, we

have found that a small number of iterations, k = 2 or k = 3 are enough to

produce a good result.

A possible problem when applying this procedure is that a single outlier obser-

vation can have a large effect on the estimated models. To reduced this effect,

in the next section we propose a procedure for robustifying the method.

3 Robustifying the method

The method can be made robust to reduce the influence of the outliers in

the local estimation by modeling the residuals by a mixture of normals. This

model was introduced by Tukey (1960) and studied by Box and Tiao (1968).

Suppose that observations y are generated by the model (1), where now the

errors εi are a random variable with a normal mixture distribution

εi ∼ (1− α) N
(
0, σ2

)
+ αN

(
0, k2σ2

)
,

where α is the prior probability that one observation comes from a N (0, k2σ2)

distribution. To make inference about this model, we introduce a dummy

variable δ, δi = 1 if V ar (εi) = k2σ2 and δi = 0 otherwise. Let ∆k =

(δ1 = l1, . . . , δn = ln) be a possible configuration of the data, where li = 0, 1.

Then there are 2n possible classifications of the observations into the two com-

ponents of the mixture. Let V be a diagonal matrix with elements (i, i), vii

equal to 1 if δi = 0 and vii = 1/k2 if δi = 1. Then, making the variable change
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Yh = V1/2Y, Xh = V1/2X, we can apply standard inference results for linear

models. The BMA predictive distribution for the future observation yfi
given

the data Di, will be given by

p (yfi
|Di ) =

2n∑

h=0

d∑

J=0

p (yfi
|Di,MJ ,∆h ) pJh (5)

which is a mixture of (d + 1)× 2n distributions p (yfi
|Di,MJ ,∆h ) where the

weights, for each model MJ and each configuration of the data ∆h, are given by

pJh = p (MJ |∆h, Di ) p (∆h |Di ) . We compute the predicted value m̂ (xi |Di )

as the expected value of the predictive distribution p (yfi
|Di ) ,

m̂ (xi |Di ) =
d∑

J=0

2n∑

h=0

pJhm̂ (xi |Di,MJ ,∆h ) .

Given the model and the configuration, the predictive distribution p (yf |Df ,MJ ,∆h )

for a new observation xf , is a t-Student distribution t
(
v,xf β̂Jh, h

)
with

v = n−(J + 1) degrees of freedom. The expected values m̂ (xf |Df ,MJ ,∆h ) =

xf β̂Jh is the mean of the distribution, xf =
(
1, (xf − xf ) , . . . , (xf − xf )

J
)
,

xf = {∑ xk/n0 : xk ∈ SNN (xf )} , and β̂Jh are the estimated parameters

given the ∆h configuration and the model MJ ,

β̂Jh = (X′
JhXJh)

−1
X′

JhYh = (X′
JVXJ)

−1
X′

JVY

and the variance of the predictive distribution is

v

v − 2
ŝ2

Jh

(
1 + (xf − xf ) (X′VX)

−1
(xf − xf )

)

where

vŝ2
Jh =

(
Yh −XJhβ̂h

)′ (
Yh −XJhβ̂h

)
= Y′ [V −VXJ (X′

JVXJ)
−1

X′
JV

]
Y

is the standard sum of the squared residuals.
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The weights of the mixture are given by pJh = p (MJ |∆h, Df ) p (∆h |Df )

where the first term, p (MJ |∆h, Df ) , is the posterior probability of the models

given a configuration ∆h. We approximate this term by the exponential of the

BIC, given by (4), where ŝ2
J is replaced by ŝ2

Jh which depends on the model

and on the configuration. The integration constant is computed for the sum

of the posterior probability of the four polynomials models, given each one

configuration, ∆h, is one.

The second term for the weights, is computed by

p (∆h |y ) = K2p (y |∆h ) p (∆h) = K2

d∑

J=0

p (y |∆h,MJ ) p (∆h |MJ ) p (MJ)

where p (y |∆h,MJ ) is the marginal distribution of the data, given a model MJ

and a configuration ∆h, p (∆h |MJ ) is the prior probability of a configuration,

which not depends of the model MJ , p (∆h |MJ ) = p (∆h) = αnh (1− α)n−nh

and nh is the number of elements with high variance in the configuration ∆h,

nh =
∑

δi. Finally, p (MJ) , the prior probabilities, are equal for all the models

and this term is absorbed by the integration constant.

In order to compute the marginal density, p (y |∆h,MJ ) the likelihood of the

model for the parameters θJ = (βJ , σJ) can be written as

f (y |X, θJ ,MJ ,∆h ) = (2π)−nh/2 σ−nh
Jh k−nh exp

{
− 1

2σ2
Jhk

2
(Ynh

−XJnh
βJ)′ (Ynh

−XJnh
βJ)

}
×

× (2π)−(n−nh)/2 σ
−(n−nh)
Jh exp

{
− 1

2σ2
Jh

(
Y(n−nh) −XJ(n−nh)βJ

)′ (
Y(n−nh) −XJ(n−nh)βJ

)}

= (2π)−n/2 σ−n
Jh k−nh exp

{
− 1

2σ2
Jhk

2

(
V1/2Y −V1/2XJβJ

)′ (
V1/2Y −V1/2XJβJ

)}

where XJnh
indicates the rows of XJ corresponding to the observations with

variance k2σ2
Jh, and XJ(n−nh) corresponding to the observation with variance
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σ2
Jh. The marginal density is obtained by integrating θJ , p (y |∆h, MJ ) ∝

(ŝ2
Jh)

−(n−J+1)/2 |X′
JVXJ |−1/2 and finally we can obtain the expression for the

marginal of the configuration,

p (∆h |y ) = K2

d∑

J=0

p (y |∆h,MJ ) p (∆h)

= K2

d∑

J=0

(
ŝ2

Jh

)−(n−J+1)/2 |X′
JVXJ |−1/2

αnh (1− α)n−nh

where the constant K2 is computed by using the condition
∑2n

h=0 p (∆h |y ) = 1.

3.1 Implementation

The scale contaminated normal model has the problem that the inference is

over the 2n possible configurations of the data and it requires intensive com-

putation. Although we have many local problems with small sample size, the

number of computations grows in exponential form, for example, for windows

size n0 = 20, it requires computing approximately 106 posterior probabilities

for the models, for each one of the n− n0 windows.

The problem has been solved in the literature using the Gibbs sampler, (see

Vernedelli and Wasserman, 1991 and Justel and Peña, 1996) but the local char-

acter of the estimation implies to solve approximately n − n0 local problems

which requires intensive computation. Note that in this problem we may take

advantage from the fact that the inference in a given window gives us informa-

tion about the inference in the next window, because they will only differ in a

few observations. Suppose we have computed the posterior probabilities for all

the configurations of the data corresponding to a set of observations belonging

to a window Di. The next window, Di+1, is obtained from the previous one

by deleting some observations in the left extreme of Di and adding some new
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observations in the right hand of the Di+1. We propose a procedure to obtain

a good approximation to the posterior inference, that takes into account these

characteristic of the problem. First, we obtain the configurations with highest

probability in the first windows and second, using the information, we obtain

the configurations with highest probabilities in the next window, Di+1.

For this first window, if the sample size is small enough the simplest solution

is to carry out an exhaustive study of the configurations. Otherwise, an alter-

native fast method which allows an automatic implementation was proposed

by Peña and Tiao (1992). Suppose that we have a sample of size n and that we

can classify the observations in two groups. The first includes n1 observations

of potential outliers and the second the remaining n2 = n − n1 observations

which we believe have a high probability of not being an outlier. Then, as




n

h




=
h∑

j=0




n1

j







n2

h− j




=




n1

h




+
h−1∑

j=0




n1

j







n2

h− j




instead of studying all the combinations of h outliers out of n we can compute

all the combinations of h outliers out of the n1 potential set of outliers and a

sample of the combinations which include j = 1, 2, ..h− 1 outliers and a small

sample of all the combinations of h points out of n2. In order to do so we need to

divide the observations in this two groups. Peña and Tiao (1992) proposed to

study the differences between the probabilities P (AiAj) , and P (Ai) P (Aj) ,

where Ai is the event that xi is an outlier, and consider as potential outliers

to those observations in which both probabilities were different.

To apply this idea to the problem, the set of potential outliers is identified as

follows:
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(1) Compute the posterior probabilities for all the configurations which have

a the number of outliers less or equal to 2. Let ∆0 be the configuration

without outliers, ∆i the configuration with only one outlier, the observa-

tion xi and ∆ij the configuration in which only the elements (xi, xj) are

outliers.

(2) Include in the set of potential outliers the isolated outliers defined by the

set A =
{
xi : P (∆i|D )

P (∆0|D )
≥ 3

}
.

(3) Include also the partially masked outliers as those belonging to the set

B =
{
xj : P (∆i,j |D )

P (∆i|D )
≥ 3, xi ∈ A

}
.

(4) Include also the completely masked outliers defined by the elements of

the set C =
{
(xi, xj) : P (∆i,j |D )

P (∆0|D )
≥ 3, (xi, xj) /∈ (A ∪B)

}
.

The set of potential outliers is formed by elements belonging to (A ∪B ∪ C) .

Once the configurations of outliers and good points with highest probability

are detected for the first windows, D1, we use this information to select the

configurations in the next windows, D2. In the same way we use the informa-

tion of Di to select the configurations of Di+1 in a recursive form. in order to

do so we introduce some notation: let LDi = Di\Di+1, the left part of Di, the

set of observations belonging to Di which not belong to Di+1, mL
i the cardinal

of LDi, similarly let RDi the right part of Di and mR
i the cardinal of RDi.

Suppose that we have the posterior probabilities p (∆i
h |y ) for all the configura-

tions in the windows Di which have not negligible probability. We select the set

of M configurations ∇Di
= {∆i

1, . . . ,∆
i
M} with highest posterior probability.

Now, we move to the next windows, Di+1, and let∇RDi
=

{
∆R

1 , . . . ,∆R

2
mR

i

}
be

the 2mR
i possible configurations for the mR

i new observations with are incorpo-

rated in Di+1. In addition we have to deleted from ∇Di
the terms correspond-
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ing to the observations which are not in Di+1. Let ∆∗i
k be the configuration

obtained form ∆i
k ∈ ∇Di

by deleting the first mL
i terms. Then, the configura-

tions with highest probabilities in the next window Di+1 will belong to the set
{[

∆∗i
1 ∪∆R

1

]
, . . . ,

[
∆∗i

1 ∪∆R

2
mR

i

]
, . . . ,

[
∆∗i

M ∪∆R
1

]
, . . . ,

[
∆∗i

M ∪∆R

2
mR

i

]}
where

[
∆∗i

k ∪∆R
l

]
represents the ∆∗i

j configuration for the observations which be-

longs to Di and the configuration ∆R
l for the new observation incorporated.

If there are not repeated observations in the data set and mR
i = 1, for all the

windows Di, then we can choose M big enough to guarantee that the best

configurations are selected. In data sets with repeated observations, M should

be choose moderate to avoid expensive computations.

4 Examples

To illustrate the methods developed, we consider three data set frequently ana-

lyzed in the nonparametric curve fitting. The first one is the Helmets data. The

data consists of accelerometer readings taken through time in a experiment on

the efficacy of crash helmets in simulated motor-cycle crash, and it is described

in detail by Schmidt et al. (1981). The second one is the Ethanol data. The

data includes 88 measurement of two variables from a experiment in which

ethanol was burned in a single cylinder automobile test engine (Brinkman,

1981). The two variables measured are the concentration of nitric oxide (NO)

and nitrogen dioxide (NO2) in engine exhaust and the equivalence ratio at

which the engine was run (a measure of the richness of the air-ethanol mix).

The third example is the Diabetes data. It includes two variables measured

on children with insulin-dependent diabetes. The variables are the age of the

children and the level of serum C-peptide, and were obtained from Sockett et
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al. (1987). We have analyzed the same subset of 43 observations that appear in

Hastie and Tibshirani (1990) which use this data to show the effect of several

smoothers in Chapter 2 of their book.

Figure 1 shows the estimated curve for the Helmets data, where the parameter

estimated by cross validation is w = 12. The figure in the left hand side

shows the estimated curve with the procedure presented in section 2 and two

robust curve estimates with parameters (α = 0.01, k2 = 3) and (α = 0.1, k2 =

5). It can be seen that the smoothness of the curve increases with the prior

proportion of outliers. In the right hand a second iteration for each of these

three cases are shown and it can be seen that these curves are very smooth

and the differences among them are very small.
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Fig. 1. Curves fit for Helmets data. The left figure shows the curve for the standard

method (solid line), the robust method with parameters (α = 0.05, k2 = 3) (dotted

line) and the robust method with (α = 0.1, k2 = 5) (solid line with marks *). The

right figure shows the second iteration of the procedure for these three cases.

Figure 2 shows the estimated curve for the Ethanol data. In this data set the

value of the parameter w obtained by minimizing the MSE for cross validation

is w = 10. The three curves shown are the one obtained by the standard

17



estimation and two obtained by a robust approach with the same values of the

parameters as in the previous example (α = 0.01, k2 = 3) and (α = 0.1, k2 =

5). We can observed that there are small differences among the three curves

and none of them is completely smooth. Note that as the data is homogeneous

in this case the robustification does not modify the standard estimation. In

the right hand figure we show the second iteration of the procedure in the

three cases. It can be seen that the three curves obtained are smooth and very

similar.
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Fig. 2. Curves fit for Ethanol data. The left figure shows the curve fitted by the

standard method (solid line), the robust method with parameters (α = 0.05, k2 = 3)

(dotted line) and the robust method with (α = 0.1, k2 = 5) (solid line with marks

*). The right figure shows the second iteration of the procedure for these three cases.

Figure 3 shows the fitting curve for the Diabetes data in the first two iterations

of the algorithm. The window which minimizes the MSE for cross validation

is now w = 22, and the sample size is 43. The lack of smoothness observed in

the curve fitted by the standard procedure corresponds to the incorporation

of the extreme observations around xi = 13. The robust estimate of the curve

reduces this effect. Apart from the variability at this point there are small

differences among the fitted curves due to the large window used. The second
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iteration of the procedures leads to similar fitted curves.
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Fig. 3. Curves fit for Diabetes data. The left figure shows the curve fitted by the

standard method (solid line), the robust method with parameters (α = 0.01, k2 = 3)

(dotted line) and robust method with (α = 0.05, k2 = 7) (solid line with marks *).

The right figure shows the second iteration of the procedure for these three cases.

4.1 Monte Carlo experiment

We compare the behavior of the proposed method to the popular loess method

due to Cleveland (1979) which is implemented in many computer programs.

The comparison is made by using four simulated function proposed by Donoho

and Johnstone (1994) which have been used often in the literature for com-

parison purposes (see Denison el al., 1998). The four simulated functions are:

Heavisine f (x) = [4 sin (4πx)− sgn (x− 0.3) + ε3 − sgn (0.72− x)

Blocks f (x) =
∑

h
(2)
j K (x− xj) + ε4 K (x) = (1 + sgn (x)) /2

Bumps f (x) =
∑

h
(1)
j K ((x− xj) /wj) + ε5 K (x) = (1 + |x|)−4

Doppler f (x) =
√

x (1− x) sin (2.1π/ (x + 0.05)) + ε6
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Fig. 4. The simulated functions used to compare the proposed method: Heavisine,

Blocks, Bumps and Doppler.

where xj = {0.1, 0.13, 0.15, 0.23, 0.25, 0.4, 0.44, 0.65, 0.76, 0.78, 0.81}, h
(1)
j =

{4, 5, 3, 4, 5, 4.2, 2.1, 4.3, 3.1, 5.1, 4.2}, h
(2)
j ={4, -5, 3, -4, 5, -4.2, 2.1, 4.3,

-3.1, 5.1, -4.2} and wj = {0.005, 0.005, 0.006, 0.01, 0.01, 0.03, 0.01, 0.01, 0.005,

0.008, 0.005}. These functions are standardized to V ar (f) = 72. The errors

are generated by εi ∼ N (0, σ2) , where σ2 is chosen so that the root of the

signal noise ratio
(
RSNR =

√
var(f)

σ2

)
are 3, 5, 7 and 10. The simulation are

based in 1000 points. The four simulated functions are showed in the Figure

4.

The proposed method is based on the use of a uniform kernel W1 (x, xi) = 1 if

x ∈ SNN (xi). In these simulations we compare the use of the uniform kernel

with the mixture of the four polynomials models with the kernels used by

Cleveland (1979) in his loess method with a fixed polynomial degree d = 1 or

d = 3. The kernels are bisquare weight function, B (x) = (1− x2)
2

for |x| < 1,

and the ’tricube’ function T (x) =
(
1− |x|3

)3
. In both kernels x is reescaled
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Fig. 5. Heavisine function with different root of signal-noise ratio: 3, 5, 7, 10.

by (x−xi)
hi

where hi is the distance |x− xi| from x to the rth nearest neighbor.

The mean of the squared error, MSE = 1
n

∑n
i=1 (m̂ (xi)−m (xi))

2, are showed

in the next tables, where m̂ (xi) is computed by six different procedures. The

first two called BMA1 and BMA2 in the tables, are the proposed method with

1 and 2 iterations. The third and fourth are computed using the loess with

polynomial of degree 1 and 3, and a bisquare kernel and are called B1 and B3.

The last two methods correspond to degree 1 and 3 using the tricube kernel and

are called T1, T3. The results are based in 1000 replications of the simulated

curve. The simulated curves with the four levels of RSNR={3, 5, 7, 10} are

showed in the figures 5, 6, 7, and 8.

Table 1 shows the mean and the standard deviation, in small letter size, of

the MSE of the 1000 replications of the function Hevisine. We can observed

that the smallest MSE is obtained by BMA2, the proposed method with two

iterations of the algorithm. Also, we can observed that the bisquare kernel is
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Table 1

ECM obtaned for the Heavisine data with four different signal to noise ratio.

RSNR BMA1 BMA2 B1 B3 T1 T3

3 0.2869
0.0445

0.2634
0.0443

0.2709
0.0437

0.3690
0.0544

0.2745
0.0436

0.3739
0.0548

5 0.1566
0.0183

0.1458
0.0173

0.1629
0.0173

0.2264
0.0409

0.1653
0.0172

0.2249
0.0371

7 0.1075
0.0108

0.1016
0.0095

0.1137
0.0092

0.1411
0.0160

0.1160
0.0093

0.1411
0.0143

10 0.0748
0.0060

0.0707
0.0051

0.0791
0.0050

0.1279
0.0093

0.0809
0.0050

0.1464
0.0169
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Fig. 6. Blocks function with different root of signal-noise ratio: 3, 5, 7, 10.

slightly better than the tricube, and that the linear fit in loess is better than

the cubic fit. The biggest differences among the procedures are observed with

the signal to noise ratio is the largest, RSNR=10.

Table 2 shows the result obtained for the function Blocks. The best results are

again obtained for BMA2, the second iteration of the algorithm, and again
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Table 2

ECM obtained for the Blocks data with four different signal to noise ratio.

RSNR BMA1 BMA2 B1 B3 T1 T3

3 2.0494
0.0907

1.9042
0.0808

2.0050
0.0811

2.2307
0.0767

2.0674
0.0811

2.2730
0.0769

5 1.6817
0.0509

1.5643
0.0379

1.6366
0.0376

1.8625
0.0324

1.7019
0.0377

1.9003
0.0325

7 1.5821
0.0356

1.4763
0.0232

1.5405
0.0237

1.7673
0.0196

1.6068
0.0238

1.8043
0.0199

10 1.5271
0.0251

1.4278
0.0151

1.4879
0.0155

1.7148
0.0117

1.5548
0.0155

1.7512
0.0116

Table 3

ECM obtained for the Bumps data with four different signal to noise ratio.

RSNR BMA1 BMA2 B1 B3 T1 T3

3 6.6577
0.2094

6.7748
0.1491

6.8940
0.1297

8.3255
0.1136

7.2484
0.1288

8.5622
0.1144

5 6.2017
0.1294

6.3904
0.0862

6.5223
0.0718

7.9670
0.0608

6.8808
0.0717

8.2016
0.0615

7 6.0877
0.0913

6.3014
0.0611

6.4385
0.0511

7.8787
0.0438

6.7981
0.0510

8.1110
0.0446

10 6.0097
0.0630

6.2435
0.0383

6.3788
0.0335

7.8223
0.0295

6.7384
0.0332

8.0543
0.0300

the linear fit is better than the cubic and the bisquare kernel slightly better

than the tricube. However, for the functions Bumps and Doppler (see tables

3 and 4) the best results are obtained with BMA1, the first iteration of the

algorithm. This is not surprising as these functions are not very smooth and

a second iteration smooths the picks in the case of the bumps data and the

maximum and minimum in the case of the Doppler data. With regards to loess

the ressults are the same as before: the linear fit with the bisquare kernel has

the best performance.
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Fig. 7. Bumps function with different root of signal-noise ratio: 3, 5, 7, 10.
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Fig. 8. Doppler function with different root of signal-noise ratio: 3, 5, 7, 10.

5 Concluding Remarks

In this article a new method for fitting a curve is proposed. The proposed

method is very simple to apply and to programme. Furthermore, it is com-
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Table 4

ECM obtained for the Doppler data with four different signal to noise ratio.

RSRN BMA1 BMA2 B1 B3 T1 T3

3 1.0856
0.0809

1.1069
0.0765

1.2312
0.0815

1.3782
0.0832

1.2655
0.0814

1.4068
0.0838

5 0.7284
0.0349

0.8025
0.0308

0.8713
0.0355

1.0230
0.0332

0.9085
0.0354

1.0476
0.0336

7 0.6284
0.0215

0.7155
0.0193

0.7701
0.0250

0.9213
0.0203

0.8078
0.0248

0.9446
0.0200

10 0.5717
0.0137

0.6693
0.0116

0.7187
0.0157

0.8695
0.0125

0.7569
0.0156

0.8921
0.0125

pletely automatic and the Bayesian inference provides the predictive distri-

bution and credible intervals. The method takes into account the possible

polynomial models fitted locally to the data, and the consistency of the BIC

criterion , which provides the weights, guarantees that if the true model is a

polynomial of degree less than four, then asymptotically the true model will

be used for estimation.

In the Monte Carlo results we show that the method works better than meth-

ods of similar complexity, with kernels which take into account the distance

to the point of interest.
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