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1 Introduction

It has been a common practice in the past, to eliminate variables or individuals
to correct for dependencies among columns or rows when we sample from a
multivariate distribution. This solution in part, was due to the fact of not
having a distribution theory to handle all those cases. In a more formal way,
let Y ∈ IRN×m, be a sample of N individuals with m variables under study,
if there exist dependencies among rows (individuals) or columns (variables),
Y does not have a density with respect to the Lebesgue measure in IRNm.
However, it is known that Y has a density on a subspace M ⊂ IRNm on which
it is possible to define a measure called the Hausdorff measure, which coincides
with the Lebesgue measure when it is define on M. Details on this kind
of problems can be found in Dı́az-Garćıa et al. (1997) and Dı́az-Garćıa and
Gutiérrez-Jáimez (2001). They proposed expressions for the singular matrix
variate Normal distribution and singular matrix variate Elliptically contoured
distribution for which it is plausible to consider the dependencies among rows
or columns. In other words, we count now with a solution for the classical
multivariate statistical analysis when based on the Normal distributions and
also for the more general case called the generalized multivariate statistical
analysis based on the elliptical contoured distributions.

However, there still were other situations for which the problem of establishing
associated distributions for Y remained, for example: the Wishart distribution,
the matrix variate T or matrix variate F or Beta, among others. Two impor-
tant references in this line are, Dı́az-Garćıa et al. (1997) and Dı́az-Garćıa and
Gutiérrez-Jáimez (2001) since they solved the problem for the different ways of
defining the Wishart and Pseudo-Wishart distributions either for the central
or the noncentral cases. They worked the results for the Normal distribution
as well as the Elliptically contoured distributions. Note that Uhlig (1994),
found the central and nonsingular Pseudo-Wishart distributions based on the
Normal case before them. The distribution for the matrix variate T is found
indirectly when the singular matrix variate Elliptically contoured distribution
is established since the matrix variate T is a member of this family. Also,
Dı́az-Garćıa and Gutiérrez-Jáimez (1997) and Uhlig (1994) provide expres-
sions for the matrix variate F and Beta (central case), when only one type of
dependency is present.

When Y has a distribution with respect to the Lebesgue measure we could
find different ways of deriving the Wishart distribution. Some are base on
the QR decomposition, Roy (1957), Srivastava and Khatri (1979) and Muir-
head (1982), others on the single value decomposition (SVD), James (1954)
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and some others on the Polar decomposition, Herz (1955) and Cadet (1996).
What all of these approaches through different factorizations are trying to do
is to find an alternative coordinate system for the columns (or rows) for the
matrix Y . For example, the coordinates obtained from the QR decomposition
are called rectangular coordinates, Rao (1973, p. 597), for the Polar decom-
position, polar coordinates, Cadet (1996), etc. These matrices of coordinates,
besides of being the key part for establishing the Wishart, Pseudo-Wishart,
F and Beta distributions, as well as distributions of |Y ′Y | and tr Y ′Y among
others, play an important role in other areas of knowledge, in particular on
the Shape Theory and Pattern Recognition. As an example, if Y has a matrix
variate normal distribution, it may be written as Y = H1T , the QR decom-
position. In the context of Shape Theory, the distribution of T is called size-
and-shape distribution, also known in the literature as the rectangular coor-
dinates distribution, see Goodall and Mardia (1993), and Rao (1973, p. 597).
In the same setting of shape theory, when considering the SV (Y = V1DW1)
or polar (Y = P1R) decompositions, the matrices (D,W1) and R may both
be thought of as an alternative coordinates system, in such a way that the
corresponding distributions play the role of size-and-shape distributions, see
Goodall (1991), and Le and Kendall (1993). Similarly, matrix D is considered
as yet another coordinate system, and its corresponding distribution is called
size-and-shape cone distribution, see Goodall and Mardia (1993), Dı́az-Garćıa
et al. (2000) and Dı́az-Garćıa and Gutiérrez-Jáimez (2001). Some of these re-
sults were extended to the case in which Y has a singular Gaussian and a
singular elliptically contoured distribution, see Dı́az-Garćıa et al. (2000) and
Dı́az-Garćıa and Gutiérrez-Jáimez (2001). In the context of Pattern Recogni-
tion the role of some of these decomposition is also known, in particular the
SVD decomposition knows as the Karhunen-Lòeve Expansion or Decomposi-
tion, Kotz and Johnson (1982).

In the present work some results on distributions of random matrices, for
which their density function exist with respect to the Lebesgue measure, will
be extended to the case in which Y has a density with respect to the Hausdorff
measure, and moreover, to the case in which Y has a singular matrix variate
elliptically contoured distribution. In Section 2, the densities of matrices as-
sociated to the QR, modified QR, SVD and Polar decompositions are found
with respect to the Hausdorff measure, both for the non-central (see Theo-
rem 1) and central cases (see Corollary 3). These results are applied to the
Karhunen-Lòeve expansion and for two subfamilies of elliptically contoured
distributions, the matrix variate normal distribution and the matrix vari-
ate symmetric Pearson type VII distribution, (see Dı́az-Garćıa and González-
Farias, 1999). Finally, we present a discussion on Wishart and Pseudo-Wishart
density functions defined with respect to different measures.
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2 Density Functions

Notation. Let L+
m,N (q) be the linear space of all N ×m real matrices of rank

q ≤ min(N,m) with q distinct singular values. The set of matrices H1 ∈ Lm,N

such that H ′
1H1 = Im is a manifold denoted by Vm,N , called Stiefel manifold.

In particular, Vm,m is the group of orthogonal matrices O(m). Denote by Sm,
the homogeneous space of m×m positive definite symmetric matrices; S+

m(q),
the (mq − q(q − 1)/2)-dimensional manifold of rank q positive semidefinite
m×m symmetric matrices with q distinct positive eigenvalues; Tm denote the
group of m × m upper triangular matrices and T +

m is the group of m × m
upper triangular matrices with positive diagonal elements; T +

m,N the set of
N × m upper quasi-triangular matrices such that T = (T1|T2) ∈ T +

m,N , with
T1 ∈ T +

N and T2 ∈ Lm−N,N (N); T 1
m and T 1

m,N denote the set of unit upper
triangular or unit quasi-triangular matrices, respectively, such that tii = 1 for
all i; D(m) ⊂ Tm the diagonal matrices.

Now, let Y ∈ IRN×m be a random matrix with rank r(Y ) = q ≤ min(N,m)
and density function given by

1
(

r
∏

i=1

λ
k/2
i

)





k
∏

j=1

δ
r/2
j





h
(

tr Σ−(Y − µ)′Θ−(Y − µ)
)

(1)

E ′
1(Y − µ)M ′

2 = 0

E ′
2(Y − µ)M ′

1 = 0

E ′
2(Y − µ)M ′

2 = 0
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

















a. s. (2)

where A− is a symmetric generalized inverse of A, λi and δj are the nonzero
eigenvalues of Σ and Θ, respectively, and E1 ∈ Vk,N , E2 ∈ VN−k,N , M ′

1 ∈ Vr,m

and M ′
2 ∈ Vm−r,m. This is called Singular Elliptically Contoured Distribution

and is denoted as;

Y ∼ Ek,r
N×m(µ, Σ, Θ, h)

where Σ : m × m, r(Σ) = r ≤ m and Θ : N × N , r(Θ) = k ≤ N , see
Dı́az-Garćıa and Gutiérrez-Jáimez (2001).

Alternatively, this density may be expressed as

1
(

r
∏

i=1

λ
k/2
i

)





k
∏

j=1

δ
r/2
j





h
(

tr Σ−(Y − µ)′Θ−(Y − µ)
)

ν(dY ), (3)
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where ν() is the Hausdorff measure, which coincides with that of Lebesgue
when it is defined on the subspace M given by the hyperplane (2), see Dı́az-
Garćıa and Gutiérrez-Jáimez (2001), Cramér (1945, p. 297) and Billingsley
(1979, p. 209).

Now let Y ∼ Ek,r
N×m(µ, Σ, Θ, h), and define the generalized Wishart (N ≥ m)

or Pseudo-Wishart (N < m) matrix as S = Y ′Θ−Y . Let Q ∈ LN,k, such that
Θ = Q′Q, and define X = (Q−)′Y . Then

X ∼ Ek,r
k×m(µx, Σ, Ik, h)

with µx = (Q−)′µ in such a way that

S = Y ′Θ−Y = ((Q−)′Y )′(Q−)′Y = X ′X.

In this section, assuming that X ∼ Ek,r
k×m(µx, Σ, Ik, h) and that h is expanded in

power series, the densities of matrices T , R, (N, Ω), (D,W1) and D associated
with the QR, modified QR, SV, and Polar decompositions of matrix X are
found.

Theorem 1 (1) For k ≥ m or k < m, with q = min(k, r), the density of T
is given by

2qπqk/2
q
∏

i=1

tk−i
ii

Γq

[

1
2
k
]

(

r
∏

i=1

λ
k/2
i

)

∞
∑

t=0

∑

κ

h(2t)(tr(Σ−T ′T + Ω))

t!

Cκ(ΩΣ−T ′T )
(

1
2
k
)

κ

(T − Tµx
)M ′

2 = 0 a.s.

where µx = H1µx
Tµx

is the QR decomposition of µx.
(2) Assuming that k ≥ m, with q = min(k, r), the density of R is,

2qπqk/2|D|k−q
q
∏

i<j

(Dii + Djj)

Γq

[

1
2
k
]

(

r
∏

i=1

λ
k/2
i

)

∞
∑

t=0

∑

κ

h(2t)(tr(Σ−R2 + Ω))

t!

Cκ(ΩΣ−R2)
(

1
2
k
)

κ

(R − Rµx
)M ′

2 = 0 a.s.

where µx = P1µx
Rµx

is the polar decomposition of µx.
(3) For k ≥ m or k < m, with q = min(k, r), the density of (N,G) is given

by

2qπqk/2
q
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ii
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(NG − NGµx
)M ′

2 = 0 a.s.

where µx = H1µx
Nµx

Gµx
is the modified QR decomposition of µx.

(4) The joint density of D and W1 is

2−qπq(k−m)/2Γq

[
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m
]

|D|k+m−2q
q
∏

i<j
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Γq

[

1
2
k
]

(

r
∏

i=1

λ
k/2
i

)

∞
∑

t=0

∑

κ

h(2t)(tr(Σ−W1D
2W ′

1 + Ω))
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1)
(

1
2
k
)

κ

(DW ′
1 − Dµx

W ′
1µx

)M ′
2 = 0 a.s.

where µx = V1µx
Dµx

W ′
1µx

is the SVD of µx, (dD) =
∧q

i=1 dDii and

(dW1) =
(W ′

1dW1)

Vol(Vq,m)
.

(5) The density of D is given by

2qπq(k+m)/2
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jj)
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(

1
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k
)

κ
Cφ(Im)

(D − Dµx
)M ′

2 = 0 a.s.

where µx = H1µx
Dµx

W1µx
is the SVD of µx.

with Ω = Σ−µ′Θ−µ,
(

1
2
k
)

κ
is the generalized hypergeometric coefficient and

Cκ(.) is the zonal polynomial, see James (1964), Farrell (1985) and Muirhead
(1982)). The multiple addition operators ∆θ,κ

φ and Cθ,κ
φ are given in Davis

(1980), see also Chikuse (1980).

Proof.

(1) Considering the non-degenerated part of the density of X we have

1
(

r
∏

i=1

λ
k/2
i

)h(tr Σ−(X − µx)
′(X − µx))(dX)

or
1

(

r
∏

i=1

λ
k/2
i

)h(tr Σ−(X ′X + µ′
xµx) − 2 tr Σ−X ′µx)(dX).
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Factoring, X = H1T , from Theorem 11 (see Dı́az-Garćıa and González-
Farias, 2002) we have that the joint density (non-degenerated part) of H1

and T is given by

( q
∏

i=1

tk−i
ii

)

(

r
∏

i=1

λ
k/2
i

)h(tr(Σ−T ′T + Ω) − 2 tr Σ−T ′H ′
1µx)(H

′
1dH1)(dT )

where Ω = Σ−µ′
xµx = Σ−µ′Θ−µ. Assuming that h(·) can be expanded in

power series, (see Fan, 1990a), i.e.,

h(v) =
∞
∑

t=0

atv
t

and expanding the binomial, we have
( q
∏

i=1

tk−i
ii

)
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λ
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i

)

∞
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t=0

at

t
∑
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(

t
η

)

(tr(Σ−T ′T + Ω))t−η

(tr(−2µxΣ
−T ′H ′

1))
η(H ′

1dH1)(dT ).

Integrating on H1 ∈ Vq,k, noting that this integral equals zero when η
is odd (see James, 1964, eqs.(34)-(36)), the marginal (non-degenerated)
density of T may be expressed as
( q
∏

i=1

tk−i
ii

)

(

r
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λ
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i
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Integrating, see Muirhead (1982, Lemma 9.5.3, p. 397) and James (1964,
eq. 22), we have

∫
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1))
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Observing that 4η
(

1
2

)

η
=

(2η)!

η!
= 2η(2η − 1)!!, the non-degenerated part

is obtained (see Teng, Fang, and Deng, 1989).
The degenerated part is still considering the QR decomposition of µx =
H1x

Tµx
.

(2) Proof is similar to the one given in Theorem 1(1), considering in this case
the Jacobian given in Theorem 18 (1) in Dı́az-Garćıa and González-Farias
(2002).

(3) For proof of Theorem 1(3) and Theorem 1(4) use the Theorem 1 in Dı́az-
Garćıa and González-Farias (2002) and see Dı́az-Garćıa and Gutiérrez-
Jáimez (2001).

.

Remark 2 Observe that, if function h(·) is not easily expandable in power
series, an integral expression for the densities of T , R, (D,W1), (N,G) and
D may be found in an analogous form to the one given by Fan (1990b), for
the generalized Wishart matrix case.

From the Wishart matrix (or generalized Wishart matrix), the S = T ′T fac-
torization is known in the literature as Bartlett decomposition (central or
non-central). The density of T has been studied by different authors for the
central non-singular case (q = m ≤ N), as a function of both the density
of S and the density of X (S = X ′X ), see Srivastava and Khatri (1979, p.
74), Muirhead (1982, p. 99), Eaton (1983, p. 314), Fang and Zhang (1990, p.
119), amongs others. In the normal, non-central, non-singular case, Goodal
and Mardia (1992) and Goodall and Mardia (1993) study the density of T
when q = min(k,m), with k ≥ m and k < m, in the shape theory setting.
Later Dahel and Giri (1994), also under normal theory, find the density of T
for the case when r(µx) = 1.

Also, Olkin and Rubin (1964) study the density of R under a non-singular
central normal distribution, expressing the eigenvalues of R as a function of
the elements of S, for the case when q = m = 2. Dı́az-Garćıa et al. (1997),
under normal theory, find the non-central density of D2, when q = min(k,m).
This result is extended to the case of a singular non- central elliptical model by
Dı́az-Garćıa and Gutiérrez-Jáimez (2001). Among other results, Dı́az-Garćıa
et al. (2000) show that the density of D/||D|| in the central case, is invariant
under all the elliptically contoured distributions.

Next, the densities of T , R, (N,G), (D,W1) and D are presented for the central
case, µx = 0.

10



Corollary 3 (1) The central density of T is

2qπkq/2
q
∏

i=1

tk−i
ii

Γq[
1
2
k]

(

r
∏

i=1

λ
k/2
i

)h(tr Σ−T ′T )

TM ′
2 = 0 a.s.

(2) The central density of R is

2qπkq/2|D|k−q
q
∏

i<j

(Dii + Djj)

Γq[
1
2
k]

(

r
∏

i=1

λ
k/2
i

) h(tr Σ−R2)

RM ′
2 = 0 a.s.

(3) The central density of (N,G) is

2qπkq/2
q
∏

i=1

tk−i
ii

Γq[
1
2
k]

(

r
∏

i=1

λ
k/2
i

)h(tr Σ−G ′N2G)

NGM ′
2 = 0 a.s.

(4) The central density of (D,W1) is

2−qπq(k−m)/2Γq[
1
2
m]|D|k+m−2q

q
∏

i<j

(D2
ii − D2

jj)

Γq[
1
2
k]

(

r
∏

i=1

λ
k/2
i

) h(tr Σ−W1D
2W ′

1)

DW ′
1M

′
2 = 0 a.s.

(5) The central density of D is

2qπq(k+m)/2
q
∏

i=1

Dk+m−2q
ii

q
∏

i<j

(D2
ii − D2

jj)

Γq[
1
2
k]Γq[

1
2
m]

(

r
∏

i=1

λ
k/2
i

)

∞
∑

t=0

∑

κ

ht(0)Cκ(Σ
−)Cκ(D

2)

t!Cκ(Im)

DM ′
2 = 0 a.s.

Observe that when q = k ≤ m, in the QR, QDR and SVD decomposition,
and q = k = m in the Polar decomposition, two cases may be distinguished
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by their respective forms of H1, P1, V1 ∈ O(k). If we denote all those matrices,
H1, P1, V1 just as F , we get:

(1) F includes reflection, F ∈ O(k), |F | = ±1. In addition, for matrices T
and D, tkk ≥ 0 and Dkk ≥ 0.

(2) H1 excludes reflection, F ∈ SO(k), |F | = 1, tkk is not restricted, and in
the case of SVD if q = k = m sign(Dkk) = sign(|X|). Matrices T , (D,W1)
and R are denoted as T NR, (D,W1)

NR and RNR, respectively, Goodall
(1991, Section 4), Goodall and Mardia (1993) and Le and Kendall (1993,
Section 4).

In this way, those densities with reflection of T , R, (N,G), (D,W1) and D for
the central and non-central case, are given in 1 and Corollary 4, respectively.
For the case were reflection is excluded, we have the following result.

Corollary 4 When q = k ≤ m and r(µ) < k, the densities of T NR, RNR,
(N,G)NR and (D,W1)

NR are the same as those given in Theorem 1 (1), (2),
(3) and (4), respectively, divided by 2. In particular, for the density of T NR

((N,G)NR), tii ≥ 0 (nii ≥ 0), for i = 1, . . . , (k−1) and tkk (nkk) non-restricted,
similarly for the density of (D,W1), if q = k = m, sign(dkk) = sign(|X|).
When k > m, tkk is not present, see Srivastava and Khatri (1979), Goodall
and Mardia (1993) and Le and Kendall (1993). For the case of the distribution
of D, the densities, including and excluding reflection, are equal, see Goodall
and Mardia (1993, Section 7).

Proof. Expanding the exponential in Goodall and Mardia (1993, eq. 2.10) in
power series, and integrating term by term, it is established for r(Z) < k that

∫

SO(k)

(tr ZH)2t(H ′dH) = 1
2

∫

O(k)

(tr ZH)2t(H ′dH),

from which the result is obtained.

Remark 5 (Karhunen-Lòeve Decomposition) Given a matrix X ∈ L+
m,N (q)

the Karhunen-Lòeve expansion or decomposition (also known in the literature
as Proper Orthogonal Decomposition, Principal Component Analysis, the Sin-
gular Value Decomposition, Analysis by Empirical Eigenfunction and Hotelling
Transform, among other names), it could be written as,

X = AV ′

were A ∈ L+
r,N (r), r < q and V ∈ Vr,m, are matrices such that E(A) = 0,

A′U1A = Λ and R = E(X ′U1X) with U1 a matrix m × m which represents
a prior probability matrix. Moreover, if uij denote the ij-t́h element of U1, it
should be that 0 ≤ uii < 1,uij = 0, i 6= j, Kotz and Johnson (1982, p.357).

Observe that X ∼ Ek,r
m×n(0, Σ, Θ, h), the distribution of A could be found from
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the density given in Corollary 3(3). Note that such density includes a double-
sided Karhunen-Lòeve Decomposition introduced by Fernando and Nicolson
cited in Kotz and Johnson (1982, p.357), in which the correlation among rows
and columns is considered.

Now two particular cases of elliptically contoured distributions are considered,
the matrix variate normal distribution, and the class of matrix variate sym-
metric Pearson type VII distributions, Gupta and Varga (1993, pp. 75-76),
for which the density of R is found. The densities of T , (D,W1) and D are
obtained in a similar form.

Corollary 6 Let X ∼ Ek,r
k×m(µx, Σ, Ik, h), with h expanding in series of pow-

ers. Then,

(1) if X has a matrix variate normal distribution, the density of R is

2(2q−kr)/2πk(q−r)/2|D|k−q
q
∏

i<j

(Dii + Djj)

Γq[
1
2
k]

(

r
∏

i=1

λ
k/2
i

) etr(−1
2
(Σ−R2+Ω))0F1(

1
2
k; 1

4
ΩΣ−R2)

(R − Rµx
)M ′

2 = 0 a.s.

(2) if X has a matrix variate symmetric Pearson type VII distribution, the
density of R is

2qπk(q−r)/2Γ[b]|D|k−q
q
∏

i<j

(Dii + Djj)

Γq[
1
2
k]akr/2Γ[1

2
(2b − kr)]

(

r
∏

i=1

λ
k/2
i

)

∞
∑

t=0

∑

κ

(b)2t

(

1 +
tr(Σ−R2 + Ω)

a

)−(b+2t)

t!

Cκ

(

1

a2
ΩΣ−R2

)

(1
2
k)κ

(R − Rµx
)M ′

2 = 0 a.s.

where 0F1() is a hypergeometric function of matrix argument, James (1964)
and Muirhead (1982, p. 258).

Proof. The proof follows from Theorem 1(2), observing in addition that:

(1) For the normal case

h(v) =
1

(2π)kr/2
exp(−1

2
v),

therefore

h(2t)(v) =
1

22t+kr/2πkr/2
exp(−1

2
v).
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(2) For the Pearson type VII case

h(v) =
Γ[b]

(π a)kr/2Γ[b − kr/2]
(1 + v/a)−b,

then

h(2t)(v) =
Γ[b]

(π a)kr/2Γ[b − kr/2]

(b)2t

a2t
(1 + v/a)−(b+2t).

From which the results are obtained.

3 About Wishart and Pseudo-Wishart Distributions

Let Y ∼ Ek,r
N×m(µ, Σ, Θ, h), we want to find the distribution of the matix

Wishart or the generalized Pseudo-Wishart S = Y ′Θ−Y , were Θ−is a gener-
alized inverse of Θ. The density of S could be found through those of T , R,
(N, Ω) and (D,W1), with the help of theorems 13(1), 16, 15(1) and 3(1) in
Dı́az-Garćıa and González-Farias (2002), respectively. Other approach would
be by considering the density of X, S = Y ′Θ−Y = X ′X, were X = QY is such
that Q ∈ L+

N,k(k) with Θ = Q′Q, and using theorems 13(2), 18(2), 15(2) and
3(2) in Dı́az-Garćıa and González-Farias (2002), respectively. However, note
that depending on the factorization given to Y (X), there exist four measures
(dS) and therefore, four expression for the density of S. The genral density
form for any of those factorization, will be,

πqk/2|Ψ|(k−m−1)/2

Γq(
1
2
k)

(

r
∏

i=1

λk/2

)

∞
∑

t=0

∑

κ

h(2t)(tr(Σ−S + Ω))

t!

Cκ(ΩΣ−S)
(

1
2
k
)

κ

(dS) (4)

P2(S − µ′Θ−µ)P ′
2 = 0. (5)

where A− is a symmetric generalized inverse of A, Ω = Σ−µ′Θ−µ, Cκ(B) are
the zonal polynomials of B corresponding to the partition κ = (t1, . . . , tl) of
t, with

∑l
1 ti = t, (1

2
k)κ being the generalized hypergeometric coefficients, see

James (1964), and h(j)(·) is the j-th derivative of h with respect to v = tr Σ−S.

The matrix Ψ and the volumen (dS), are defined according to each factoriza-
tion and excluding the Polar decomposition, the density S can be found for all
the cases, i.e. when N ≥ m (Wishart distribution), N < m ( Pseudo-Wishart
distribution) and q = min(k, r) (singular and non singular cases), with k ≥ r
or k < r. In particular, we have:
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(1) QR decomposition. In this case the matrix Ψ is defined by S11, where if

T =

(

T1
q×q

... T2
q×m−q

)

then

S =









S11
q×q

S12
q×m−q

S21
m−q×q

S22
m−q×m−q









=







T ′
1

T ′
2







(

T1
...T2

)

=







T ′
1T1 T ′

1T2

T ′
2T1 T ′

2T2





 ,

and, |S11| = |T ′
1T1| = |T1|

2 =
q
∏

i=1

t2ii. In this way, the volumen with respect

to which the density of S = T ′T exist, is given by,

(dS) = 2q
q
∏

i=1

tm−i−1
ii (dT )

(2) Polar decomposition. Under this decomposition, the density of S = R2

can be established only when N ≥ m (Wishart distribution) and q =
k ≥ r (singular case). Here, the matrix Ψ is defined by L = D2, with
R = Q′

1DQ1 and the volumen (dS), is defined as,

(dS) = 2q|D|m−q+1
q
∏

i<j

(Dii + Djj)(dR) = |D|m−q
q
∏

i≤j

(Dii + Djj)(dR)

(3) QDR decomposition. Ψ would be defined as O, and the corresponding
volumen for which the density of S = Ω′OΩ will exist, is given by,

(dS) =
q
∏

i=1

om−i
ii (dΩ)(dO)

(4) Singular value decomposition. Here, S = W1LW ′
1, D2 = L = Ψ, and the

volumen (dS) is defined as,

(dS) = 2−q|L|m−q
q
∏

i<j

(Lii − Ljj)(dL)(W ′
1dW1)

This case has been worked in detail by Dı́az-Garćıa and Gutiérrez-Jáimez
(2001), for the elliptical case and in Dı́az-Garćıa et al. (1997) for the
Normal distribution case.
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