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1 Introduction

The estimation of linear panel data models with predetermined variables is typically

done by means of GMM estimators applied to the …rst di¤erences transformation of

the equation of interest, where all the available lags of the predetermined variables

are used as instruments. The purpose of this approach is to remove time-invariant

unobserved individual heterogeneity. However, this approach yields poorly precise es-

timates in the case of panel with a small number of time periods with highly persistent

data.

In this paper, we focus on the estimation of production functions from panel

datasets covering a large number of …rms observed for a small number of time periods.

In this context, as it has been stressed in Mairesse and Hall (1996), the application

of …rst-di¤erences GMM estimators with lagged levels of the series as instruments

has produced insatisfactory results. More speci…cally, the coe¢cient of the capital

stock is generally low and statistically nonsigni…cant, and returns to scale appear to

be unreasonably low.

Blundell and Bond (1999) suggest that the problem of “weak instruments” is be-

hind the poor performance of standard GMM estimators in this context. The fact

that the variables entering the production function modelling, i.e, …rm sales, capital,

and employment, are highly persistent, induces a weak correlation between the …rst

di¤erences and the lagged levels of these variables. This problem of weak instruments

can cause large …nite-sample biases and poor precision in the estimators. They also

show that these biases could be dramatically reduced by applying the extended GMM

estimator proposed by Arellano and Bover (1995). This estimator, labelled as “sys-

tem GMM”, is based on an augmented system which includes level equations with

lagged di¤erences as instruments in addition to the di¤erenced equations with lagged

levels as instruments. Blundell and Bond (1999) and Blundell, Bond and Windmeijer

(2000) apply this “system GMM” to the estimation of production functions from US

company panel data. They …nd that the system GMM greatly improves the per-

formance of the …rst-di¤erenced GMM estimator. Their estimation results provide

a strongly signi…cant capital coe¢cient, and con…rm that the lagged di¤erences are
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informative instruments for the endogenous variables in levels.

We exploit an unbalanced panel of 1272 Spanish manufacturing …rms between

1990 and 1997 from the Encuesta de Estrategias Empresariales to apply a similar

approach. We obtain both the …rst-di¤erenced and the system GMM estimator. Our

estimation results resemble the …ndings in Blundell and Bond (1999) and Blundell,

Bond and Windmeijer (2000), that a great improvement in terms of e¢ciency is

obtained with the system GMM estimator.

The rest of the paper is organized as follows. In the next section we describe our

speci…cation of the production function. Section 3 brie‡y describes the econometric

issues related to the …rst-di¤erenced and the system GMM estimator. Section 4

describes the dataset used in this study. Section 5 presents the estimation results

and Section 6 concludes.

2 The model

We consider a Cobb-Couglas production function without imposing constant returns

to scale:

Ynt = ant K
®K
nt L

®L
nt n = 1; :::; N ; t = 1; :::; Tn

where …rms are indexed by n and time is indexed by t; Ynt is production output of

…rm n at period t; Knt represents capital stock, Lnt is the employment and ant is a

productivity shock. Taking logarithms we obtain:.

ynt = ®K knt + ®L lnt + unt (1)

where ynt = ln(Ynt) , knt = ln(Knt); lnt = ln(Lnt) and unt = ln(ant): We specify the

following structure for the productivity shock:

unt = At + ´n + vnt (2)

vnt = ½ vn;t¡1 + »nt

where At is an aggregate e¤ect, ´n is a time invariant …rm-speci…c e¤ect, vnt is an

AR(1) idiosyncratic shock and the »nt are independently distributed with zero mean

and variance ¾2» :
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In order to estimate the parameters (®K ; ®L; ½) ; we formulate the dynamic rep-

resentation of (1):

ynt = ®K knt ¡ ®K ½ kn;t¡1 + ®L lnt ¡ ®L ½ ln;t¡1 + ½ yi;t¡1
+(At ¡ ½ At¡1) + (1¡ ½) ´n + »nt

(3)

or

ynt = ¼1 knt + ¼2 kn;t¡1 + ¼3 lnt + ¼4 ln;t¡1 + ¼5 yi;t¡1
+A¤t + ´

¤
n + »nt

(4)

subject to two non-linear restrictions: ¼2 = ¡¼1¼5 and ¼4 = ¡¼2¼5; and where

A¤t = At ¡ ½At¡1 and ´¤n = (1¡ ½)´n.
Given consistent estimates of the unrestricted parameter vector ¼ = (¼1; ¼2; ¼3; ¼4; ¼5)

0

and its variance-covariance matrix, the restrictions can be tested and imposed by min-

imum distance to obtain estimates for the restricted parameter vector (®K ; ®L; ½)
0.

3 First-di¤erenced and system GMM estimators

In order to ilustrate the problem of weak instruments in the …rst-di¤erenced GMM

estimator, Blundell and Bond (1999) consider an AR(1) model in which no additional

regressors have been included. Let us consider the following model

ynt = ½yn;t¡1 + ´n + »nt

with the usual assumptions:

E (´n) = 0; E (»nt) = 0; E (»nt´n) = 0 for n = 1; :::; N and t = 2; :::; T (5)

E (»nt»ns) = 0 for n = 1; :::; N and 8t 6= s (6)

and the standard additional assumption on the initial conditions:

E (yn1»nt) = 0 for n = 1; :::; N and t = 2; :::; T (7)

These assumptions imply the following orthogonality conditions:

E (yn;t¡s¢»nt) = 0 for t = 3; :::; T and 2 · s · t¡ 1 (8)
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We can construct a GMM estimator based on these moment conditions.

The instruments used in the …rst-di¤erenced GMM estimator are less informative

in two cases: when the autoregressive parameter ½ is close to 1 or when the variance of

the individual e¤ect, relative to the variance of »nt, is large. Considering the simple

case of T = 3; we have only one orthogonality condition and the …rst-di¤erenced

GMM estimator is just a simple instrumental variable estimator of ¼ in the equation:

¢yn2 = ¼yn1 + rn; for n = 1; :::; N (9)

Assuming stationarity and letting ¾2´ = var(´n) and ¾2» = var(»nt); the plim of the

OLS estimator of ¼, ¼̂ is given by:

p lim ¼̂ = (½¡ 1) k

¾2´
.
¾2» + k

where k =
1¡ ½
1 + ½

(10)

When ¼ is close to zero in (9), the instrument yn1 is only weakly correlated with

¢yn2: As we can see in (10), plim ¼̂ ! 0 as ½ ! 1 or as
³
¾2´

.
¾2»

´
! 1:

The performance of the estimation can be improved if we consider the additional

assumption on the initial conditions:

E (´n¢yn2) = 0 for n = 1; :::; N (11)

If condition (11) holds in addition with (5), (6) and (7), the following T ¡ 2

moment conditions are valid:

E [(´n + »nt)¢yn;t¡1] = 0 for t = 3; :::; T (12)

We can calculate a GMM estimator using the full set of moment conditions given

by equations (8) and (12).

The standard approach for testing the validity of the moment conditions in GMM

estimation is the Hansen-Sargan test of overidentifying restrictions. Under the null

hypothesis that moment conditions are valid, the test statistic given by the GMM

criterion multiplied by the sample size is asymptotically distributed as a chi-squared,

with degrees of freedom equal to the number of moment conditions minus the number

of parameters estimated. Since the system GMM estimator di¤ers from the …rst-

di¤erences GMM estimator by the additional moment conditions that the …rst one
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exploits, we can test for the validity of these additional conditions by means of a

Sargan di¤erence test. The statistic for such test is just the di¤erence between the

Hansen-Sargan statistics for each of these two estimators. Under the null that the

level moment conditions are valid (provided that the di¤erenced equations with lagged

levels as instruments are valid), the resulting statistic is asymptotically distributed

as chi-squared with degrees of freedom equal to the number of additional moment

conditions that the system GMM incorporates.

4 The data

The dataset used in this study has been taken from the Encuesta de Estrategias

Empresariales (ESEE) conducted by the Spanish Ministry of Industry and Energy.

It contains annual information of the balance sheet and other economic variables for

a large number of Spanish manufacturing …rms. Our sample is an unbalanced panel

of 1272 …rms between 1990 and 1997.

Table 1 shows the factor shares by industry. For each productive factor, capital

and labor, it has been calculated as the proportion that its payment represents over

the total payment of factors. As we can see, the average capital share is 0.450 and

the average labor share is 0.550 for the whole sample. There are some variations

by industry. The capital share (labor share) varies from 0.328 (0.672) in the leather

industry to 0.589 (0.411) in the iron, steel and metal industry.

Table 2 shows the distribution of …rms by industry and size, measured as the

number of employees. We have considered three categories which correspond to the

classi…cation that the European Comission establish to de…ne small, medium and

large …rms in terms of the number of workers. The …rst category, small …rms, is

composed by …rms with no more than 50 employees. The second one, medium …rms,

are those with more than 50 and no more than 250 employees. Large …rms are those

with more than 250 employees. As we can see, more than half of the …rms are small

…rms and only 27.44% are large …rms. There are important variations by industry.

While large …rms are in the majority at industries like iron, steel and metals, motor

vehicles or ship building, in industries like leather, garment or wood and furniture,
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more than two thirds of the …rms are small, according to the number of employees.

In Table 3 we can see the distribution of …rms by industry and size, where now the

size is measured by the annual turnover. Again, we have considered three categories

which correspond to the classi…cation that the European Comission establish to de…ne

small, medium and large …rms in terms of the annual turnover. The …rst category,

small …rms, is composed by …rms that invoice no more than 7 millions euros per year.

The second one, medium …rms, are those with a turnover greater than 7 and smaller

than 40 millions euros per year. Large …rms are those which invoice more than 40

millions euros per year. Only 15% of the …rms are in the third category according to

this criterion, while almost 60% are considered small …rms. By industry, again, large

…rms are more present in industries like iron, steel and metal and motor vehicles,

while small …rms are in the majority at industries like leather, garment, wood and

furniture and cellulose and paper edition.

Looking at tables 2 and 3 together, it can be seen that in industries in which the

majority are small …rms, the capital share is around 0.3 or 0.4, while in industries

where large …rms predominate, this share rises until 0.5.

5 Estimation results

We have obtained estimates of the production function (1). The results are reported

in Table 4. We report results for the two-step GMM estimator for both the …rst-

di¤erenced equations and the system. We take as instruments the lagged levels dated

t¡ 2 and earlier in the …rst-di¤erenced equations. As additional instruments in the

system GMM estimation, we take the lagged di¤erences dated t ¡ 1: Year dummies

have been included in both models. The non-linear restrictions implied by the tech-

nological parameters can be then tested and imposed by minimum distance.

Table 4 reports the unrestricted production function estimates, without imposing

constant returns to scale. The upper panel provides the estimates for the linear equa-

tion (4) using the …rst-di¤erences GMM and the system GMM estimator in the …rst

and second column, respectively. In the bottom panel, we recover the technological

parameters by means of a minimum distance estimator that exploits the constraints
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associated with the technological parameters. The …rst di¤erences GMM estimation

provides a positive though nonsigni…cant coe¢cient for the capital stock, yet the esti-

mated value does not appear to be unreasonably low, as it appeared to be in Mairesse

and Hall (1996) or Blundell and Bond (1999) for US company data. Nevertheless,

the gains of the system GMM estimation compared with the …rst-di¤erences GMM

estimates, are very apparent: the precision of all the estimates improves considerably,

specially in the estimation of the capital coe¢cient.

The speci…cation tests do not provide evidence against the model. First, the

orthogonality conditions in the …rst-di¤erenced equations with lagged levels dated

t ¡ 2 and earlier as instruments are not rejected. Second, the autocorrelation tests

m1 and m2 (see notes on Table 5) are consistent with the AR(1) structure that we

have assumed for the idiosyncratic error term. Third, the low value of the di¤erence

Sargan test clearly does not reject the additional orthogonality conditions associated

with levels equations with lagged di¤erences as instruments. Additionally, we can see

that constant returns to scale and non-linear restrictions are not rejected in none of

the models.

We have also estimated the parameters in the production function imposing con-

stant returns to scale. The results are reported in Table 5. Neither the Hansen-Sargan

test nor the …rst and second order autocorrelation tests provide any evidence against

the speci…cation. Again, the gains obtained with the system GMM estimation with

respect to the …rst-di¤erences GMM estimation, in terms of the precision of the esti-

mates, are noticiable.

6 Conclusions

In this paper we have estimated a Cobb-Douglas production function using a panel

dataset of Spanish manufacturing …rms. We have obtained both the standard …rst-

di¤erenced GMM estimator and the extended GMM estimator. Our estimation re-

sults con…rm the …ndings of Blundell and Bond (1999) for a panel of US companies.

When we apply the …rst-di¤erenced GMM estimator not imposing constant returns

to scale, we obtain poorly precise estimates. The precision of the estimates greatly
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improves when the extended GMM estimator is used. When we impose constant

returns to scale, the results from the …rst-di¤erenced GMM estimator are better that

not imposing that restrictions. Nevertheless, also in this case we obtain a great im-

provement in terms of e¢ciency when the system GMM estimator is applied. Both

imposing and not imposing constant returns to scale, we …nd that the additional

instruments used in the system GMM estimator are valid and informative.

As it is stressed in Blundell and Bond (1999), similar results have been found

when system GMM estimator has been applied in di¤erent contexts, such as labor

demand equations or investment equations, among others.
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Appendix

A Construction of variables

Employment: Number of employees is calculated at december 31th, as the sum of

permanent workers and the average number of temporary workers. The weights to

calculate the average number of temporary workers is: 1/4 if the average time in the

…rm is less than 6 months, 3/4 if the average time is more than 6 months and less

than one year and 1 if it is more than one year.

Output: Gross output at retail prices is calculated as total sales.

Capital stock: The dataset contains information on the book value and the

average age of the stock of …xed capital and the year of the last regulation. It also

includes data on gross nominal investment during the year. Following Alonso-Borrego

and Collado (1999), taking period t as reference year, the market value of the stock

of …xed capital in period t is calculated as:

Knt = (1¡ ±n)agentKBnt
qt
qmn

where agent is the average age of the capital stock of …rm n at period t; ±n is the

depreciation rate of the sector in which …rm n operates, KBnt is the book value of

the stock of …xed capital, qt is the price de‡ator of the stock of …xed capital and mn is

the year of the last regulation in …rm n: The price index is the GDP implicit de‡ator

of investment goods, which is constant over time. The depreciation rate varies across

sectors.

Taking t as the reference year, the market value of the stock of …xed capital for

any year s 6= t is calculated using a perpetual inventory method:

Kns = (1¡ ±n)Kn;s¡1
qs
qs¡1

+ Ins if s > t

Kns =
(Kn;s+1 ¡ In;s+1)

(1¡ ±n)
qs
qs+1

if s < t

where Ins is the investment accounted by the …rm n in period t: Using this approach

it is possible to obtain negative values of Kns for s < t: In that case the market
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value of the capital stock is set to missing. In an attempt to reduce this problem,

the market value of the capital stock for any …rm has been calculated using di¤erent

years as reference. Finally, the reference year was chosen to minimize the number of

missing values in the capital stock.

B Data description

Average factor shares by industry
Industry Capital Labor
Iron, steel and metal (22) 0.589 0.411
Bldg. materials, glass, ceramics (24) 0.489 0.511
Chemicals (25) 0.476 0.524
Non-ferrous metal (31) 0.411 0.589
Basic machinery (32) 0.342 0.658
O¢ce machinery (33) 0.360 0.640
Electric materials (34) 0.373 0.627
Electronic (35) 0.373 0.627
Motor vehicles (36) 0.502 0.498
Ship building (37) 0.373 0.627
Other motor vehicles (38) 0.497 0.503
Precision instruments (39) 0.371 0.629
Non-elaborated food (41) 0.523 0.477
Food, tobacco and drinks (42) 0.539 0.461
Basic Textile (43) 0.505 0.495
Leather (44) 0.328 0.672
Garment (45) 0.351 0.648
Wood and furniture (46) 0.424 0.575
Cellulose and paper edition (47) 0.478 0.522
Plastic materials (48) 0.504 0.496
Other non-basic (49) 0.432 0.568
Total 0.450 0.550

Table 1: Factor shares by industry
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Distribution of …rms by industry and size
lndustry Number of employees

<=50 51-250 >250 Total
Iron, steel Abs. freq 8 5 19 32
and metal % by ind. 25.00 15.63 59.38 100.00
(22) % by size 1.22 1.88 5.44 2.52
Building materials, Abs. freq. 46 22 21 89
glass, ceramics % by ind. 51.69 24.72 23.60 100.00
(24) % by size 7.00 8.27 6.02 7.00
Chemicals Abs. freq. 36 17 43 96

% by ind. 37.50 17.71 44.79 100.00
(25) % by size 5.48 6.39 12.32 7.55
Non-ferrous Abs. freq. 80 23 25 128
metal % by ind. 62.50 17.97 19.53 100.00
(31) % by size 12.18 8.65 7.16 10.06
Basic Abs. freq. 37 17 19 73
machinery % by ind. 50.68 23.29 26.03 100.00
(32) % by size 5.63 6.39 5.44 5.74
O¢ce Abs. freq. 0 0 1 1
machinery % by ind. 0.00 0.00 100.00 100.00
(33) % by size 0.00 0.00 0.29 0.08
Electric Abs. freq. 38 20 29 87
materials % by ind. 43.68 22.99 33.33 100.00
(34) % by size 5.78 7.52 8.31 6.84
Electronic Abs. freq. 8 8 15 31

% by ind. 25.81 25.81 48.39 100.00
(35) % by size 1.22 3.01 4.30 2.44
Motor vehicles Abs. freq. 7 17 29 53

% by ind. 13.21 32.08 54.72 100.00
(36) % by size. 1.07 6.39 8.31 4.17
Ship Abs. freq. 7 3 8 18
building % by ind. 38.89 16.67 44.44 100.00
(37) % by size 1.07 1.13 2.29 1.42
Other Abs. freq. 0 2 5 7
motor vehicles % by ind. 0.00 28.57 71.43 100.00
(38) % by size 0.00 0.75 1.43 0.55

Table 2: Firms distribution by industry and size (number of employees)
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Distribution of …rms by industry and size (cont.)
lndustry Number of employees

<=50 51-250 >250 Total
Precision Abs. freq. 2 3 3 8
instruments % by ind. 25.00 37.50 37.50 100.00
(39) % by size 0.30 1.13 0.86 0.63
Non-elaborated Abs. freq 80 32 33 145
food % by ind. 55.17 22.07 22.76 100.00
(41) % by size 12.18 12.03 9.46 11.40
Food, tobacco Abs. freq. 21 7 26 54
and drinks % by ind. 38.89 12.96 48.15 100.00
(42) % by size 3.20 2.63 7.45 4.25
Basic Abs. freq. 22 17 16 55
Textile % by ind. 40.00 30.91 29.09 100.00
(43) % by size 3.35 6.39 4.58 4.32
Leather Abs. freq. 10 3 1 14

% by ind. 71.43 21.43 7.14 100.00
(44) % by size 1.52 1.13 0.29 1.10
Garment Abs. freq. 73 21 15 109

% by ind. 66.97 19.27 13.76 100.00
(45) % by size 11.11 7.89 4.30 8.57
Wood and Abs. freq. 66 5 4 75
furniture % by ind. 88.00 6.67 5.33 100.00
(46) % by size 10.05 1.88 1.15 5.90
Cellulose and Abs. freq. 63 16 21 100
paper edition % by ind. 63.00 16.00 21.00 100.00
(47) % by size 9.59 6.02 6.02 7.86
Plastic Abs. freq. 35 23 11 69
materials % by ind. 50.72 33.33 15.94 100.00
(48) % by size 5.33 8.65 3.15 5.42
Other Abs. freq. 18 5 5 28
non-basic % by ind. 64.29 17.86 17.86 100.00
(49) % by size. 2.74 1.88 1.43 2.20
Total Abs. freq. 657 266 349 1272

% by ind. 51.65 20.91 27.44 100.00
% by size 100.00 100.00 100.00 100.00
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Distribution of …rms by industry and annual turnover
lndustry Avg. turnover (106 euros)

<7 7-40 >40 Total
Iron, steel Abs. freq 12 2 18 32
and metal % by ind. 37.50 6.25 56.25 100.00
(22) % by turn. 1.61 0.59 9.42 2.52
Building materials, Abs. freq. 55 28 6 89
glass, ceramics % by ind. 61.80 31.46 6.74 100.00
(24) % by turn. 7.39 8.31 3.14 7.00
Chemicals Abs. freq. 38 23 35 96

% by ind. 39.58 23.96 36.46 100.00
(25) % by turn. 5.11 6.82 18.32 7.55
Non-ferrous Abs. freq. 91 31 6 128
metal % by ind. 71.09 24.22 4.69 100.00
(31) % by turn. 12.23 9.20 3.14 10.06
Basic Abs. freq. 41 26 6 73
machinery % by ind. 56.16 35.62 8.22 100.00
(32) % by turn. 5.51 7.72 3.14 5.74
O¢ce Abs. freq. 0 0 1 1
machinery % by ind. 0.00 0.00 100.00 100.00
(33) % by turn. 0.00 0.00 0.52 0.08
Electric Abs. freq. 45 29 13 87
materials % by ind. 51.72 33.33 14.94 100.00
(34) % by turn. 6.05 8.61 6.81 6.84
Electronic Abs. freq. 11 14 6 31

% by ind. 35.48 45.16 19.35 100.00
(35) % by turn. 1.48 4.15 3.14 2.44
Motor vehicles Abs. freq. 10 28 15 53

% by ind. 18.87 52.83 28.30 100.00
(36) % by turn. 1.34 8.31 7.85 4.17
Ship Abs. freq. 8 7 3 18
building % by ind. 44.44 38.89 16.67 100.00
(37) % by turn. 1.08 2.08 1.57 1.42
Other Abs. freq. 0 2 5 7
motor vehicles % by ind. 0.00 28.57 71.43 100.00
(38) % by turn. 0.00 0.59 2.62 0.55

Table 3: Firms distribution by industry and size (annual turnover)
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Distribution of …rms by industry and annual turnover (cont.)
lndustry Avg. turnover (106 euros)

<7 7-40 >40 Total
Precision Abs. freq. 2 5 1 8
instruments % by ind. 25.00 62.50 12.50 100.00
(39) % by size 0.27 1.48 0.52 0.63
Non-elaborated Abs. freq 86 32 27 143
food % by ind. 59.31 22.07 18.62 100.00
(41) % by turn. 11.56 9.50 14.14 11.40
Food, tobacco Abs. freq. 23 12 19 54
and drinks % by ind. 42.59 22.22 35.19 100.00
(42) % by turn. 3.09 3.56 9.95 4.25
Basic Abs. freq. 31 20 4 55
Textile % by ind. 56.36 36.36 7.27 100.00
(43) % by turn. 4.17 5.93 2.09 4.32
Leather Abs. freq. 11 3 0 14

% by ind. 78.57 21.43 0.00 100.00
(44) % by turn. 1.48 0.89 0.00 1.10
Garment Abs. freq. 86 19 4 109

% by ind. 78.90 17.43 3.67 100.00
(45) % by turn. 11.56 5.64 2.09 8.57
Wood and Abs. freq. 68 6 1 75
furniture % by ind. 90.67 8.00 1.33 100.00
(46) % by turn. 9.14 1.78 0.52 5.90
Cellulose and Abs. freq. 66 20 14 100
paper edition % by ind. 66.00 20.00 14.00 100.00
(47) % by turn. 8.87 5.93 7.33 7.86
Plastic Abs. freq. 39 24 6 69
materials % by ind. 56.52 34.78 8.70 100.00
(48) % by turn. 5.24 7.12 3.14 5.42
Other Abs. freq. 21 6 1 28
non-basic % by ind. 75.00 21.43 3.57 100.00
(49) % by turn. 2.82 1.78 0.52 2.20
Total Abs. freq. 744 337 191 1272

% by ind. 58.49 26.49 15.02 100.00
% by turn. 100.00 100.00 100.00 100.00
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C Estimation results

GMM estimates
First di¤erences System

t¡ 2 t¡ 2
knt 0.332 0.444

(0.313) (0.154)
kn;t¡1 -0.348 -0.378

(0.203) (0.132)
lnt 0.754 0.568

(0.310) (0.199)
ln;t¡1 -0.609 -0.255

(0.212) (0.235)
yn;t¡1 0.849 0.724

(0.136) (0.097)

m1 -5.695 -7.572
p-value 0.000 0.000
m2 0.073 -0.563

p-value 0.942 0.574
Sargan 29.474 31.684
p-value 0.245 0.629

Dif. Sargan — 2.210
p-value — 0.980

Minimun distance estimates
®k 0.435 0.456

(0.225) (0.121)
®L 0.722 0.576

(0.231) (0.195)
½ 0.874 0.819

(0.082) (0.074)

p-value MD test 0.658 0.314
p-value CRS test 0.660 0.880

Table 4: Production function estimates. See notes on Table 5
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GMM estimates
First di¤erences System

t¡ 2 t¡ 2
knt 0.289 0.436

(0.154) (0.113)
kn;t¡1 -0.301 -0.368

(0.117) (0.092)
yn;t¡1 0.864 0.844

(0.090) (0.061)

m1 -7.446 -10.659
p-value 0.000 0.000
m2 0.036 -0.245

p-value 0.971 0.807
Sargan 25.811 39.539
p-value 0.529 0.357

Dif. Sargan — 13.728
p-value — 0.800

Minimun distance estimates
®k 0.357 0.436

(0.133) (0.109)
®L 0.643 0.564

— —
½ 0.878 0.844

(0.088) (0.058)

p-value MD test 0.382 0.993

Table 5: Production function estimates imposing constant returns to scale.
Standard errors in parenthesis
m1,m2: tests for …rst and second order correlation in …rst di¤erenced residuals
Sargan: Sargan test of overidentifying restrictions
Dif Sargan: test of the validity of the additional instruments in system estimation
MD: minimum distance
CRS: constant returns to scale
Year dummies included in all models
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