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1 Introduction

In this paper, we develop an estimation method of income distribution, with no a priori
assumptions, which leads us to detect the number and the constitution of subpopulations
and, at the same time, includes an explanatory model with a set of explanatory factors
that could explain differences between the distinct subpopulations.

In income distribution analysis, inequality and polarization are two conceptually
different approaches used as complements in empirical studies.

Inequality analysis can be used for different purposes, see Cowell (2000) and Maa-
soumi (1997) for relevant surveys. For instance, the shape of the income distribution can
be of primary interest. In such cases, parametric or non-parametric methods are used to
estimate income density functions. On the one hand, parametric estimation imposes a
priori strong assumptions such as unimodality. On the other hand, non-parametric es-
timation is less restrictive but is only descriptive and no inference can be implemented.
To go further, ranking inequality levels between several countries or periods in time
can be investigated. In such cases, inequality measures or Lorenz curves are computed
for each income distribution estimated from different samples, then they are compared.
Distribution-free inference for inequality measures and Lorenz dominance is now well
known, see Beach and Davidson (1983), Davidson and Duclos (1997, 2000). Finally, the
structure of inequality can be of primary interest and is often analysed by decomposing
a population. In such cases, the class of additively decomposable inequality measures
is widely used in practice, see Shorrocks (1980): subpopulations are defined by a set of
individual characteristics chosen a priori, such as age, ethnicity, sex (e.g. Cowell and
Jenkins 1995). Studying between-group inequality leads one to measure the impact of
these characteristics on inequality.

Polarization analysis is conceptually different. For instance, if we are interested in
the question of the “disappearing middle class” (e.g. Kuttner 1983, Thurow 1984), no
inequality measure is appropriate, see Levy and Murnane (1992). In fact, this question
is fundamentally different from the notion of inequality, and takes place in polarization
theory developed by Esteban and Ray (1994) and Wolfson (1994). A society is said
to be polarized if its population is divided into different groups or clusters. Studying
the formation of groups and the gap between richest and poorest is closely related to
understanding tension and social conflict. In empirical studies, the number and the
location of groups has to be fixed a priori, then polarization measures and curves can
be calculated. The main difference between inequality and polarization measures is that
most of inequality measures respect the Pigou-Dalton condition of transfers, equivalent
to the Lorenz curve criterion, which is the most basic axiom of inequality analysis.
This condition says that any transfer of income from an individual to a richer one
must increase inequality. However, this criterion is inconsistent with the concept of
polarization. As argued by Wolfson (1994), it reopens questions about the Pigou-Dalton
condition as the axiomatic foundation of inequality measures. In that sense, based on
a questionnaire experiment, Amiel and Cowell (1999, 2001) noted that a majority of
persons interviewed reject this condition as a part of their representation of inequality.
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All these different concerns of inequality and polarization analyses are usually im-
plemented independently in practice, with different a priori assumptions and different
tools. In this paper, based on mixture models, we develop a unique method to study
simultaneously these different and complementary concerns. From a theoretical point
of view, mixture models reunify standard estimation methods, from parametric to non-
parametric. From a practical point of view, these models benefit from the advantage
of parametric estimation as the interpretation of the parameters, and the advantage
of non-parametric estimation, namely that any distribution can be estimated without
restrictive hypothesis. But the success of mixture models is largely due to the decom-
position into different components, that can be easily interpreted as the inter-group and
intra-group variability.

Our starting point is as follows: when we look at a population which is not fairly
homogeneous, the observed population can be viewed as a mixture of several fairly
homogeneous subpopulations. From empirical studies on income distribution analysis
(Aitchison and Brown 1957, Weiss 1972), we know that the Lognormal distribution
fits homogeneous subpopulations well. From theory on mixture models we know that,
under regularity conditions, any probability density can be consistently estimated by a
mixture of normal densities (see Ghosal and van der Vaart 2001 for a recent result about
rates of convergence). Note that non-parametric Gaussian kernel density estimation is
a particular case of Gaussian mixture estimation. From the relationship between the
Normal and Lognormal distributions, it follows that any probability density with a
positive support (as for instance income distribution) can be consistently estimated by a
mixture of Lognormal densities. Then, with a finite mixture of Lognormal distributions,
we expect to estimate closely the true income distribution as the number of observations
tends to infinity. In this paper, we consider estimation of income distribution by mixtures
of Lognormal distributions. In addition, we supplement this estimation method by an
explanatory model for income distribution based on personal characteristics.

Finally, with personal income data and a set of personal characteristics, our explana-
tory mixture estimation gives us at the same time

1. an estimation of income distribution with no a priori assumptions.

2. a decomposition into several distinct homogeneous subpopulations.

3. an explanatory model to study the structure of income distribution.

In section 2, we compare mixture estimation of income distribution to standard para-
metric and non-parametric estimation. In section 3, we develop our explanatory mixture
estimation. Then, in section 4, we apply our method to study inequality and polarization
changes in Great Britain in the 1980s and 1990s.
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2 Estimation of income distribution

In general, income distribution is estimated with parametric or non-parametric esti-
mation. In this section, we consider a mixture of Lognormal distributions to estimate
income distribution. Let us assume that for a homogeneous subpopulation (a proportion
pk of the population) the logarithmic-transformation of the income is distributed as a
Normal distribution with mean µk and standard deviation σk. Then, the density func-
tion of the income distribution in the whole population is a finite mixture of Lognormal
densities, defined as,

f(y) =
K∑

k=1

pk Λ (y ; µk, σk) (1)

For a fixed number of components K, we can estimate f(y) by maximum likelihood, see
Titterington, Makov, and Smith (1985) and Lindsay (1995). We estimate the number
of components K as the K which minimises a criterion, such as the BIC (Schwarz,
1978) or the AIC (Akaike, 1973). Typically, K is substantially less than the sample size.
This method has been recently developed in the statistical literature, see Titterington,
Makov, and Smith (1985) and Lindsay (1995). Details of estimation can be viewed as
a simple case of the method developed in the next section. In the following, we study
the goodness of fit of mixture estimation compared to parametric and non-parametric
estimation.

2.1 Mixture vs parametric estimation

Let us assume that it is possible to fit an income distribution with a particular density
function that we can write as f(y; θ), where θ is a k-vector of unknown parameters. It is
of particular interest to find such a functional form to fit income distributions. Indeed,
it is very easy to compare two distributions, as for example the income distribution of a
population at two different periods in time, because we can explain the whole change by
noting the change in the k-vector of parameters θ. A great many parametric functional
forms have been employed in social science. One of them has been of particular interest
when studying income distribution: the Lognormal distribution. Cowell (1977) gives
many reasons to justify the use of this distribution. Firstly, this distribution has a simple
relationship to the Normal distribution and many convenient properties, such as easy
interpretation of parameters, non-intersecting Lorenz curves and invariance under log-
linear transformations. Secondly, the Lognormal distribution fits income distribution
well for a fairly homogeneous population. For instance, Aitchison and Brown (1957)
and Weiss (1972) show that the Lognormal fits particularly well data sets of different
fairly homogeneous sectors of the labour market. In many empirical analyses, observed
income distributions have an upper tail which is not well approximated by a Lognormal.
From these results, more flexible functional families have been developed with more
parameters. McDonald (1984) describes the link between different parametric functions
and show that the Singh-Maddala distribution fit data well in many cases.
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To compare mixture vs. parametric estimation, we make a simple simulation experi-
ment. Let us consider a sample y of N = 2,000 individual incomes drawn independently
from a Singh-Maddala density function,

f(y) =
abc yb−1

(1 + ayb)c+1 (2)

We use the parameters values a = 100, b = 2.8, c = 1.7, which closely mirrors the net
income distribution of German households, apart from a scale factor, see Brachman,
Stich, and Trede (1996). We obtain, from a mixture estimation based on y,

f̂(y) = 0.3197 Λ(−2.0992, 0.7604) + 0.6803 Λ(−1.8420, 0.4317) (3)

Furthermore, an estimation based on a single parametric Lognormal distribution gives

f̃(y) = Λ(−1.9242, 0.5710) (4)

Figure 1 show the Singh-Maddala distribution (2), the income distribution estimated by
mixture (3) and by Lognormal distribution (4). It is not surprising to see that a single
Lognormal distribution does not estimate a Singh-Maddala distribution well. However,
we can see that the Singh-Maddala distribution is very well fitted by a mixture of two
Lognormal distributions, especially the upper tail. This result suggests that we can
closely estimate the Singh-Maddala distribution with a mixture of several Lognormal
distributions. In our case, we can regard our population following a Singh-Maddala dis-
tribution as an aggregation of two distinct fairly homogeneous subpopulations. Mixture
distribution estimation allows us to estimate the number of groups, K, the proportion of
persons by groups, pk, and the parameters of Lognormal distributions, µk and σk. This
result can be easily interpreted in practice. For example, if we wish compare income
distributions of one population at two different periods in time with parametric estima-
tion and we show that Lognormal fits data well at period one, and that Singh-Maddala
distribution fits data well at period two. With mixture estimation, we could analyse this
evolution as the formation of several distinct groups in time.

2.2 Mixture vs non-parametric estimation

A basic hypothesis made by the use of a parametric function is that income distribution
belongs to the parametric family considered. When we study income distribution with
standard parametric family functions, an underlying hypothesis is that the distribution
is unimodal. This hypothesis has been shown to be very restrictive in some recent em-
pirical studies. Marron and Schmitz (1992) study the distributions of net income in
Great Britain in the 1970s. They show that modelling income distributions by a para-
metric Singh-Maddala family leads to misleading conclusions. They use non-parametric
methods and show with kernel density estimation that the densities of all years have a
bimodal structure. Their results make it clear that non-parametric estimation is very
useful to describe a density function. However, with these methods which are more
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robust, the lack of parametrisation can complicate the interpretation of the shape of the
distribution: estimation function is purely descriptive. Moreover, estimation is crucially
dependent on the choice of the smoothing parameter. Note that a Gaussian kernel esti-
mator is nothing but a mixture of K = n (n being the sample size) normal components
with the same variance h2 (h being the bandwidth).

Let us take the same data as Marron and Schmitz (1992) available in the ESCR
Data Archive at the University of Essex: Family expenditure Survey of the United
Kingdom, or FES. They use household incomes, with no use of equivalence scales, which
are normalized by the arithmetic mean of the year. Based on these data, figure 2 shows
the distribution of net income in Great Britain in 1973 estimated by Epanechnikov
kernel density with bandwidth h = 0.01, 0.2 and with an optimal bandwith h = 0.08328
that would minimize the mean integrated square error if the data were Gaussian and a
Gaussian kernel were used. We find similar results to Marron and Schmitz (1992, figure
2). We observe a bimodal density function, and a crucial dependence of the estimator
in the amount of smoothing: the first mode is higher than the second with h = 0.01
and smaller than the second with h optimal and h = 0.2. Our estimation by mixture of
Lognormal distribution gives the following results,

f̂(y) = 0.106 Λ(−1.321, 0.232) + 0.652 Λ(−0.141, 0.607) + 0.241 Λ(0.145, 0.259) (5)

and is plotted in figure 2 too; the observed population is a mixture of three fairly
homogeneous groups. The mixture curve shows that the first mode is higher than the
second, this curve is close to a smooth version of the kernel density with h = 0.01.
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Actually, it is well known that the optimal bandwith used (h = 0.08328) is usually too
wide and oversmooths the density for multimodal and highly skewed densities (Silverman
1986). Income distribution is usually highly skewed and in our case, the data generate
multimodality. Then, we can suspect that the curve of kernel density with optimal
bandwidth oversmooths the income distribution and reduces the first mode too much.
As we have seen from figure 2, mixture estimation is similar to a smooth version of
a kernel density estimation with a smaller bandwith h = 0.01 which does not reduce
the first mode so much. Then, our results make clear that the mixture distribution
estimate income distribution well, without any problem with the choice of the smoothing
parameter and with a parametric form easy to interpret.

3 Explanatory mixture model

We have seen in the last section that we can closely estimate income distributions with
a mixture of Lognormal densities. However, this estimation technique is unidimensional
and has no explanatory power. In this section, we extend this estimation method in order
to explain the structure of income distribution, based on individual characterictics.

Mixture estimation decomposes income distribution into several distinct Lognormal
distributions. We make the hypothesis, justified by the previous empirical studies of
Aitchison and Brown (1957) and Weiss (1972), that each Lognormal component defines
a homogeneous subpopulation. Note that, as with the number of modes used to detect
heterogeneity, the number of components in the mixture is invariant under a continuous
and monotonic transformation of income Y . It follows that, if Y is a mixture of K Log-
normal densities, then log(Y ) is a mixture of K Normal densities. Then, our hypothesis
is equivalent to supposing that a homogeneous subpopulation is defined by a Normal
density in the distribution of the logarithmic transformation of income log(Y ).

We now explain the differences between these distinct homogeneous subpopulations.
We suppose that an individual’s belonging to a specific subpopulation is not purely ran-
dom, and can be explained by some individual characteristics. For instance, households
with no adult working are expected to be more represented in the bottom of the in-
come distribution, compared to households with all adults working. In other words, it
means that individuals do not necessarily have the same probability to belong to each
subpopulation and these differences can be explained by individual characteristics. In
our model, it follows that, conditionally on a vector of individual characteristics Xi, or
explanatory variables, the income of the ith individual is distributed as the mixture

f (yi|Xi) =
K∑

k=1

pik Λ (yi; µk, σk) (6)

where pik is the probabilitity of individual i to belong to the homogeneous subpopulation
k. We define pik as the probability of a random variable to belong to an interval defined
with the characteristics Xi of this individual. Details of the model and its estimation
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are given in the following subsections. A simple case is previously developed to illustrate
and justify this approach.

3.1 Simple case

Let us taken a simple case: a population is a mixture of two homogeneous subpopula-
tions, in the sense that the distribution of this population is a mixture of two Normal
distributions with different parameters. We can express this model with a binary vari-
able Zi, equal to 0 if individual i belongs to the first group and equal to 1 if individual
i belongs to the second group, i = 1 . . . n. Conditionally on Zi ∈ {0, 1}, the logarithmic
transformation of income Yi of individual i follows the distribution

F (yi|Zi) = ZiN1 (yi) + (1− Zi) N2 (yi) , (7)

where N1 et N2 are respectively two Normal distribution of the first and of the second
groups. Then, we have two cases.

The simplest case is if we can observe Z for each individual i, i = 1 . . . n. In such
cases, we can create two distinct samples for each group and estimate the two Normal
distributions from them independently. Then we can study variability in each group
independently with explanatory factors, without any bias from heterogeneity in the
whole population.

However, in general, we don’t know which group each individual belongs to: we
observe only the result of the mixture of several groups. If we don’t know anything
about Z, we can express it as a random variable following a Binomial distribution with
parameter p, this parameter is a probability which can be viewed as the proportion of
individuals belonging to one of the two groups. Then, conditional model (7) cannot be
observed, only the following marginal model is observed

F (yi) = pN1 (yi) + (1− p) N2 (yi) , (8)

The main point we are interested in is to explain the distribution of individuals accross
groups by means of explanatory factors, or individual characteristics, as in regression
analysis. Let us denote by Xi a 1×l vector of explanatory factors, β a l-vector of unknown
parameters and Xiβ a linear combination of these factors. With Zi a continuous variable,
we could have used a simple linear regression Zi = Xiβ + εi where the error term εi is
white noise. However, Zi is binary, and so we have

Zi =

{
1 if Xiβ + εi ≥ γ
0 if Xiβ + εi < γ

,

where γ is an unknown bound to be estimated. Without loss of generality, the dis-
tribution of the error term εi is with expectation zero and variance equal to one. If
Xi contains a constant term, it is impossible to identify the constant along with γ. A
solution to this problem of identification is to replace Xi by the vector of the centered
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explanatory variables Xc
i = Xi− X̄, with X̄ = n−1

∑n
i=1 Xi. We adopt this solution. As

in standard regression, estimation and inference on parameters β leads us to select ex-
planatory factors which significantly explain variability between groups. Each individual
i, with i = 1 . . . n, has now his/her own probability to belong to the first group

P (Zi = 1) = P (εi ≥ γ −Xc
i β)

= 1−G (γ −Xc
i β) ,

where G (.) is a continuous cumulative distribution function (cdf) of a probability distri-
bution, with expectation zero and variance unity. Consequently, for each individual, the
probability to belong to the first group is equivalent to the probability that a random
variable belongs to an interval with bounds which depend on the values of individual
explanatory factors.

In the following, we choose G(.) as the cumulative standard normal distribution
function Φ(.), as used in ordered probit models, and we extend this model to the general
case of K groups.

3.2 Model

Let Ui = Xc
i β+εi, (i = 1, 2, . . . , n) , where Xc

i is a centered vector of explanatory factors
for the ith individual, β a l-vector of parameters and εi are i.i.d. random variables, with
the common distribution N (0, 1). Now, for k = 1, 2, , . . . , K, let

Zik =

{
1 if Ui ∈

[
γk−1, γk

[
0 if Ui /∈

[
γk−1, γk

[ ,

where −∞ = γ0 < γ1 < . . . < γK−1 < γK = +∞.
It is assumed that, given the vectors Zi = (Zi1, Zi2, . . . , ZiK) , the observed logarithmic
transformations of income Yi are independent and distributed according to the density

f (yi|Zi) =
K∑

k=1

Zik ϕ (yi; µk, σk) , (9)

where ϕ (.; µ, σ) is the density function of the Normal distribution with mean µ and
standard deviation σ. To avoid problems of non identifiability, we assume that µ1 <
µ2 < . . . < µK .
Note that the components of the vector Zi are independent and distributed according
to the multinomial distributions M (1; pi1, pi2, . . . , piK) , where

pik ≡ E (Zik) = Φ (γk −Xc
i β)− Φ

(
γk−1 −Xc

i β
)
, (10)

From the previous model, it follows that marginally, the Yi are independent and dis-
tributed according to the mixture densities

f (yi|Xi) =
K∑

k=1

pik ϕ (yi; µk, σk) . (11)
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Moreover, given yi, it can be shown that the Zi are independent and Multinomial
M (1; p′i1, p

′
i2, . . . , p

′
iK) , where

p′ik ≡ E (Zik|yi) =
pik ϕ (yi; µk, σk)∑K
j=1 pij ϕ

(
yi; µj, σj

) . (12)

Let µ = (µk)k , σ = (σk)k , and γ = (γk)k . The log-likelihood function of the parameters
θ = (µ, σ, γ, β) is equal to

`n(θ, y) =
n∑

i=1

log

[
K∑

k=1

pik ϕ (yi; µk, σk)

]
(13)

The maximum likelihood estimator (MLE) can be found by equating to zero the first
derivatives of `n(θ, y) with respect to the different parameters. There is no explicit
solution to this system of equations and an iterative algorithm may be used.

3.3 Estimation

The log-likelihood function (13) is not necessarily globally concave with respect to the
unknown parameters θ, and so Newton’s methods can diverge. Another approach is often
used to estimate mixture models: for a fixed K, an easy scheme for estimating θ is the
EM algorithm (Dempster et al., 1977), the “missing data” being Z = (Zik)i,k . However,
one key feature of the EM algorithm is that it commonly displays a very slow linear rate
of convergence. We choose to use the EM algorithm initially to take advantage of its
good global convergence properties and to then exploit the rapid local convergence of
Newton-type methods by switching to a direct Maximum Likelihood (ML) estimation
method, see for instance Redner and Walker (1984) and McLachlan and Peel (2000).

Let us define the EM algorithm: assume for a moment, that Z is observed, then the
full log-likelihood of the observations is

`n (θ, Z, y) =
n∑

i=1

K∑
k=1

Zik (log ϕ (yi; µk, σk) + log pik)

The first derivatives of this log-likelihood with respect to θ are

∂`n (θ, Z, y)

∂µk

=
n∑

i=1

Zik
(yi − µk)

σ2
k

, k = 1, 2, . . . , K, (14)

∂`n (θ, Z, y)

∂σk

=
n∑

i=1

Zik

[
(yi − µk)

2

σ3
k

− 1

σk

]
, k = 1, 2, . . . , K, (15)

Then, for j = 1 . . . l,

∂`n (θ, Z, y)

∂βj

= −
n∑

i=1

Xc
ij

K∑
k=1

Zik

pik

[
ϕ (γk; X

c
i β, 1)− ϕ

(
γk−1; X

c
i β, 1

)]
(16)
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and since γ0 and γK are fixed, for k = 1, 2, . . . , K − 1,

∂`n (θ, Z, y)

∂γk

=
n∑

i=1

ϕ (γk; X
c
i β, 1)

[
Zik

pik

−
Zi(k+1)

pi(k+1)

]
(17)

But Z is unobserved. In the iterative EM procedure, the conditional expectation of the
full likelihood given the observations y is first evaluated (E step), then this “predicted”
log-likelihood is maximised with respect to θ (M step). Applying this procedure to our
case, we obtain the following double step.

• E-step: Given θ, the missing data Zik are replaced by their conditional expectation

p′ik ≡ E (Zik|θ, yi) =
pik ϕ (yi; µk, σk)∑K
j=1 pij ϕ

(
yi; µj, σj

) ,

• M-step: Given the previous predictions of the missing data, the estimates of θ are
obtained by maximising the expression `n (θ, p′, y) : the equations ∂`n (θ, p′, y) /∂µ =
0 and ∂`n (θ, p′, y) /∂σ = 0 give the explicit estimates

µ̂k =
1

Nk

n∑
i=1

p′ikyi, and σ̂k =

√√√√ 1

Nk

n∑
i=1

p′ik (yi − µ̂k)
2,

where Nk =
∑n

i=1 p′ik, is the current estimate of the number of observations in the
kth cluster, k = 1, 2, . . . , K.
Current estimates of β and γ are computed via an iteration of a Newton algorithm
based on the first derivatives

∂`n (θ, p′, y)

∂βj

= −
n∑

i=1

Xc
ij

K∑
k=1

p′ik
pik

[
ϕ (γk; X

c
i β, 1)− ϕ

(
γk−1; X

c
i β, 1

)]
for j = 1 . . . l, and

∂`n (θ, p′, y)

∂γk

=
n∑

i=1

ϕ (γk; X
c
i β, 1)

[
p′ik
pik

−
p′i(k+1)

pi(k+1)

]
for k = 1, 2, . . . , K − 1.

These two steps are iterated until some convergence criterion is met.

The next step is the use of the Maximum Likelihood estimation, based on Newton’s
methods. These methods are well known and largely used in practice to maximise
multidimensional functions, see Press et al. (1986) for algorithmic details. Note that
after each iteration, it is necessary to sort parameter estimates (µ̂k, σ̂k, γ̂k) by increasing
µ̂k ; standard errors of the parameter estimates are given by the square root of the
diagonal components of the inverse of the information matrix.
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3.4 Simulations

In mixture models, and consequently in our “explanatory” mixture model, the presence
of significant multimodality in finite sample has a number of important consequences
(Lindsay 1995).

The first implication is that the solution of the algorithm employed can greatly
depend on the initial values chosen. Starting values can be chosen in different ways,
for instance Finch, Mendell, and Thode (1989) suggest the use of multiple random
starts, Furman and Lindsay (1994) investigate the use of moment estimators. However,
there is no best solution. In our experiments, we estimate initial values of the mean
µ and of the standard deviation σ with robust statistics: from a sorted subsample, we
compute the median and the interquartile range in K subgroups with the same number
of observations. This choice works fine in many simulation experiments.

The second implication is that a simulation study can be highly dependent on the
stopping rules and search strategies employed. Then, it can be difficult to compare
simulation studies. In mixture models, a problem of convergence can be encountered
when the proportion of observations in a subgroup is too small: it can come from initial
values too far from the true values of parameters, or when K, the number of components
chosen, is too large. We decide to reduce the number of components when the current
estimation of the number of observations in a subpopulation is equal to zero (Nk = 0).

In our simulations, we consider the explanatory mixture model defined in (6) and (10)
with the following values,

µk = 2 k σk = 0.5 + (k/100)(−1)k γk = −3 + 6 k/K and βj = (−1)j (18)

for j = 1, . . . , l. These values are chosen to have distinct Lognormal distributions with
quite similar, but different, variances and proportions of individuals in each distribution.
We define the n × l matrix of regressors X by drawing observations from the Normal
distribution N(0, 1). In our experiments, the number of observations (n = 500) and the
number of regressors (l = 5) are fixed, the number of component is respectively equal to
K = 2, 4, 6, 8. For each value of K, we draw 5,000 samples and we estimate µk, σk, γk

and βj with a mixture model with K components1. Then, we compute the mean and
the standard deviation of the 5,000 realisations obtained for each parameter.

Results are given in table 1, with true values given in the second column, note that
the true values of γk are not given because they are not the same for different values of K.
From this table, we can see that the unknown parameters are very well estimated with
the explanatory mixture model: means are very close to the true values and standard
deviations are small. Additional experiments could be done. However, our goal is not to
address a complete simulation study, because of the preceding reasons and because there
are many experiments in the unidimensional case already done, as for instance Finch,
Mendell, and Thode (1989), Furman and Lindsay (1994). From our experiments, the

1We fix the number of components K in the mixture estimation equal to the number of components
in the data simulation process. We do not address the issue of the choice of K in these simulations.
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true K = 2 K = 4 K = 6 K = 8
µ̂1 2 2.000 (0.033) 2.001 (0.045) 2.000 (0.053) 1.998 (0.056)
µ̂2 4 4.000 (0.035) 3.999 (0.062) 3.998 (0.089) 3.996 (0.125)
µ̂3 6 6.002 (0.054) 6.000 (0.074) 6.000 (0.101)
µ̂4 8 7.999 (0.051) 8.001 (0.085) 7.997 (0.110)
µ̂5 10 10.001 (0.072) 10.000 (0.087)
µ̂6 12 12.000 (0.061) 11.995 (0.117)
µ̂7 14 14.000 (0.090)
µ̂8 16 16.000 (0.069)
σ̂1 0.49 0.489 (0.024) 0.487 (0.034) 0.486 (0.039) 0.485 (0.043)
σ̂2 0.52 0.519 (0.025) 0.519 (0.056) 0.520 (0.090) 0.525 (0.132)
σ̂3 0.47 0.468 (0.048) 0.468 (0.073) 0.469 (0.109)
σ̂4 0.54 0.537 (0.038) 0.538 (0.091) 0.543 (0.137)
σ̂5 0.45 0.450 (0.069) 0.446 (0.093)
σ̂6 0.56 0.555 (0.046) 0.561 (0.135)
σ̂7 0.43 0.431 (0.106)
σ̂8 0.58 0.575 (0.054)
γ̂1 -0.019 (0.098) -1.548 (0.126) -2.058 (0.137) -2.319 (0.144)
γ̂2 -0.019 (0.097) -1.034 (0.108) -1.541 (0.122)
γ̂3 1.508 (0.121) -0.020 (0.099) -0.784 (0.113)
γ̂4 0.997 (0.106) -0.017 (0.100)
γ̂5 2.014 (0.129) 0.739 (0.106)
γ̂6 1.509 (0.121)
γ̂7 2.279 (0.139)

β̂1 -1 -1.037 (0.137) -1.019 (0.082) -1.017 (0.072) -1.020 (0.067)

β̂2 1 1.035 (0.128) 1.019 (0.080) 1.016 (0.071) 1.017 (0.068)

β̂3 -1 -1.038 (0.137) -1.020 (0.083) -1.017 (0.072) -1.019 (0.069)

β̂4 1 1.036 (0.125) 1.020 (0.077) 1.018 (0.067) 1.020 (0.065)

β̂5 -1 -1.034 (0.136) -1.019 (0.083) -1.017 (0.072) -1.019 (0.071)

Table 1: Simulation results: mean and standard deviation of 5,000 realisations

main result is that explanatory mixture model estimation works fine when the observed
population is defined as a mixture of sufficiently distinct subpopulations.

3.5 Interpretation

From our explanatory mixture model, we can make few remarks about its use in practice.

• Let us consider model (6), with individual probabilities pik defined in (10). Under
the null hypothesis H0 : βj = 0, the individual characteristic Xij is not significant in
pik. A t-test can be easily computed: we divide the parameter estimate by its standard
deviation, as is done in standard linear regression. If we reject the null hypothesis
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βj = 0, it means that individual probabilities are not the same and therefore, that the
characteristic Xij is statistically significant to explain “inter-subpopulation” variability.

• A nice feature of model (6) is that we estimate conditional distributions for each
individual. In our model, individual characteristics appear only in the probability to
belong to a subpopulation. Then, it is clear that if we reject the null hypothesis βj =
0, we can conclude that individual characteristic Xij is statistically significant in the
conditional distribution f(yi|Xi). Non-parametric methods are used in the literature to
have a plot of a conditional distribution, based on bivariate distributions. For instance,
Pudney (1993) study the relationship between age and income distributions. He uses plot
and contour plot of the conditional distribution to have an idea of this relationship and he
computes inequality measures based on conditional distributions. These non-parametric
methods are often restricted to the use of two dimensions, that is to say, income with one
additional characteristic. Note that similar studies could be done, based on conditional
distributions estimated by mixture (6), with more than two dimensions.

• An interesting interpretation of parameter βj, j = 1, . . . , l, is to explain individual
position in the income distribution, based on individual characteristics Xij,

If β̂j > 0 (respectively β̂j < 0), then the individual position moves in the direction
of the upper part of the income distribution (respectively to the bottom) when Xij

increases.

To describe this result formally, we define the individual “position” in the income dis-
tribution as Pi =

∑K
k=1 p̂ik µ̂k, recall that µ̂k are sorted in increasing order. Then, the

partial derivative of Pi with respect to Xij measure the influence on Pi of a change in
the value of Xij,

∂Pi

∂Xij

= −β̂j

[
K∑

i=1

(
ϕ

(
γ̂k; Xiβ̂, 1

)
− ϕ

(
γ̂k−1; Xiβ̂, 1

))
µ̂k

]

= β̂j

[
K−1∑
i=1

ϕ
(
γ̂k; Xiβ̂, 1

) (
µ̂k+1 − µ̂k

)]

The right term, in brackets, is always positive. Then, we can see that, if βj is positive,

Pi increases if Xij increases. In addition, we can see that the first term β̂j does not
depend on the component k, and the last term, in brackets, is specific to the component
k. Then, we can view β̂j as the overall influence of the characteristic j on the position
of the individual i in the income distribution. A large negative value, relatively to its
standard deviation, shows an income position of individuals with characteristic j clearly
in the bottom of the income distribution. A large positive value shows an income position
clearly in the top of the income distribution.

• To have a plot of the whole income distribution, we can use an estimate of the
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marginal distribution,

f̂(y) =
K∑

k=1

p̄k Λ (y ; µ̂k, σ̂k) with p̄k =
1

n

n∑
i=1

p̂ik (19)

where p̄k is the average proportion of individuals in subpopulation k, calculated as the
mean of the estimated individual probabilities to belong to this subpopulation.

4 Application

We analyse the position of particular households in the income distribution and relative
income changes between 1979 and 1996. The data used have been derived from the
Family Expenditure Survey (FES), which is a continuous survey of samples of the UK
population living in households. Data were made available by the ESCR Data archive
at the University of Essex: Department of Employment, Statistics Division. We take
disposable household income (i.e., post-tax and transfer income) before housing costs.
To compare household income between households with different sizes, we divide house-
hold income by an adult-equivalence scale defined by McClements. Furthermore, we
exclude the self-employed from the data, as recommended by the methodological review
produced by the Department of Social Security (1996): some evidence suggests that
the survey questions prior to 1996/7 lead us to an under estimation of self-employed
household income that can distort the income distribution for the whole population.
To restrict the study to relative effects, the data for each year have been normalized
by the arithmetic mean of the year. In addition, the data give us the composition of
households: for each person of a househould we know its sex, age, labour force status
(employee, selfemployed, unemployed, inactive, student). For a detailed description of
data, known as HBAI-like data, and McClements equivalent scale, see the annual report
produced by the Department of Social Security (1998).

Based on these data, Jenkins (2000) and the annual report produced by the Depart-
ment of Social Security (1998) show that having increased during the 1980s, inequality
appears to have fallen slightly during the 1990s. Table 2 shows Theil, Mean Logarithmic

Theil MLD Gini

1979 0.1066 (0.0023) 0.1056 (0.0020) 0.2563 (0.0023)
1988 0.1619 (0.0053) 0.1542 (0.0036) 0.3074 (0.0034)
1992 0.1794 (0.0065) 0.1743 (0.0046) 0.3214 (0.0037)
1996 0.1507 (0.0046) 0.1457 (0.0036) 0.2976 (0.0033)

Table 2: Inequality measures over years

Deviation and Gini indexes, with their standard deviations in parentheses, for the years
1979, 1988, 1992 and 1996. All these inequality measures increase considerably from
1979 to 1988 and decrease from 1992 to 1996.
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In this section, we analyse this evolution of inequality over the years with the use of
the method we proposed in the preceding section, a mixture estimation with explanatory
variables. We define an adult as a person aged 19 or over, or a 16 to 18 year old not
student, otherwise it is a child. Then, we consider the following characteristics:

Xi1 - Pensioner : the head of the family is a person of state pension age or above (65
for men, 60 for women).

Xi2 - Lone parent family : a single non-pensioner adult with children.

Xi3 - All-working : non-pensioner household with all adults working.

Xi4 - Non-working : non-pensioner household with all adults not working.

Xi5 - Number of children

Note that Xi1, Xi3 and Xi4 are mutually exclusive variables (a pensioner household can-
not be a non-working or all-working household), not Xi2 and Xi5 (a lone parent family
is a non-working or all-working household too). We use the explanatory mixture estima-
tion with the dummy variables Xi1, Xi2, Xi3, Xi4 and Xi5 as a set of explanatory factors.
Our estimation by a mixture of Lognormal distributions with explanatory variables leads
to the following results,

f̂(y|Xi) =
K∑

k=1

p̂ik Λ (µ̂k, σ̂k) (20)

Numerical results are given in appendix and in table 3 for the years 1979, 1988, 1992
and 1996. From these results, we begin by studying changes in the shape of the income
distribution. Then, we study changes in the structure of the income distribution through
parameter estimates of the explanatory variables Xi1, Xi2, Xi3, Xi4 and Xi5 as defined
above.

4.1 The Shape of the Income Distribution

Figures 3, 4, 5 and 6 plot the marginal distribution of our estimation by mixture with ex-
planatory variables (mixture) and the several Lognormal distributions which constitute
the mixture, pLogk = p̄k Λ(µ̂k, σ̂k), for k = 1, . . . , K, for the years 1979, 1988, 1992 and
1996, see equation (19) and numerical results in appendix. If we restrict our attention
to the global curve, we can see in all figures a multimodal distribution, which is slightly
modified over the years. However, from estimation of the income distribution only, no
clear conclusion can been drawn to explain inequality evolution. Our method allows us
to decompose the income distribution into several distinct Lognormal distributions, that
can be associated to several distinct fairly homogeneous subpopulations. Then, we can
analyse the relative evolution of these distinct distributions over years.
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Before the analyse of the shape of the income distribution, we can make two remarks:

1. Our results show that a mixture of K Lognormal distributions does not necessarily
mean that the observed population is composed of K different and fairly homoge-
neous subpopulations. For instance in 1988, numerical results show that income
distribution can be estimated by a mixture of seven Lognormal distributions (see
appendix). However, from figure 4 we can clearly see six distinct Lognormal dis-
tributions and another one (pLog7), close to the x-axis and very difficult to see,
which is very flat with a large dispersion (σ̂7 = 0.4358) and a small probability
(p̄7 = 0.0170). The role of this “flat” Lognormal distribution (pLog7) is not to
identify another distinct distribution, but to give a better fit of the whole distribu-
tion. Then, we can consider two types of Lognormal distribution which constitute
a mixture estimation: a first one which is a distinct individual distribution in the
mixture ; and a second one which improves the precision of the global estimate.
This last type of distribution can be detected by large dispersion and very small
probability, compared to the others.

2. We know that the Lognormal distribution fits income distribution well for a fairly
homogeneous population, see for instance Aitchison and Brown (1957) and Weiss
(1972). Then, we could consider as many fairly homogeneous subpopulations as we
can see distinct Lognormal distributions in mixture estimation. For the year 1988
(figure 4), we would consider six fairly homogeneous subpopulations that compose
the observed population. Note that if, for instance, we are only concerned by a dis-
tinction between “rich” and “poor” in the whole population, figure 4 suggests that
we could describe a “poor” subpopulation as a mixture of the first three Lognormal
distributions, and a “rich” subpopulation as a mixture of the last three Lognormal
distributions. In that way, we define two subpopulations, “rich” and “poor”, with
no a priori assumption on their respective income distribution. However, we would
not suppose these subpopulations to be homogeneous, because their respective in-
come distributions are not estimated by a single Lognormal distribution.

Let us compare income distributions in 1979 and 1988, respectively in figures 3 and 4.
Firstly, we detect five distinct homogeneous subpopulations in 1979 and six in 1988: a
new small distribution appears in the bottom of the distribution. In addition, we can see
that the lowest distributions move to the left (µ̂3 = 0.6184 in 1979 and µ̂4 = 0.5550 in
1988, see appendix). Secondly, we can see that the upper single Lognormal distribution
has significantly increased: more people are in the upper distribution, p̄5 = 0.2106 in
1979 becomes p̄6 = 0.3240 in 1988, which means that the “richest” subpopulation is
represented by 21.06% of the whole population in 1979 and by 32.40% in 1988. Finally,
we can see two changes in opposite directions: an increasing number of people at the
top of the distribution and an increasing gap between upper and lowest distributions.
This suggests an increasing number of “rich” people and an increasing gap between the
“richest” and the poorest” subpopulations and so, an increasing inequality in the 80s.

Let us compare income distributions in 1988 and 1992, respectively in figures 4 and 5.
We detect six homogeneous subpopulations in 1988 and seven in 1992. We can see that
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Figure 3: Income distribution in 1979
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Figure 4: Income distribution in 1988
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Figure 5: Income distribution in 1992
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Figure 6: Income distribution in 1996
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the lowest distribution has significantly increased (p̄1 = 0.0280 in 1988 and p̄1 = 0.0419
in 1992) and that the upper distribution has significantly decreased (p̄6 = 0.3240 in 1988
and p̄7 = 0.2104 in 1992). It suggests that there is less very “rich” people, but more very
“poor” people and so, it can explain an increasing inequality with not so many changes
as in the 80s.

Let us compare income distributions in 1992 and 1996, respectively in figures 5 and 6.
Firstly, the top distribution in 1996 has a large dispersion (σ̂7 = 0.3398) compared to
the others, but its probability is not very small (p̄7 = 0.1181): it is not a clear distinct
distribution and its role is not clearly to improve the precision of the global estimate only
(see remark 1 above). It suggests that 1996 is a year of transition between seven and
six homogeneous subpopulations: one subpopulation is in the process of disappearing2.
Secondly, we can see that the lowest distribution and so, the bottom of the global curve,
moves significantly to the right: condition in life of the “poorest” people get better. In
addition, from the shape of the global curve we can see a decrease of the gap between
the two major modes. All these remarks suggest a decreasing inequality.

Finally, the study of the shape of the income distribution follows increasing inequality
in the 80s and slightly decreasing in the 90s, and gives us a better idea of this evolution
through the different parts of the distribution.

4.2 The structure of the income distribution

Parameter estimates of explanatory variables Xi1, Xi2, Xi3, Xi4 and Xi5, based on
mixture estimation, for years 1979, 1988, 1992 and 1996 are given in table 3, with
standard deviations in parenthesis. These results allow us to analyse the position of
households in the income distribution.

β̂1 β̂2 β̂3 β̂4 β̂5

1979 -1.770 (0.059) -0.672 (0.106) 0.611 (0.050) -1.160 (0.086) -0.439 (0.020)
1988 -1.329 (0.058) -0.694 (0.106) 0.781 (0.053) -1.440 (0.068) -0.352 (0.022)
1992 -1.109 (0.053) -0.546 (0.083) 0.717 (0.050) -1.240 (0.060) -0.345 (0.019)
1996 -0.999 (0.055) -0.616 (0.078) 0.758 (0.053) -1.107 (0.062) -0.384 (0.020)

Table 3: Parameter estimates β̂j of individual characteristics Xj

In 1979, the largest negative values are successively associated to pensioners (Xi1 : β̂1 =

−1.770) and non-working (Xi4 : β̂4 = −1.160), the largest positive value is associated

to all-working (Xi3 : β̂3 = 0.611). It means that households with no adult working
and pensioners are strongly over-represented in the bottom of the distribution, while
households with all adults working are over-represented in the top of the distribution.

If we restrict our attention to the most significant variables, from table 3, major

2It is confirmed with additional data for the year 1999: we detect six homogeneous subpopulations
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changes over years can be reduced to:

1. An improvement in the income position of pensioners: parameter estimates β̂1

decrease over time, from −1.770 in 1979 to −0.999 in 1996.

2. A large increasing gap between the income position of all-working and non-working
households in the 80s and an small decrease in the 90s: β̂3 − β̂4 is respectively equal to
1.771, 2.221, 1.957, 1.865.

3. The income position of non-working households becomes less than that of pen-
sioners: respectively -1.160 vs. -1.770 in 1979 and -1.107 vs. -0.999 in 1996.

These results show that in the 80s the polarization between all-working and non-
working households increased, then polarization decreased slowly in the 90s. On another
side, the position of pensioners increased over years.

We calculate the percentage of the population in the bottom 10% of the income
distribution by household type (pensioner, lone parent family and no adult working),
and in the top 10% for households with all adult working. Results are given in table 4,
with the percentage of the population by household type given in parentheses.

Xi1 Xi2 Xi3 Xi4

bottom (%pop) bottom (%pop) top (%pop) bottom (%pop)

1979 6.5 (29.3) 0.6 (2.8) 7.4 (44.9) 2.3 (5.9)
1988 4.8 (30.7) 1.0 (4.1) 7.2 (40.1) 4.2 (12.2)
1992 3.8 (30.1) 1.3 (5.5) 6.8 (38.0) 4.9 (15.1)
1996 3.6 (29.9) 1.8 (6.6) 7.1 (39.0) 4.9 (15.7)

Table 4: Percentage of households in the bottom/top 10% of the distribution

These results confirm our preceding analysis:

- Representation of pensioners (Xi1) in the bottom 10% of the income distribution
decreases from 6.5% in 1979 to 3.6% in 1996, while its representation in the whole
population is still around 30% over the years.

- The percentage of non-working households (Xi4) in the whole population increases,
from 5.9% in 1979 to 15.7% in 1996. Moreover, their representation in the bottom 10%
of the distribution largely increases in the 80s and is still stable in the 90s (it is a slight
decrease relative to the proportion of this household type, which has increased between
1992 and 1996).

- The bottom 10% of the distribution is represented in the great majority by pen-
sioners and non-working households: together they represent 8.8% in 1979 and 8.5%
in 1996 of the whole population. However, its distribution has been largely modified:
pensioners are dominant in 1979 (6.5% against 2.3%), but not in 1996 (3.6% against
4.9%).

In addition, we can see that the number of lone parent families (Xi2) increases over the
years and its representation in the bottom 10% of the distribution increases. Finally,
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the proportion of all-working households decreases over the years but its representation
in the top 10% of the distribution is still large (around 7.2%).

From our studies on the shape and on the structure of the income distribution over
the years, we can explain increasing inequality in the 1980s by an increasing polarization
between working and non-working households: the proportion of non-working households
has been multiplied by more than twice (5.9% to 12.2%) and more people moved to the
upper part of the distribution. Then, we can explain the slight decrease of inequality in
the 1990s by a small decrease of this polarization: the number of people in the upper
part of the distribution decreased and the income position of non-working households
increased slightly. On the other hand, the income position of pensioners has improved.
All these results are supported by previous work in the literature, as for instance Jenkins
(2000), or the descriptive statistical studies of the Department of Social Security (1998).

5 Conclusion

In this paper, we have proposed a new method to analyse income distribution, based on
mixture models. This method allows us to estimate the density of the income distribu-
tion, to detect homogeneous subpopulations and to analyse the position of individuals
with specific characteristics. An application to income data in Great Britain in the 1980s
and 1990s shows how to analyse the shape and the structure of the income distribution
and leads us to study at the same time inequality and polarization changes over years.
Our empirical results show that this method can be succesfully used in practice.
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Appendix

In table 5, we present results of mixture estimation with explanatory variables for the
income distribution in 1979, 1988, 1992 and 1996.

We estimate the unknown parameters θ = (µk, σk, γk, β): estimates of µk, σk, γk and
p̄k are presented in table 5 and estimates of β are presented in table 3. In our data,
some values of income are equal to zero, note that values of income close to zero can
become extreme values with the logarithmic transformation and can cause problems to
estimate γk. To take into account observations equal to zero and to avoid problems
of convergence, we can translate data with a fixed parameter y + ξ. Then, we use the
marginal distribution

f̂(y) =
K∑

k=1

p̄k Λ (y + ξ ; µ̂k, σ̂k) with p̄k =
1

n

n∑
i=1

p̂ik (21)

where p̂ik = Φ(γ̂k −Xc
i β̂)− Φ(γ̂k−1 −Xc

i β̂), and

Λ (y + ξ ; µ̂k, σ̂k) =
1

(y + ξ)
√

2π σ̂k

exp
[
− 1

2σ̂2
k

(
log (y + ξ)− µ̂k

)2
]
, (22)

to plot an estimate of the income distribution for the years 1979 (figure 3), 1988 (fig-
ure 4), 1992 (figure 5) and 1996 (figure 6). Our numerical results are computed with
ξ = 1.
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1979 1988 1992 1996

µ̂1 0.4096 (0.0041) 0.3080 (0.0218) 0.2828 (0.0168) 0.3369 (0.0100)
µ̂2 0.4967 (0.0065) 0.3657 (0.0056) 0.3304 (0.0086) 0.3962 (0.0098)
µ̂3 0.6184 (0.0070) 0.4458 (0.0068) 0.4102 (0.0090) 0.4869 (0.0075)
µ̂4 0.7910 (0.0116) 0.5550 (0.0118) 0.5010 (0.0134) 0.5928 (0.0103)
µ̂5 0.9053 (0.0129) 0.6949 (0.0132) 0.6307 (0.0129) 0.7228 (0.0156)
µ̂6 - 0.8918 (0.0127) 0.8014 (0.0182) 0.8973 (0.0255)
µ̂7 - 1.3216 (0.1167) 0.9550 (0.0208) 0.9846 (0.0253)
µ̂8 - - 1.4536 (0.1879) -
σ̂1 0.0507 (0.0024) 0.1117 (0.0107) 0.1094 (0.0076) 0.0649 (0.0061)
σ̂2 0.0426 (0.0034) 0.0418 (0.0034) 0.0325 (0.0053) 0.0455 (0.0041)
σ̂3 0.0668 (0.0044) 0.0407 (0.0038) 0.0372 (0.0036) 0.0421 (0.0046)
σ̂4 0.1109 (0.0069) 0.0552 (0.0064) 0.0473 (0.0050) 0.0501 (0.0063)
σ̂5 0.2349 (0.0077) 0.0889 (0.0067) 0.0718 (0.0058) 0.0834 (0.0087)
σ̂6 - 0.2086 (0.0075) 0.1258 (0.0104) 0.1491 (0.0206)
σ̂7 - 0.4358 (0.0443) 0.2419 (0.0113) 0.3398 (0.0280)
σ̂8 - - 0.6068 (0.0781) -
γ̂1 -1.2964 (0.0831) -2.6619 (0.1500) -2.3222 (0.1027) -1.9912 (0.1821)
γ̂2 -0.6855 (0.0573) -1.3767 (0.1060) -1.5818 (0.1309) -1.1308 (0.0971)
γ̂3 0.1538 (0.0728) -0.6687 (0.0640) -0.8137 (0.0932) -0.4395 (0.0740)
γ̂4 1.1937 (0.1098) -0.1540 (0.0835) -0.3227 (0.0752) 0.0629 (0.0751)
γ̂5 - 0.6188 (0.0772) 0.2897 (0.0794) 0.7316 (0.1116)
γ̂6 - 2.8623 (0.1930) 1.0760 (0.1276) 1.6041 (0.2285)
γ̂7 - - 3.0681 (0.1747) -

p̄1 0.1893 0.0280 0.0419 0.0687
p̄2 0.1328 0.1421 0.0792 0.1309
p̄3 0.2131 0.1559 0.1554 0.1724
p̄4 0.2543 0.1329 0.1310 0.1450
p̄5 0.2106 0.2002 0.1740 0.1850
p̄6 - 0.3240 0.1995 0.1799
p̄7 - 0.0170 0.2104 0.1181
p̄8 - - 0.0086 -

Table 5: Estimation by explanatory mixture: numerical results.
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