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1 Introduction

An important question in empirical time series analysis is how to predict the future values
of an observed time series on the basis of its recorded past, and more specifically how to
calculate prediction intervals. A traditional approach to these questions assumes that the
series {Xt}t∈Z follows a linear finite dimension model with a known errors distribution, e.g.
a Gaussian autoregressive-moving average ARMA(p, q) model as in Box and Jenkins (1976).
In such a case, if the orders p and q are known, a maximum likelihood procedure could
be employed for estimating the parameters and then, plug in those estimates in the linear
predictors. In addition, some bootstrap approaches have been proposed in order to avoid the
use of a specified errors distribution, see v.g. Stine (1987) and Thombs and Schucany (1990)
for AR(p) models, and Pascual et al. (1998) for ARMA(p, q) models. But, those bootstrap
proposals also assume that p and q are known. Alonso et al. (2001) show that the AR(∞)-
sieve bootstrap provides consistent prediction intervals for a general class of linear models that
includes stationary and invertible ARMA processes. This procedure select an approximating
autoregressive model AR(p̂) from the data, and then use the selected order as if it were the
true order. However, this approach ignores the variability involved in model selection, which
can be a considerable part of the overall uncertainty.

In practice, having observed a sample of size n, the model, and particularly p and q are
invariably unknown. Thus, we should select a model from the data. Many models selection
procedures have been proposed, v.g. the final prediction error (FPE) of Akaike (1969), the
Akaike (1973) information criterion (AIC) or its bias-corrected version (AICC) of Hurvich and
Tsai (1989) and the Bayesian information criterion of Schwarz (1978), see Bhansali (1993) for
a review.

For finite autoregressive models, Massaroto (1990) and Grigoletto (1998), propose to take
into account model uncertainty as follows: first, to obtain p̂ by a consistent model selection
procedure, then generate bootstrap resamples from the estimated AR(p̂) and to re-estimate
in each resample the order by the same method used for p̂. Thus, their prediction intervals
consider the sampling variability caused by model selection method. Essentially the same algo-
rithm was suggested by Kilian (1998) in the context of generating impulse response confidence
intervals, the so called endogenous lag order bootstrap. It is well known that consistent model
selection procedures (as the BIC) tend to select more parsimonious orders. In fact, Grigoletto
(1998) and Kilian (1998) recommend to use the less parsimonious AIC procedure. Hjorth
(1994) suggests the following: first, estimating an AR(pmax) from the data, where pmax is the
greatest order considered, and then proceeding as in the previous approach. Although this
last proposal avoids the dependence on p̂, it could be influenced by the high variability of the
pmax estimated parameters. In Section 3 Monte Carlo simulations reveal that version with p̂
is generally preferable to version with pmax.

Since the previous endogenous order bootstrap could be affected by the initial estimated
order, we propose in this paper two ways of introducing the sampling variability of the model
selection procedure that does not depend, or are less dependent, on p̂. These approaches are:
(i) to use an estimator of the distribution of p̂ based on moving block resampling, and (ii)
to construct a probability function for p based on the values of the objective function of the
above mentioned information criterions (AIC, AICC, or BIC). Once we have an estimated
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distribution F̂p, we generate resamples from the estimated AR(p∗) with the p∗ i.i.d. F̂p, and
then we proceed as in standard bootstrap approaches. In the performed Monte Carlo study,
the results point out that (ii) outperforms the other proposal and the endogenous lag order
bootstrap of Kilian (1998).

The remaining of this paper is organized as follows. Section 2 presents the endogenous
lag order method of Kilian (1998) applied to the sieve bootstrap prediction intervals and
introduces our proposals (i) and (ii). In Section 3 we present a theoretical justification of the
proposed methods and in Section 4 we present the results of a Monte Carlo study comparing
the finite sample properties of the proposed methods with those of alternative methods. All
proofs are given in an Appendix.

2 Proposed approaches

2.1 The sieve endogenous order bootstrap

Let {Xt}t∈Z be a real valued, stationary process with expectation E [Xt] = µX that admits
a one-sided infinite-order autoregressive representation:

+∞∑
j=0

φj(Xt−j − µX) = εt, φ0 = 1, t ∈ Z, (1)

with coefficients {φj}+∞
j=0 satisfying

∑+∞
j=0 φ

2
j <∞. This representation motivates the AR(∞)-

sieve bootstrap, that was first proposed by Kreiss (1988) and extensions can be found in
Bühlmann (1997). The method proceeds as follows:

1 Given a sample {X1, . . . , Xn}, select the order p̂ of the autoregressive approximation by
AICC criterion.

The AICC = −n log(σ2) + 2(p+ 1)n/(n− p− 2) is a bias-corrected version of AIC which
has a more extreme penalty for large-order models to counteract the overfitting nature of AIC.
Other order selection criteria (such as BIC) could be used, but we prefer AICC assuming the
view that the true model is complex and not of finite dimension. Other advantage of using
AICC is that the value of the maximum cut-off pmax had virtually no effect on the model
chosen by this criterion, while for many of the other criteria increasing the value of pmax tends
to lead to increased overfitting of the model, see Hurvich and Tsai (1989).

2 Construct some estimators of the autoregressive coefficients (φ̂1, φ̂2, . . . , φ̂p̂). Following
Bühlmann (1997) we take the Yule-Walker estimates.

3 Compute the residuals:

ε̂t =
p̂∑

j=0

φ̂j(Xt−j − X̄), φ̂0 = 1, t ∈ (p̂+ 1, . . . , n). (2)
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4 Define the empirical distribution function of the centred residuals:

F̂ε̃(x) = (n− p̂)−1
n∑

t=p̂+1

1{ε̃t≤x}, (3)

where ε̃t = ε̂t − ε̂ (·) and ε̂ (·) = (n− p̂)−1
∑n

t=p̂+1 ε̂t.

5 Draw a resample ε∗t of i.i.d. observations from F̂ε̃.

6 Define X∗
t by the recursion:

p̂∑
j=0

φ̂j(X∗
t−j − X̄) = ε∗t , (4)

where the starting p̂ observations are equal to X̄.

Up to this step, the resampling plan coincides with the sieve bootstrap, and is valid for
bootstrapping some statistics defined as a functional of an m-dimensional distribution function
(see details in Section 3.3 of Bühlmann (1997)). In the next step we introduce the endogenous
lag order selection:

7 Given the bootstrap replication {X∗
1 , X

∗
2 , . . . , X

∗
n}, select the order p̂ ∗ of the autoregressive

approximation as in the step 1.

The steps 1 to 7 are not effective for bootstrap prediction, because the algorithm does not
replicate the conditional distribution of XT+h given the observed data. But, if we proceed as
do Cao et al. (1997) fixing the last p observations we can obtain resamples of the future values
X∗

T+h given X∗
T−p+1 = XT−p+1, . . . , X

∗
T = XT .

8 Compute the estimation of the autoregressive coefficients: (φ̂ ∗1 , φ̂
∗
2 , . . . , φ̂

∗
p̂ ∗), as in step 2.

9 Compute future bootstrap observations by the recursion:

X∗
T+h − X̄ = −

p̂ ∗∑
j=1

φ̂ ∗j (X∗
T+h−j − X̄) + ε∗t , (5)

where h > 0, and X∗
t = Xt, for t ≤ T .

Finally, F ∗
X∗

T+h
the bootstrap distribution of X∗

T+h is used to approximate the unknown

distribution of XT+h given the observed sample. As usual, a Monte Carlo estimate F̂ ∗
X∗

T+h
is

obtained by repeating the steps 5 to 9 B times. The (1− α)% prediction interval for XT+h is
given by

[Q∗(α/2), Q∗(1− α/2)] , (6)

where Q∗(·) = F̂ ∗−1
X∗

T+h
(·) are the quantiles of the estimated bootstrap distribution.
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The consistency of the intervals in (6) follows from Lemma 3.2 and Proposition 3.10,
Proposition 3.5 and Theorem 3.12.

Notice that, if we omit step 7 and use the p̂ ∗ = p̂ in step 8 and recursion (5), the resampling
plan coincides with the sieve bootstrap prediction algorithm of Alonso et al. (2001). Both
approaches will be compared in the Monte Carlo study of Section 4.

2.2 The sieve exogenous order bootstrap

In this subsection we present a different way of introducing the sampling variability of the
model selection procedure. First, we describe the general algorithm and then we present two
possible implementations, based on (i) blockwise resampling with missing values techniques,
and (ii) information criteria functions. Let {Xt}t∈Z as in the previous subsection, and let IC(p)
be the objective function of some model selection method. Assume that we have a probability
distribution estimator F̂p of the random variable p̂ = argmin0≤p≤pmax {IC(p)}, i.e., we have
estimates of the following probabilities:

Pr{p̂ = p} , for 0 ≤ p ≤ pmax. (7)

The characterization of the asymptotic limit of (7) is a standard way of proving the consistency
of information criteria in finite autoregressive models, see v.g. Shibata (1976). Two methods
for obtaining an approximation of (7) will be presented below and it constitute the first step
of the sieve exogenous order bootstrap.

The sieve exogenous order bootstrap modify the previous step 2 as follows:

2a Construct estimators of the coefficients for the pmax + 1 autoregressive models: (φ̂ (p)
1 ,

φ̂
(p)
2 , . . . , φ̂

(p)
p ) for 1 ≤ p ≤ pmax, and φ̂ (p)

0 = 1 for 0 ≤ p ≤ pmax.

3a Compute the residuals for the model with p = p̂:

ε̂t =
p̂∑

j=0

φ̂
(p̂)
j (Xt−j − X̄), t ∈ (p̂+ 1, . . . , n). (8)

4a Define the empirical distribution functions of the centred residuals:

F̂ε̃(x) = (n− p̂)−1
n∑

t=p̂+1

1{ε̃t≤x}, (9)

where ε̃t = ε̂t − ε̂ (·), and ε̂ (·) = (n− p̂)−1
∑n

t=p̂+1 ε̂t.

The following step (numerated as 4b, in order to maintain the same number of steps as
the endogenous approach) is the distinctive part of the proposed algorithm:

4b Draw a random value p∗ from F̂p.
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Notice that given the probabilities in (7), the variability of p̂ enters exogenously to the
bootstrap algorithm.

5a Draw a resample ε∗t of i.i.d. observations from F̂ε̃.

6a Define X∗
t by the recursion:

p∗∑
j=0

φ̂
(p∗)
j (X∗

t−j − X̄) = ε∗t , (10)

where the starting p∗ observations are equal to X̄.

At this point we might perform the step 7 of the endogenous order bootstrap, but simu-
lation studies (not shown here) point out that there are small differences when we introduce
this step in the exogenous approach. By contrary, the computational cost increases when we
perform step 7 in each resample.

8a Compute the estimation of the autoregressive coefficients: (φ̂ ∗1 , . . . , φ̂
∗
p∗), as in step 2.

9a Compute future bootstrap observations by the recursion:

X∗
T+h − X̄ = −

p∗∑
j=1

φ̂ ∗j (X∗
T+h−j − X̄) + ε∗t , (11)

where h > 0, and X∗
t = Xt, for t ≤ T .

As before, the bootstrap distribution of X∗
T+h is used to approximate the unknown distri-

bution of XT+h given the observed sample, and steps 4b - 9a are repeated B times in order
to obtain F̂ ∗

X∗
T+h

.

Next, we develop two ways of obtaining an estimator or an approximation of the proba-
bilities (7). This constitutes the first step of the sieve exogenous order bootstrap.

(i) Moving block resampling order distribution. The moving block jackknife and bootstrap
were introduced by Künsch (1989) and independently by Liu and Singh (1992). In the follow-
ing, we use the presentation of Liu and Singh (1992): Lets X1, X2, . . . , Xn be random variables
with the common distribution function FX , and let T be the parameter of interest and Tn its
estimator based on X = (X1, X2, . . . , Xn). Let Bi denote a block of ` consecutive observations,
i.e. Bi = (Xi, Xi+1, . . . , Xi+`+1) for i = 1, 2, . . . , n− `+ 1. Then,

• For the moving block jackknife (MBJ), we denote the i-th jackknife statistics by Tn,−i

which is equal to the estimator Tn−` evaluated in the reduced sample X−Bi. Then, the
following jackknife histogram is a distribution estimator of τn(Tn − T ):

HN (x) = (n− `+ 1)−1
n−`+1∑

i=1

1
{
τ``

−1(n− `)(Tn,−i − Tn) ≤ x
}
, (12)

where the τn is an appropriate normalizing constant.
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• For the moving block bootstrap (MBB), we resample k blocks from {B1, B2, . . . , Bn−`+1}
with replacement and with equal probability for each block to be drawn. For simplicity,
we assume n = k`, then a bootstrap resample is obtained by joining the blocks together
in random order. The bootstrap statistic its defined by T ∗n which is equal to the estimator
Tn evaluated in the bootstrap resample. Then, the bootstrap distribution:

Pr∗ {τn(T ∗n − Tn) ≤ x} (13)

is a distribution estimator of τn(Tn − T ).

Originally, the MBJ was proposed as a variance estimator, but using similar arguments as
for subsampling method of Politis and Romano (1994) it is possible to establish the consistency
of (12), see Alonso et al. (2000) for linear statistics. Also for linearized statistics the consistency
of (13) is proved by Politis and Romano (1992) and Bühlmann and Künsch (1995).

Some works point out that in blockwise bootstrap a smooth transition between blocks
could be preferable to random joining, see Carltein et al. (1998). Also, Künsch (1989) shows
that in MBJ it is better to downweight the block Bi instead of a completed deletion. Those
facts motivate the moving block resampling by missing values techniques proposed in Alonso
et al. (2000).

• In the moving missing block jackknife (M2BJ), we consider the deleted block Bi as `
consecutive missing values and we estimated those observations taking into account the
dependence structure of {Xt}t∈Z. Then the i-th M2BJ statistics T̃n,−i is equal to the
estimator Tn evaluated in (X−Bi)∪ B̂i, where B̂i denotes the estimate of Bi. Then, the
following M2BJ histogram is a distribution estimator of τn(Tn − T ):

H̃N (x) = (n− `+ 1)−1
n−`+1∑

i=1

1
{
τ``

−1(n− `)(T̃n,−i − Tn) ≤ x
}
. (14)

Notice that M2BJ statistics have the computational advantage of using the same functional
form as Tn, while for MBJ statistics we should implement the calculations considering that `
observations are missing.

• In the moving missing block bootstrap (M2BB), as in MBB, we have in each resample
k blocks (B∗

i1
, B∗

i2
, . . . , B∗

ik
). Let ` = b +m, and we consider the m last observations in

each block as missing values. Thus, we will have km missing observations that will be
replaced by their estimates. The M2BB statistic is defined by T̃ ∗n which is equal to the
estimator Tn evaluated in the resulting resample. Then, the bootstrap distribution

Pr∗
{
τn(T̃ ∗n − Tn) ≤ x

}
(15)

is a distribution estimator of τn(Tn − T ).
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The M2BB scheme resemble to a block joining engine similar to the matched-block bootstrap
of Carltein et al. (1998).

In our case Tn = p̂, and the computational implementation of M2BJ and M2BB only re-
quires additionally a missing values estimation method. We will use the generalized least square
estimators proposed by Peña and Maravall (1991). The consistency of (12)-(15) estimators for
this particular statistics is beyond of the scope of this paper.

A problem related with blockwise resampling is the selection of block size ` (in ours case,
` and k). A general approach to solve this problem was proposed by Hall et al. (1995) for
MBB distribution and variance estimators. This approach could be easily modified in order
to select ` and k for M2BJ and M2BB, but it involves a discrete optimization in ` and k that
could be a computational disadvantage. Since in each bootstrap resample we have to estimate
autoregressive models up to order pmax, we use in the Monte Carlo study ` = 2pmax, 3pmax

and 4pmax (with pmax = n/10 as recommended Bhansali (1983)) and k = 1 in order to have
a moderate number of missing values.

(ii) Information criterion function order distribution. This approach is related to the
Bayesian formulation of the prediction problem, see v.g. Kass and Raftery (1995). Assume
that pmax + 1 autoregressive models are being considered, then the posterior probability of
model AR(p) is given by

Pr {AR(p)|X} =
αpBp0∑pmax

i=0 αiBi0
, (16)

where theBp0 are the Bayes factors for AR(p) against AR(0), and αp = Pr{AR(p)}/ Pr{AR(0)}
is the prior odds for model AR(p) against model AR(0). AR(0) is equivalent to assume that
{Xt}t∈Z is a white noise process. Once we have the probabilities (16), we calculate the pos-
terior distribution function of XT+h that takes into account the model uncertainty, by the
relationship:

FXT+h
(x) =

pmax∑
i=0

F
(p)
XT+h

(x) Pr {AR(p)|X} , (17)

where F (p)
XT+h

(x) is the distribution function of XT+h calculated assuming that {Xt}t∈Z is an
AR(p) process.

Notice that using probabilities (16) in step 4b conduct us to obtain an approximation of
the distribution (17).

Since calculating the pmax Bayes factors is computationally arduous, here we use the
following approximation: Bp0 ≈ exp(Sp0) (as recommend Kass and Raftery (1995)), Sp0 is the
Schwarz criterion and its given by

Sp0 = Lp − L0 −
1
2
p log n, (18)

where L0 and Lp are the log-likelihood of model AR(0) and AR(p) evaluated at φ̂0 and (φ̂0,
φ̂1, . . . , φ̂p), respectively. Notice that Sp0 could be obtained by simple linear transformation of
the consistent BIC(p) objective function. Then probabilities (16) could be approximated by:

Pr {AR(p)|X} =
αp exp(−1/2BIC(p))∑pmax

i=0 αi exp(−1/2BIC(p))
. (19)
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A word of caution about the approximation of Bayes factor by exp(S). Its relative error is
O(1), i.e. frequently exp(Sp0)/Bp0 9 1.

Buckland et al. (1997) propose a similar approach in the context of Poisson regression,
line transient sampling and survival model, but they do not provide a theoretical justification
of the proposed bootstrap methods. Also, Buckland et al. (1997) recommend to use AIC(p)
instead of BIC(p) in approximation (19).

In the Monte Carlo study of the next section, the sieve exogenous order bootstrap based
on (16) with the above approximation perform reasonably well. We present the results with
AICC model selection procedure, but additional simulations studies (available on request to
the authors) illustrate that the sieve exogenous order bootstrap based on (16) with the BIC
procedure perform similarly. The consistency of the intervals (6) using probabilities (19) follows
from Lemma 3.2 and Proposition 3.3, Proposition 3.5 and Theorem 3.12.

A related approach was proposed by LeBlanc and Tibshirani (1996) in the cases of regres-
sion and classification for combining predictors, but they use as weights (or probabilities) the
following expression: Lk/

∑K
i=1 Li where Lk is the likelihood for model k, and the K considered

models have the same dimension.

3 Consistency results

The asymptotic validity of the proposed intervals depends on the limiting behavior of the
distribution F ∗

X∗
T+h

, and it is sufficient to establish convergence in the conditional distribution
of the bootstrap version X∗

T+h to XT+h. Notice that the proposed bootstrap procedures have
three main steps: (i) obtaining or selecting the p∗, (ii) obtaining the estimates φ̂ ∗p∗ in order to
have information about the distribution of φ̂p, and (iii) computing the future values X∗

T+h.
We now consider the precise assumptions about the stationary process {Xt}t∈Z required

to prove our results:

Assumption A1: Xt =
∑+∞

j=0 ψjεt−j , ψ0 = 1 (t ∈ Z) with {εt}t∈Z stationary, ergodic
and E[εt|Ft−1] ≡ 0, E[εtεs|Fmin(t,s)−1] ≡ δt,sσ

2 < ∞, E[|εt|s] < ∞ for some s ≥ 4,
and Ft−1 is the σ-field generated by {εs}t−1

s=−∞.
Assumption A2: Ψ(z) is bounded away from zero for |z| ≤ 1, and

∑+∞
j=0 j

r|ψj | <∞
for some r ∈ N.

Notice that Assumptions A1 and A2 are satisfied by stationary and invertible ARMA(p,q)
processes which have an exponential decay of the coefficients ψj

+∞
j=0 (cf. Bühlmann (1997)).

We present the theoretical results for two types of linear models: Assumption A3 {Xt}t∈Z
not generate to a finite order AR process, and its complement Assumption A3 c {Xt}t∈Z is an
AR(p0) process for some finite p0. Additionally, we impose the following assumption about
the autoregressive approximation:

Assumption B: 0 ≤ p = p(n) ≤ pmax(n), where pmax(n) → ∞, pmax(n) = o(n1/2)
as n → ∞, and φ̂p = (φ̂1,n, . . . φ̂p,n)′ satisfy the empirical Yule Walker equations
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Γ̂pφ̂p = −γ̂p, where Γ̂p = [R̂(i − j)]1≤i,j≤p, γ̂p = (R̂(1), . . . , R̂(p))t, and R̂(j) =
n−1

∑n−|j|
t=1 (Xt − X̄)(Xt+|j| − X̄).

We present the results for the order selection method Sn(p) = (n+ 2p)σ̂2
p,n, where σ̂2

p,n =
n−1

∑n−1
t=pmax

(Xt+1 + φ̂1,nXt + · · · + φ̂p,nXt+1−p)2, proposed by Shibata (1980). This order
selection is a version of the final prediction error (FPE), and has a close relation to other
asymptotically efficient method like AIC and AICC.

The following two lemmas characterize the asymptotic behavior of the selected order se-
quence {p̂(n)}. Lemma 3.1 is a consequence of Theorem 3.1, Theorem 4.1 and Remark 5.2 of
Pötscher (1990), and Lemma 3.2 is the analogous of Corollary 4.1 of Shibata (1980) based on
Theorem 3.1 of Karagrigoriou (1997).

Lemma 3.1 Suppose that assumption A1 with s = 4, A2 with r = 1, and B with pmax =
o(n1/2) hold. Then, the random sequence p̂ = p̂(n) that minimize Sn(p), satisfies that

1. Under assumption A3 c, Pr {p̂(n) ≥ p0} → 1, as n→∞.

2. Under assumption A3 c, {p̂(n)} is a divergent sequence.

Now we introduce some notation used in Lemma 3.2 (cf. Shibata (1980)). Let’s denote
Ln(p) = pσ2/n + ‖φp − φ‖Γ, where φp = (φ1,n, . . . , φp,n)′ are the theoretical Yule-Walker
statistics, and the norm ‖x‖A = (x′Ax)1/2. Also, we denote {p0(n)} the non-random se-
quence that minimizes Ln(p), and {pε(n)} is the non-random sequence defined by {pε(n)} =
min {p : Ln(p)/Ln(p0(n)) ≤ 1 + ε}.

Lemma 3.2 Suppose that assumption A1 with s = 16, A2 with r = 1, A3, and B with
pmax = o(n1/2) hold. Then, for any ε > 0 the random sequence p̂ = p̂(n) that minimize Sn(p)
satisfy that

Pr {p̂(n) ≥ pε(n)} → 1, as n→∞.

Now, we use Sn(p) in probabilities (19) instead of AICC(p) or BIC(p). In the following
proposition we establish that if {Xt}t∈Z is A3 and we select a random order p = p(n) having
probability function given by (19), then the probability of selecting p in any finite set is zero
in comparison with the probability of p = p̂.

Proposition 3.3 Suppose that assumption A1 with s = 16, A2 with r = 1, A3, and B with
pmax = o(n1/2) hold. Then, for any 0 < C < +∞∑C

c=1 PrSn {p = c}
PrSn {p = p̂}

→ 0, in probability, (20)

where PrSn denote the probabilities (19) calculated with Sn.

Analogously, if {Xt}t∈Z verifies Assumption A3 c we can establish that for any 1 ≤ c < p0,
the probability of selecting p in {1, . . . , c} is zero in comparison with the probability of p = p̂.
This is a direct consequence of Lemma 3.1(1) and that σ2

c > σ2 holds for c < p0.

10



Remark 3.4 The statement of Proposition 3.3 holds for any divergent sequence {p(n)} such
that p(n) = o(n1/2). Also notice that, if {Xt}t∈Z verifies A3, (20) implies that for any 0 < C <
+∞, limn→∞ PrSn {p ≤ C} = 0, and similarly, if {Xt}t∈Z verifies A3 c, for any 0 < c < p0,
limn→∞ PrSn {p ≤ c} = 0.

The following proposition is related with step 8 (8a); it establishes that the analogous
bootstrap φ̂ ∗j,n are consistent estimators of the theoretical Yule-Walker statistics φj,n, defined
by the Γpφp = −γp, assuming that the bootstrap resamples are constructed following an
estimated AR(p(n)) process, where p(n) is a divergent sequence.

Proposition 3.5 Suppose that assumptions A1 with s = 4, A2 with r > 1 and B with pmax =
o((n/ log(n))1/(2r+2) hold. Then

max
1≤j≤p(n)

|φ̂∗j,n − φj,n|
P ∗
−→ 0, in probability . (21)

Remark 3.6 Notice that Lemma 3.2 (Proposition 3.3) and Proposition 3.5 imply that endoge-
nous (exogenous based on probabilities (19)) sieve bootstrap provides consistent estimators of
the theoretical Yule-Walker statistics when {Xt}t∈Z verifies A3.

Remark 3.7 The statement of Proposition 3.5 holds, when {Xt}t∈Z sarisfies Assumption
A3 c, since the proof of Theorem 3.1 and 3.2 of Bühlmann (1995) can be modified in order to
avoid the assumption about p→∞. Notice that under A3 c we have that max1≤j≤pmax |φ̂j,n−
φj,n| = Oa.s.((log(n)/n)1/2) and φj,n = φj = 0 for j > p0. Then, the term Oa.s.(p−r) does not
appears in expression (33) if p is finite.

In the endogenous sieve bootstrap, we re-select an order p̂∗ in each resample that minimizes
S∗n(p) = (n + 2p)σ̂∗p,n. Proposition 3.10 establishes that p̂∗ is also a divergent sequence. We
will use the following lemma in the proof of Proposition 3.10.

Lemma 3.8 Suppose that assumption A1 with s = 16, A2 with r > 2, and B with pmax =
o((n/ log(n))1/(2r+2) hold. Then,

max
1≤p≤p(n)

∣∣σ̂2 ∗
p,n − σ2

p,n

∣∣ P ∗
−→ 0, in probability , (22)

where σ̂2 ∗
p,n = n−1

∑n−1
t=pmax

(
X∗

t+1 + φ̂∗1,nX
∗
t + · · · + φ̂∗p,nX

∗
t+1−p

)2 and σ2
p,n = E

[
n−1

∑n−1
t=pmax(

Xt+1 + φ1,nXt + · · ·+ φp,nXt+1−p

)2
]
.

Remark 3.9 The statement of Lemma 3.8 holds, when {Xt}t∈Z verifies Assumption A3 c,
arguments similar to those in Remark 3.7.
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Proposition 3.10 Suppose that assumption A1 with s = 16, A2 with r > 2, A3, and B
with pmax = o((n/ log(n))1/(2r+2) hold. Then, the random sequence p̂∗ = p̂∗(n) that minimizes
S∗n(p) = (n+ 2p)σ̂2 ∗

p,n, is a divergent sequence.

Remark 3.11 Under A3 c, by Lemma 3.1(1) and Remark 3.9 we can establish an analogous
result to Proposition 3.10, i.e., p̂∗ = p̂∗(n) that minimizes S∗n(p) satisfies that Pr {p̂(n) ≥ p0} →
1, as n→∞, since now we have that σ2

c > σ2 for 0 < c < p0.

The following theorem is related with step 9 (9a), it establishes that bootstrap distri-
bution F ∗

X∗
T+h

(
x|X∗

T = XT , . . . , X
∗
T−p∗(n) = XT−p∗(n)

)
converges to the distribution function

FXT+h

(
x|XT

−∞
)
, where XT

−∞ denotes the time series sample path up to time T . We assume
that the bootstrap predictions X∗

T+h are constructed using the parameters φ̂∗ estimated in
step 8 (8a), and order p∗ = p∗(n) which is a divergent sequence. In Theorem 3.12, we use
the notation of Thombs and Schucany (1990) which left the last observation XT fixed and a
sample of size n is written as (XT−n+1, . . . , XT ).

Theorem 3.12 Suppose that assumptions A1 with s = 16, A2 with r > 2 and B with p =
o((n/ log n)1/(2r+2)) hold. Then

X∗
T+h

d−→ XT+h, in probability . (23)

Remark 3.13 Under A3 c, by Lemma 3.1(1), and Remark 3.7 we can establish an analogous
result to Theorem 3.12 since

∑+∞
j=p(n)∗+1 |φj | in expressions (56) and (61) are trivially oP (1).

Notice that these results generalize the approaches of Masarotto (1990), Grigolleto (1998) and
Kilian (1998), since here we only need an over-consistent order selection method for obtaining
(23).

4 Simulations results

We compare the different sieve bootstrap approaches described in the previous section for
the following models:

Model 1: Xt = 0.75Xt−1 − 0.5Xt−2 + εt

Model 2: Xt = εt − 0.3εt−1 + 0.7εt−2.

Model 1 was considered by Cao et al. (1997) and Model 2 by Pascual et al. (1998). As
in those papers we used the following error distributions Fε: the standard normal, a shifted
exponential distribution with zero mean and scale parameter equal to one, and a contaminated
distribution 0.9 F1 + 0.1 F2 with F1 ∼ N (−1, 1) and F2 ∼ N (9, 1). We take sample sizes
n = 50, 100, and 200, leads h = 1 to h = 5, and nominal coverage 1− α = 0.8 and 0.95.

To compare the different prediction intervals, we use their mean coverage and length, and
the proportions of observations lying out to the left and to the right of the interval. These
quantities are estimated as follows:
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1. For a combination of model, sample size and error distribution, simulate a series, and
generate R = 1000 future values XT+h.

2. For each bootstrap procedure obtain the (1 − α)% prediction interval by (6) based on
B = 1000 bootstrap resamples.

3. The coverage for each method is estimated as CM = #{Q∗
M (α/2) ≤ Xr

T+h ≤ Q∗
M (1 −

α/2)}/R, where Xr
T+h with r = 1, . . . , R, are the R future values generated in first step

and M ∈ {S, EnS1, EnS2, ExS1, ExS2}.

In steps 1 and 2 we obtain the “theoretical” and bootstrap interval lengths using LT =
X
dR(1−α/2)e
T+h −XdRα/2e

T+h , and LM = Q∗
M (1−α/2)−Q∗

M (α/2). Finally, steps 1 to 3 are repeated
S = 1000 times to obtain CM,i, LM,i with i = 1, . . . , S, and we calculate the estimates:

C̄M = S−1
∑
CM,i

SE(C̄M ) =
(
S−1(S − 1)−1

∑
(CM,i − C̄M )2

)1/2

L̄M = S−1
∑
LM,i

SE(L̄M ) =
(
S−1(S − 1)−1

∑
(LM,i − L̄M )2

)1/2
.

(24)

The different sieve bootstrap are denoted by:

S corresponds to the sieve bootstrap without introducing model uncertainty.

EnS1 the endogenous sieve bootstrap using p̂ in steps 2 - 6.

EnS2 the endogenous sieve bootstrap using pmax in steps 2 - 6.

ExS1 the exogenous sieve bootstrap using the moving missing block bootstrap in step 1a.

ExS2 the exogenous sieve bootstrap using the AICC information criterion probabilities (19)
in step 1a.

In tables 1-3 and 4-6, we present the results for Model 1 and Model 2, using the three
sample sizes and error distributions, nominal coverage 95%, and lead times h = 1 and 5. For
ExS1, we report the results with ` = 3pmax. The other possible combinations of parameters
are available on request to the authors.

===> Tables 1 - 3 about here<===

For Model 1 with gaussian errors, methods EnS1, ExS1 and ExS2 have a better perfor-
mance than S in terms of mean coverage and length for all sample sizes and lead times. Method
EnS2, which corresponds to Hjorth’s proposal, has lower coverage than method S, revealing
that not all ways of introducing model uncertainty produce the correct effect.

For Model 1 with exponential or with contaminated errors, similar results are observed,
although in these cases also the EnS2 obtain a higher coverage than S. In terms of mean
coverage, the ExS2 generally outperforms the other sieve bootstraps.

13



===> Tables 4 - 6 about here<===

We obtain similar results for Model 2. Notice that in this case, the sieve approach never
uses the correct model. We observe that for h = 1 and all error distributions S method is
outperformed by all sieve approaches that include model variability. But, again for h = 3, the
Hjorth’s proposal often has lower coverage than method S.

5 Conclusion

It has been shown by Masarotto (1990) and Grigolleto (1998) that if the order of the
AR is unknown but finite it can obtained prediction intervals by bootstrap incorporating the
sampling variability of p̂ with better coverage probabilities than those produced by standard
bootstrap procedures. Their approaches could be affected by the selected order p̂. In this paper
we have proposed two alternative methods that are less dependent on the initial selected order.
We have shown that, for general linear models, if we use an AR approximation, we can derive
a bootstrap procedure for building prediction intervals that has the two following properties:
first, the procedure is consistent, that is, it generates as prediction a random variable that
converges in conditional distribution to the variable we are interested in forecasting; second,
Monte Carlo simulations show that the proposed procedure provides in general better coverage
results than previous methods in general cases.

Appendix

Proof of Proposition 3.3: First, note that max1≤c≤C |σ̂2
c,n − σ2

c |
P−→ 0 as n → ∞, where

σ2
c is the c-step ahead error prediction variance. From Lemma 3.2 we have that p̂ → ∞ in

probability, therefore σ̂2
p̂,n

P−→ σ2 as n → ∞. In the other hand, σ2
1 ≥ · · · ≥ σ2

C > σ2, where
the last inequality follows from assumption A3. Then, for a sufficiently large n and for all
1 ≤ c ≤ C, we have that and σ̂2

p̂,n < σ̂2
c,n.

By (19) we have, ∑C
c=1 PrSn {p = c}
PrSn {p = p̂}

=

∑C
c=1 exp

(
−(n+ 2c)σ̂2

c,n

)
exp(−(n+ 2p̂)σ̂2

p̂,n)
. (25)

Let’s analyze a generic term in (25),

exp
(
−(n+ 2c)σ̂2

c,n

)
exp

(
−(n+ 2p̂)σ̂2

p̂,n

) = exp
(
n

(
σ̂2

p̂,n − σ̂2
c,n

)
+ 2p̂σ̂2

p̂,n − 2cσ̂2
c,n

)
, (26)

where the term n
(
σ̂2

p̂,n − σ̂2
c,n

)
= OP (n) and goes to −∞ in probability, as n → ∞; and the

other terms are oP (n1/2)+OP (1) and go to +∞ in probability, as n→∞. Of course, the first
term dominates the second one and expression (26) has limit equal to 0.�

Proof of Proposition 3.5: The vector φ̂∗p = (φ̂∗1,n, . . . , φ̂
∗
p,n)′ is defined by the bootstrap

empirical Yule-Walker equations:
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Γ̂∗pφ̂
∗
p = −γ̂∗p , (27)

where Γ̂∗p = [R̂∗(i−j)]pi,j=1, γ̂
∗
p = (R̂∗(1), . . . , R̂∗(p))t, and R̂∗(j) = n−1

∑n−|j|
t=1 (X∗

t −X̄∗)(X∗
t+|j|−

X̄∗). Then ∥∥∥φ̂∗p − φp

∥∥∥
∞

=
∥∥∥(Γ−1

p − Γ̂∗−1
p )γ̂∗p + Γ−1

p (γp − γ̂∗p)
∥∥∥
∞

≤ ‖Γ−1
p − Γ̂∗−1

p ‖row

∥∥γ̂∗p∥∥
∞ +

∥∥Γ−1
p

∥∥
row

∥∥γp − γ̂∗p
∥∥
∞ ,

(28)

where ‖x‖∞ = max1≤i≤p |xi|, and ‖X‖row = max1≤i≤p
∑p

j=1 |Xi,j |.

From assumption A1 and A2, we have that ‖Γp‖row and ‖Γ−1
p ‖row are uniformly bounded

in p. Since Γ−1
p − Γ̂∗−1

p = Γ−1
p

(
Γ̂∗p − Γp

)
Γ̂∗−1

p , and ‖Γ̂∗p − Γp‖row ≤ |γ̂∗0 − γ0| + 2‖γ̂∗p − γp‖1,
we can concentrate our attention on this last term.

Since,

‖γ̂∗p − γp‖∞ ≤ ‖γ̂∗p − γp‖1 ≤ p1/2‖γ̂∗p − γp‖2, (29)

to get convergence to zero in (28), it is enough to consider the last term in (29).
Now,

‖γ̂∗p − γp‖2
2 =

∑p
k=1(R̂

∗(k)−R(k))2

≤ 2
∑p

k=1(R̂
∗(k)− E∗[R̂∗(k)])2 + 2

∑p
k=1(E

∗[R̂∗(k)]−R(k))2

= 2(S1 + S2).
(30)

We have that S2 = OP ((n/ log(n))−(2r−1)/(2r+2)), since

S2 =
∑p

k=1

(
E∗[ε∗ 2

1 ]
∑+∞

i=0

∑+∞
j=0 ψ̂i,nψ̂j,nδi+k,j − E[ε21]

∑+∞
i=0

∑+∞
j=0 ψiψjδi+k,j

)2
(31)

where δi,j = 1 if i = j, and 0 otherwise, and Ψ̂(z) =
∑+∞

i=0 ψ̂i,nz
i = Φ̂(z)−1 which is well

defined because Φ̂(z) is always causal (cf. Brockwell and Davis (1991)).
Now,

S2 =
∑p

k=1

(
E∗[ε∗ 2

1 ]
∑+∞

i=0

∑+∞
j=0(ψ̂i,nψ̂j,n − ψiψj)δi+k,j

+(E∗[ε∗ 2
1 ]− E[ε21])

∑+∞
i=0

∑+∞
j=0 ψiψjδi+k,j

)2

≤ 2
∑p

k=1

(
E∗[ε∗ 2

1 ]
∑+∞

i=0

∑+∞
j=0(ψ̂i,nψ̂j,n − ψiψj)δi+k,j

)2

+2
∑p

k=1

(
(E∗[ε∗ 2

1 ]− E[ε21])
∑+∞

i=0

∑+∞
j=0 ψiψjδi+k,j

)2
= 2(I1 + I2)

(32)

Theorem 3.1 and 3.2 of Bühlmann (1995) establishes the following results:

sup
i∈N

|ψ̂i,n − ψi| = Oa.s.((log(n)/n)1/2) +Oa.s.(p−r) (33)
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and

sup
n≥n1

+∞∑
i=0

ir|ψ̂i,n| = Oa.s.(1), (34)

where n1 is a random variable.
Using the above results, we have that I1 = OP ((n/ log(n))−(2r−1)/(2r+2)), since

I1 = E∗[ε∗ 2
1 ]2

∑p
k=1

(∑+∞
i=0

∑+∞
j=0 |ψ̂i,nψ̂j,n − ψiψj |δi+k,j

)2

≤ E∗[ε∗ 2
1 ]2

∑p
k=1

(∑+∞
i,j=0 |ψ̂i,nψj − ψiψj |δi+k,j +

∑+∞
i,j=0 |ψ̂i,nψ̂j,n − ψ̂i,nψj |δi+k,j

)2

= E∗[ε∗ 2
1 ]2

∑p
k=1

(∑+∞
i=0 |ψ̂i,n − ψi||ψi+k|+

∑+∞
j=0 |ψ̂j,n − ψj ||ψ̂j−k,n|

)2

= OP (p)(Oa.s.((log(n)/n)1/2) +Oa.s.(p−r))2

= OP ((n/ log n)−(2r−1)/(2r+2)).
(35)

Under assumptions A1 and B of this proposition, we can establish a stronger conclusion
than in Lemma 5.3 of Bühlmann (1997), in fact

E∗[ε∗t
2]− E[ε2t ] = oP ((log(n)/n)1/2p) = OP ((n/ log n)−r/(2r+2)). (36)

Therefore, I2 = oP ((n/ log(n))−(2r−1)/(2r+2)).
For the other term in (30), we have S1 = OP (n−1(n/ log(n))1/(2r+2)), since

S1 =
∑p

k=1

(
n−1

∑n−k
t=1

∑+∞
i=0

∑+∞
j=0 ψ̂i,nψ̂j,nε

∗
t−iε

∗
t+k−j

−
∑+∞

i=0

∑+∞
j=0 ψ̂i,nψ̂j,nE∗[ε∗ 2

1 ]δi+k,j

)2

=
∑p

k=1 n
−2

∑n−k
t,s=1

∑+∞
i,j,h,l=0 ψ̂i,nψ̂j,nψ̂h,nψ̂l,n

(
ε∗t−iε

∗
t+k−j − E∗[ε∗ 2

1 ]δi+k,j

)(
ε∗s−hε

∗
s+k−l − E∗[ε∗ 2

1 ]δh+k,l

)
.

(37)

Taking E∗ in the above expression, we have that

E∗[S1] =
∑p

k=1 n
−2

∑n−k
t,s=1

∑+∞
i,j,h,l=0 ψ̂i,nψ̂j,nψ̂h,nψ̂l,n

(
E∗[ε∗t−iε

∗
t+k−jε

∗
s−hε

∗
s+k−l]

−E∗[ε∗ 2
1 ]2δi+k,jδh+k,l

)
.

(38)

Notice that

E∗[ε∗t−iε
∗
t+k−jε

∗
s−hε

∗
s+k−l] =


E∗[ε∗ 4

1 ], if t− i = t+ k − j = s− h = s+ k − l
E∗[ε∗ 2

1 ]2, if two pairs of different indexes
0, otherwise

(39)

then,
E∗[ε∗t−iε

∗
t+k−jε

∗
s−hε

∗
s+k−l]− E∗[ε∗ 2

1 ]2δi+k,jδh+k,l = (40)

16




E∗[ε∗ 4

1 ]− E∗[ε∗ 2
1 ]2, if t− i = t+ k − j = s− h = s+ k − l

0, if t− i = t+ k − j 6= s− h = s+ k − l
E∗[ε∗ 2

1 ]2, if t− i = s− h 6= t+ k − j = s+ k − l
or t− i = s+ k − l 6= s− h = t+ k − j

0, otherwise.

Using (34) we have for some random variable n1 that supn≥n1

∑+∞
i,j,h,l=0 ψ̂i,nψ̂j,n ψ̂h,nψ̂l,n =

Oa.s.(1). On the other hand, in (38) when we fix the indices i, j, h and l, the sum
∑n−k

t,s=1(·) in-
cludes at most n−k nonzero summands. Then, E∗[S1] = OP (pn−1) = OP (n−1(n/ log n)1/(2r+2)).

Finally, we have

p1/2‖γ̂∗p − γp‖2 = OP ((n/ log(n))−(r−1)/(2r+2)) (41)

and the assumption A2 with r > 1 concludes the proof.�

Proof of Lemma 3.8: We have that

σ̂2 ∗
p,n = n−1

∑n−1
t=pmax

(
X∗

t+1 + φ̂∗
′

p X∗
t,p

)2

= n−1
∑n−1

t=pmax

(
X∗

t+1 + φ′pX
∗
t,p +

(
φ̂∗p − φ∗p

)′
X∗

t,p

)2

= n−1
∑n−1

t=pmax

(
X∗

t+1 + φ′pX
∗
t,p

)2 + 2n−1
∑n−1

t=pmax

(
X∗

t+1 + φ′pX
∗
t,p

)(
φ̂∗p − φ∗p

)′
X∗

t,p

+n−1
∑n−1

t=pmax

( (
φ̂∗p − φ∗p

)′
X∗

t,p

)2 = S1 + S2 + S3,

(42)
where X∗

t,c = (X∗
t , . . . , X

∗
t+1−p)

′. To establish (22), we proof that S1 goes to σp,n, and S2 and
S3 are asymptotically negligible uniformly in p.

Using the proof of Proposition 3.5, we obtain that S3 = OP ((n/ log(n))−(r−2)/(2r+2)), since,

S3 =
(
φ̂∗p − φ∗p

)′
n−1

∑n−1
t=pmax

X∗
t,pX

∗′
t,p

(
φ̂∗p − φ∗p

)
≤

∥∥∥φ̂∗p − φ∗p

∥∥∥2

2

∥∥∥n−1
∑n−1

t=pmax
X∗

t,pX
∗′
t,p

∥∥∥
spec

= OP ((n/ log(n))−(r−2)/(2r+2))OP (1),

(43)

and this bound does not depend on p.
To prove that S1 goes to σp,n, we first obtain that E∗[S1]−σ2

p,n = OP ((n/ log n)−(r−1)/(2r+2)).
We have,

σ2
p,n = E

[
n−1

∑n−1
t=pmax

X2
t+1 + 2φ′pXt+1Xt,p + φ′pXt,pX′

t,pφp

]
= n−1

∑n−1
t=pmax

E
[ ∑+∞

i,j=0 ψiψjεt+1−iεt+1−j

+2φ′p
(∑+∞

i,j=0 ψiψjεt+1−iεt+1−j−h

)
1≤h≤p

+φ′p
(∑+∞

i,j=0 ψiψjεt+1−i−hεt+1−j−l

)
1≤h,l≤p

φp

]
= n−1

∑n−1
t=pmax

(∑+∞
i,j=0 ψiψjE[ε2t ]δi,j + 2φ′p

(∑+∞
i,j=0 ψiψjE[ε2t ]δi,j+h

)
1≤h≤p

+φ′p
(∑+∞

i,j=0 ψiψjE[ε2t ]δi+h,j+l

)
1≤h,l≤p

φp

)
,

(44)
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where (�)1≤h≤p denotes a p× 1 vector and (�)1≤h,l≤p a p× p matrix.
Analogously for E∗[S1],

E∗[S1] = n−1
∑n−1

t=pmax

(∑+∞
i,j=0 ψ̂iψ̂jE∗[ε∗2t ]δi,j + 2φ′p

(∑+∞
i,j=0 ψ̂iψ̂jE∗[ε∗2t ]δi,j+h

)
1≤h≤p

+φ′p
(∑+∞

i,j=0 ψ̂iψ̂jE∗[ε∗2t ]δi+h,j+l

)
1≤h,l≤p

φp

)
.

(45)
Then |E∗[S1]− σ2

p,n| depends on E∗[ε∗t
2]− E[ε2t ] = OP ((n/ log n)−r/(2r+2)) and some sums

similar to
∑+∞

i=0 |ψ̂i − ψi||ψi+h| = Oa.s.((log(n)/n)1/2) +Oa.s.(p−r)), (see proof of Proposition
3.5).

Only remains to prove that var∗[S1] goes to 0.

E∗[S1]2 = n−2
∑n−1

t,s=pmax

(
E∗[X∗2

t+1] + 2φpE∗[X∗
t+1X

∗
t,p] + φ′pE

∗[X∗
t,pX

∗′
t,p]φp

)(
E∗[X∗2

s+1] + 2φpE∗[X∗
s+1X

∗
s,p] + φ′pE

∗[X∗
s,pX

∗′
s,p]φp

) (46)

and
E∗[S2

1 ] = n−2
∑n−1

t,s=pmax
E∗

[ (
X∗2

t+1 + 2φpX
∗
t+1X

∗
t,p + φ′pX

∗
t,pX

∗′
t,pφp

)(
X∗2

s+1 + 2φpX
∗
s+1X

∗
s,p + φ′pX

∗
s,pX

∗′
s,pφp

) ]
.

(47)

Notice that E∗[S2
1 ]− E∗[S1]2 depend on sums similar to:

n−2
∑n−1

t,s=pmax
E∗[X∗

t+1−iX
∗
t+1−jX

∗
s+1−hX

∗
s+1−l]−E∗[X∗

t+1−iX
∗
t+1−j ]E

∗[X∗
s+1−hX

∗
s+1−l]

= n−2
∑n−1

t,s=pmax

∑+∞
i′,j′,h′,l′=0 ψ̂i′ψ̂j′ψ̂h′ψ̂l′

(
E∗[εt+1−i−i′εt+1−j−j′εs+1−h−h′εs+1−l−l′ ]

−E∗[εt+1−i−i′εt+1−j−j′ ]E∗[εs+1−h−h′εs+1−l−l′ ]
)
,

(48)
which is OP

(
n−1(n/ log n)1/(2r+2)

)
by using similar arguments as in (38).

Finally, by the Cauchy-Schwarz inequality we have that S2 = OP

(
n−1/2(n/ log n)−(r−3)/(4r+4)

)
.

Then, ∣∣σ̂2 ∗
p,n − σ2

p,n

∣∣ = OP

(
(n/ log n)−(r−2)/(2r+2)

)
, (49)

and the assumption A2 with r > 2 concludes de proof.�

Proof of Proposition 3.10: Suppose that there exits a constant C, 0 < C < +∞, such that
lim

n→∞
Pr∗ {p̂∗(n) ≤ C} > 0. This is equivalent to

lim
n→∞

Pr∗
{
∃p′ = p′(n) ≤ C : S∗n(p′) ≤ S∗n(p)

}
> 0. (50)

From Lemma 3.2 we have that p̂ is a divergent sequence, i.e. for any 0 < C < +∞ we have
that Pr {p̂ > C} → 1. Then, (50) implies

lim
n→∞

Pr∗ {∃p′ ≤ C : S∗n(p′) ≤ S∗n(p̂)} > 0

m
lim

n→∞
Pr∗

{
∃p′ ≤ C : n+2p′

n (σ̂2 ∗
p′,n− σ2

p′,n)− n+2p̂
n (σ̂2 ∗

p̂,n− σ2
p̂,n) ≤ n+2p̂

n σ2
p̂,n−

n+2p′

n σ2
p′,n

}
> 0.

(51)
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By using (22) from Lemma 3.8, we have for all ε > 0 that

lim
n→∞

Pr∗
{
∃p′ ≤ C : −ε < n+ 2p̂

n
σ2

p̂,n −
n+ 2p′

n
σ2

p′,n

}
> 0. (52)

By assumption A3, we have that σ2
C > σ2, and note that σ2

p̂,n
P−→ σ2, and σ2

C ≤
lim inf σ2

p′,n ≤ lim supσ2
p′,n ≤ σ2

1. Choosing a sufficiently small ε in order to get a contra-
diction with the above relation (52).�

Proof of Theorem 3.12: We can write XT+h and X∗
T+h as:

XT+h = −
+∞∑
j=1

φjXT+h−j + εT+h (53)

and

X∗
T+h = −

+∞∑
j=1

φ̂∗j,nX
∗
T+h−j + ε∗T+h, (54)

where φ̂∗j,n denote the estimates of φj from a resample of size n, φ̂∗j,n = 0 for j > p∗(n), and
X∗

t = Xt for t ≤ T . For simplicity of notation we present the proof for h = 1.
From Lemma 5.4 of Bühlmann (1997), we have ε∗T+1

d−→ εT+1, in probability. Then, by
the Slutzky lemma only remains to prove that the difference of the first terms in X∗

T+1 and
XT+1 goes to 0 in probability:

−
+∞∑
j=1

(φ̂∗j,n − φj)XT+1−j = −
p∗(n)∑
j=1

(φ̂∗j,n − φj)XT+1−j +
+∞∑

j=p∗(n)+1

φjXT+1−j

= S1 + S2

(55)

First, we have S2 = oP ((n/ log n)−r/(2r+2)), since

E[|S2|] ≤ E[|Xt|]
+∞∑

j=p(n)∗+1

|φj | = o(p∗(n)−r) (56)

and second, we establish that S1 = OP ((n/ log n)−r/(2r+2)). We have that

|S1| ≤ |
p∗(n)∑
j=1

(φ̂∗j,n − φj,n)XT+1−j |+ |
p∗(n)∑
j=1

(φj,n − φj)XT+1−j | = I1 + I2 (57)

where φp∗ = (φ1,n, . . . , φp∗,n)t are the theoretical Yule-Walker statistics.
For I1 we use the following result in the proof of Proposition 3.5:

max
1≤j≤p(n)

|φ̂∗j,n − φj,n| = OP ((n/ log n)−(r−1)/(2r+2)). (58)

19



Therefore,

I1 ≤
(∑p∗(n)

j=1 (φ̂∗j,n − φj,n)2
)1/2 (∑p∗(n)

j=1 X2
T+1−j

)1/2

≤ p∗(n)1/2 max1≤j≤p |φ̂∗j,n − φj,n|OP (p∗(n)1/2) = OP (p∗(n)(log n/n)1/2)
= OP ((n/ log n)−r/(2r+2)).

(59)

For I2 we use the extended Baxter inequality (cf. Hannan and Deistler (1988)):

p∗(n)∑
j=0

|φj,n − φj | ≤ c

+∞∑
j=p∗(n)+1

|φj | (60)

where c is a constant depending on the true structure. Therefore,

E[I2] ≤ E[|Xt|]
p∗(n)∑
j=1

|φj,n − φj | = o(p∗(n)−r). (61)

Finally,

−
+∞∑
j=1

φ̂j,nXT+h−j =
+∞∑
j=1

φjXT+1−j +OP ((n/ log(n))−r/(2r+2)) (62)

Then, X∗
T+1

d−→ X∗
T+1 in probability.

For general h, it is clear that we can write the difference of first terms in XT+h and X∗
T+h as

a sum of a continuous function f(φ1, . . . , φh−1, φ̂
∗
1,n, . . . , φ̂

∗
h−1,n) (S1 + S2), and a term similar

to S1+S2. The second terms in XT+h and X∗
T+h are a linear combination of the corresponding

(and independent) errors (εT+1, . . . , εT+h, ε
∗
T+1, . . . , ε

∗
T+h).�

References

[1] Akaike, H. (1969) Fitting autoregressive models for prediction, Ann. Inst. Statist. Math.,
21, 243-247.

[2] Akaike, H. (1973) Information theory and an extension of the maximum likelihood prin-
ciple, 2nd International Symposium on Information Theory, B.N. Petrov, and F. Csaki,
Eds., Akademiai Kiado, Budapest, 267-281.

[3] Alonso, A.M., Peña, D. and Romo, J. (2000) Resampling time series by missing values
techniques, Working Paper 00-42, Universidad Carlos III de Madrid.

[4] Alonso, A.M., Peña, D. and Romo, J. (2001) Forecasting time series with sieve bootstrap,
J. Statist. Plann. Inference, in press.

[5] Bhansali, R.J. (1983) A simulation study of autoregressive and window estimators of the
inverse autocorrelation function, Appl. Statist., 32 141-149.

20



[6] Bhansali, R.J. (1993) Order selection for linear time series models: A review. In: De-
velopments in Time Series Analysis, T. Subba Rao, ed., Chapman and Hall, London,
50-66.

[7] Box, G.E.P and Jenkins, G.M. (1976) Time Series Analysis: Forecasting and Control,
Holden-Day, San Francisco.

[8] Buckland, S.T., Burnham, K.P. and Augustin, N.H. (1997) Model selection: An integral
part of inference, Biometrics, 53, 603-618.

[9] Bühlmann, P. (1997) Sieve bootstrap for time series, Bernoulli, 8, 123-148.
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Table 1: Simulation results for Model 1, with Gaussian Errors.

Lag Sample Method C̄M (se) Cov. (b./a.) L̄M (se)
h n Theoretical 95% 2.50% / 2.50% 3.93
1 50 S 92.27 (0.13) 3.92/3.81 3.83 (0.02)

EnS1 92.59 (0.12) 3.75/3.66 3.87 (0.02)
EnS2 92.12 (0.13) 3.99/3.89 3.81 (0.02)
ExS1 92.56 (0.12) 3.79/3.65 3.85 (0.02)
ExS2 92.74 (0.12) 3.69/3.57 3.88 (0.02)

100 S 93.53 (0.09) 3.17/3.30 3.88 (0.01)
EnS1 93.83 (0.08) 3.00/3.18 3.92 (0.01)
EnS2 93.21 (0.09) 3.33/3.46 3.85 (0.01)
ExS1 93.77 (0.09) 3.07/3.16 3.92 (0.01)
ExS2 93.96 (0.08) 2.97/3.07 3.96 (0.01)

200 S 94.28 (0.06) 2.96/2.75 3.91 (0.01)
EnS1 94.46 (0.06) 2.88/2.67 3.93 (0.01)
EnS2 93.67 (0.07) 3.25/3.08 3.84 (0.01)
ExS1 94.52 (0.06) 2.81/2.68 3.94 (0.01)
ExS2 94.68 (0.06) 2.75/2.57 3.99 (0.01)

h n Theoretical 95% 2.50% / 2.50% 5.20
5 50 S 92.01 (0.12) 4.03/3.96 4.86 (0.02)

EnS1 92.18 (0.12) 3.91/3.92 4.88 (0.02)
EnS2 91.62 (0.13) 4.19/4.19 4.81 (0.02)
ExS1 92.12 (0.13) 3.92/3.96 4.87 (0.02)
ExS2 92.29 (0.12) 3.82/3.89 4.91 (0.02)

100 S 93.47 (0.09) 3.27/3.26 5.02 (0.02)
EnS1 93.66 (0.08) 3.19/3.15 5.05 (0.02)
EnS2 93.11 (0.09) 3.48/3.41 4.97 (0.02)
ExS1 93.71 (0.08) 3.17/3.12 5.06 (0.02)
ExS2 93.93 (0.08) 3.08/2.99 5.13 (0.02)

200 S 94.21 (0.06) 2.92/2.87 5.13 (0.01)
EnS1 94.36 (0.06) 2.83/2.81 5.15 (0.01)
EnS2 93.62 (0.07) 3.21/3.17 5.03 (0.01)
ExS1 94.43 (0.06) 2.79/2.78 5.17 (0.01)
ExS2 94.66 (0.06) 2.67/2.66 5.20 (0.01)

NOTE: Standard error (se) are in parentheses. C̄M , L̄M and se’s are computed from (24).
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Table 2: Simulation results for Model 1, with Exponential Errors.

Lag Sample Method C̄M (se) Cov. (b./a.) L̄M (se)
h n Theoretical 95% 2.50% / 2.50% 3.68
1 50 S 92.75 (0.21) 2.93/4.32 3.70 (0.03)

EnS1 93.42 (0.18) 2.36/4.23 3.76 (0.03)
EnS2 93.40 (0.18) 2.16/4.45 3.74 (0.03)
ExS1 93.22 (0.18) 2.60/4.18 3.75 (0.03)
ExS2 93.31 (0.20) 2.45/4.24 3.79 (0.03)

100 S 93.81 (0.15) 3.01/3.18 3.78 (0.02)
EnS1 94.66 (0.12) 2.18/3.16 3.82 (0.02)
EnS2 94.74 (0.11) 1.70/3.56 3.80 (0.02)
ExS1 94.49 (0.12) 2.37/3.14 3.82 (0.02)
ExS2 94.58 (0.13) 2.30/3.12 3.82 (0.02)

200 S 94.47 (0.13) 1.72/2.81 3.75 (0.01)
EnS1 95.11 (0.11) 2.07/2.82 3.78 (0.02)
EnS2 95.40 (0.10) 1.37/3.23 3.82 (0.02)
ExS1 95.14 (0.11) 2.07/2.79 3.81 (0.02)
ExS2 95.23 (0.11) 1.99/2.77 3.83 (0.02)

h n Theoretical 95% 2.50% / 2.50% 5.20
5 50 S 91.94 (0.16) 3.73/4.33 4.89 (0.04)

EnS1 92.15 (0.16) 3.53/4.32 4.93 (0.04)
EnS2 91.98 (0.16) 3.42/4.60 4.86 (0.04)
ExS1 92.00 (0.16) 3.68/4.32 4.91 (0.04)
ExS2 92.31 (0.16) 3.41/4.28 4.94 (0.04)

100 S 93.43 (0.11) 3.20/3.37 5.06 (0.03)
EnS1 93.74 (0.11) 2.92/3.33 5.10 (0.03)
EnS2 93.54 (0.11) 2.67/3.79 5.01 (0.03)
ExS1 93.70 (0.11) 2.93/3.36 5.09 (0.03)
ExS2 94.08 (0.10) 2.60/3.32 5.18 (0.03)

200 S 94.28 (0.08) 2.80/2.92 5.16 (0.02)
EnS1 94.48 (0.08) 2.64/2.88 5.18 (0.02)
EnS2 94.26 (0.08) 2.32/3.41 5.07 (0.02)
ExS1 94.54 (0.08) 2.55/2.91 5.19 (0.02)
ExS2 94.89 (0.08) 2.22/2.89 5.21 (0.02)

NOTE: Standard error (se) are in parentheses. C̄M , L̄M and se’s are computed from (24).
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Table 3: Simulation results for Model 1, with Contaminated Errors.

Lag Sample Method C̄M (se) Cov. (b./a.) L̄M (se)
h n Theoretical 95% 2.50% / 2.50% 12.60
1 50 S 92.92 (0.17) 2.85/4.23 12.53 (0.06)

EnS1 93.48 (0.15) 2.35/4.17 12.67 (0.06)
EnS2 93.49 (0.15) 1.84/4.67 12.65 (0.07)
ExS1 93.27 (0.14) 2.54/4.19 12.63 (0.06)
ExS2 93.66 (0.14) 2.27/4.06 12.76 (0.06)

100 S 93.97 (0.10) 2.45/3.58 12.69 (0.03)
EnS1 94.46 (0.10) 2.04/3.50 12.81 (0.03)
EnS2 93.96 (0.11) 1.28/4.76 12.78 (0.04)
ExS1 94.31 (0.11) 2.15/3.54 12.80 (0.03)
ExS2 94.68 (0.11) 1.94/3.37 12.83 (0.03)

200 S 94.35 (0.09) 2.42/3.23 12.70 (0.02)
EnS1 94.81 (0.07) 1.99/3.20 12.78 (0.02)
EnS2 94.41 (0.08) 0.89/4.70 12.87 (0.02)
ExS1 94.94 (0.07) 1.89/3.17 12.85 (0.02)
ExS2 95.30 (0.08) 1.65/3.05 13.14 (0.02)

h n Theoretical 95% 2.50% / 2.50% 15.75
5 50 S 92.81 (0.17) 3.59/3.61 15.66 (0.08)

EnS1 93.12 (0.17) 3.35/3.53 15.81 (0.08)
EnS2 92.84 (0.18) 3.20/3.96 15.68 (0.08)
ExS1 92.96 (0.17) 3.49/3.55 15.72 (0.08)
ExS2 93.38 (0.16) 3.20/3.42 15.94 (0.08)

100 S 93.82 (0.11) 3.14/3.04 15.82 (0.05)
EnS1 94.14 (0.11) 2.87/2.99 15.94 (0.05)
EnS2 93.89 (0.12) 2.61/3.51 15.87 (0.06)
ExS1 94.20 (0.11) 2.86/2.94 16.01 (0.06)
ExS2 94.68 (0.11) 2.51/2.82 16.32 (0.06)

200 S 94.28 (0.09) 2.97/2.75 15.85 (0.04)
EnS1 94.57 (0.08) 2.75/2.68 15.96 (0.04)
EnS2 94.33 (0.09) 2.38/3.30 15.90 (0.04)
ExS1 94.65 (0.08) 2.69/2.66 16.02 (0.04)
ExS2 95.06 (0.08) 2.31/2.53 16.04 (0.04)

NOTE: Standard error (se) are in parentheses. C̄M , L̄M and se’s are computed from (24).
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Table 4: Simulation results for Model 2, with Gaussian Errors.

Lag Sample Method C̄M (se) Cov. (b./a.) L̄M (se)
h n Theoretical 95% 2.50% / 2.50% 3.93
1 50 S 91.30 (0.19) 4.05/4.65 3.96 (0.02)

EnS1 91.69 (0.19) 3.89/4.43 4.03 (0.02)
EnS2 91.77 (0.18) 3.90/4.33 3.96 (0.02)
ExS1 91.67 (0.18) 3.93/4.40 4.00 (0.02)
ExS2 92.00 (0.18) 3.77/4.23 4.00 (0.02)

100 S 93.00 (0.11) 3.58/3.43 3.93 (0.01)
EnS1 93.26 (0.11) 3.42/3.32 3.97 (0.01)
EnS2 93.02 (0.11) 3.53/3.45 3.90 (0.01)
ExS1 93.36 (0.11) 3.33/3.31 3.96 (0.01)
ExS2 93.59 (0.11) 3.24/3.17 3.99 (0.01)

200 S 93.77 (0.07) 3.07/3.16 3.91 (0.01)
EnS1 93.90 (0.07) 3.01/3.08 3.93 (0.01)
EnS2 93.50 (0.08) 3.24/3.26 3.86 (0.01)
ExS1 94.00 (0.07) 2.97/3.03 3.93 (0.01)
ExS2 94.37 (0.07) 2.82/2.80 3.98 (0.01)

h n Theoretical 95% 2.50% / 2.50% 4.94
5 50 S 91.69 (0.13) 4.08/4.23 4.63 (0.02)

EnS1 91.88 (0.13) 3.99/4.13 4.64 (0.02)
EnS2 91.54 (0.13) 4.17/4.29 4.59 (0.02)
ExS1 91.75 (0.13) 4.05/4.20 4.62 (0.02)
ExS2 91.93 (0.13) 3.99/4.08 4.63 (0.02)

100 S 93.03 (0.09) 3.51/3.46 4.75 (0.01)
EnS1 93.20 (0.09) 3.45/3.35 4.77 (0.01)
EnS2 92.83 (0.10) 3.60/3.57 4.71 (0.01)
ExS1 93.21 (0.09) 3.38/3.42 4.76 (0.01)
ExS2 93.30 (0.09) 3.33/3.37 4.76 (0.01)

200 S 93.63 (0.07) 3.17/3.20 4.80 (0.01)
EnS1 93.82 (0.07) 3.08/3.09 4.83 (0.01)
EnS2 93.32 (0.07) 3.34/3.34 4.75 (0.01)
ExS1 93.80 (0.07) 3.10/3.10 4.82 (0.01)
ExS2 94.08 (0.06) 2.95/2.97 4.87 (0.01)

NOTE: Standard error (se) are in parentheses. C̄M , L̄M and se’s are computed from (24).

26



Table 5: Simulation results for Model 2, with Exponential Errors.

Lag Sample Method C̄M (se) Cov. (b./a.) L̄M (se)
h n Theoretical 95% 2.50% / 2.50% 3.68
1 50 S 92.00 (0.28) 3.75/4.25 3.96 (0.03)

EnS1 92.53 (0.24) 3.28/4.19 4.01 (0.03)
EnS2 92.58 (0.25) 3.26/4.16 3.96 (0.03)
ExS1 92.87 (0.23) 3.09/4.04 4.02 (0.03)
ExS2 92.91 (0.22) 3.00/4.09 4.01 (0.03)

100 S 93.09 (0.22) 3.44/3.46 3.91 (0.02)
EnS1 93.64 (0.20) 2.98/3.38 3.97 (0.02)
EnS2 93.93 (0.17) 2.52/3.55 3.90 (0.02)
ExS1 93.99 (0.18) 2.65/3.36 3.96 (0.02)
ExS2 94.40 (0.16) 2.24/3.36 3.99 (0.02)

200 S 93.98 (0.19) 1.91/3.11 3.86 (0.02)
EnS1 94.40 (0.16) 2.45/3.15 3.88 (0.02)
EnS2 94.63 (0.13) 1.95/3.43 3.83 (0.02)
ExS1 94.67 (0.15) 2.23/3.09 3.89 (0.02)
ExS2 95.03 (0.12) 1.93/3.05 3.93 (0.02)

h n Theoretical 95% 2.50% / 2.50% 4.86
5 50 S 91.90 (0.15) 3.35/4.74 4.65 (0.03)

EnS1 92.12 (0.15) 3.15/4.72 4.66 (0.03)
EnS2 91.82 (0.15) 3.48/4.70 4.63 (0.03)
ExS1 92.07 (0.15) 3.26/4.67 4.66 (0.03)
ExS2 92.19 (0.15) 3.18/4.63 4.66 (0.03)

100 S 92.89 (0.11) 3.37/3.74 4.76 (0.02)
EnS1 93.09 (0.11) 3.21/3.70 4.80 (0.03)
EnS2 92.86 (0.11) 3.25/3.90 4.73 (0.03)
ExS1 93.08 (0.11) 3.18/3.74 4.77 (0.03)
ExS2 93.29 (0.10) 3.02/3.69 4.80 (0.03)

200 S 93.18 (0.09) 3.32/3.30 4.81 (0.02)
EnS1 93.59 (0.08) 3.14/3.27 4.84 (0.02)
EnS2 93.13 (0.08) 3.18/3.59 4.76 (0.02)
ExS1 93.65 (0.08) 3.10/3.25 4.84 (0.02)
ExS2 93.84 (0.07) 2.90/3.26 4.87 (0.02)

NOTE: Standard error (se) are in parentheses. C̄M , L̄M and se’s are computed from (24).
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Table 6: Simulation results for Model 2, with Contaminated Errors.

Lag Sample Method C̄M (se) Cov. (b./a.) L̄M (se)
h n Theoretical 95% 2.50% / 2.50% 12.60
1 50 S 92.38 (0.28) 2.88/4.74 13.08 (0.07)

EnS1 93.11 (0.24) 2.24/4.65 13.27 (0.08)
EnS2 92.88 (0.21) 2.55/4.58 13.07 (0.07)
ExS1 93.27 (0.23) 2.25/4.48 13.28 (0.07)
ExS2 93.27 (0.24) 2.17/4.56 13.27 (0.07)

100 S 93.41 (0.18) 2.35/4.24 13.10 (0.04)
EnS1 93.97 (0.16) 1.86/4.17 13.23 (0.04)
EnS2 93.68 (0.16) 1.65/4.66 13.00 (0.04)
ExS1 94.11 (0.16) 1.75/4.14 13.22 (0.04)
ExS2 94.40 (0.15) 1.46/4.14 13.23 (0.04)

200 S 94.17 (0.12) 2.06/3.77 13.02 (0.02)
EnS1 94.67 (0.10) 1.70/3.63 13.14 (0.02)
EnS2 94.15 (0.10) 1.24/4.60 12.97 (0.02)
ExS1 94.86 (0.10) 1.54/3.60 13.14 (0.02)
ExS2 95.09 (0.09) 1.45/3.46 13.16 (0.02)

h n Theoretical 95% 2.50% / 2.50% 14.86
5 50 S 93.82 (0.17) 2.24/3.94 15.28 (0.09)

EnS1 93.97 (0.17) 2.11/3.92 15.28 (0.08)
EnS2 93.70 (0.17) 2.34/3.96 15.13 (0.08)
ExS1 93.91 (0.17) 2.12/3.98 15.24 (0.09)
ExS2 93.96 (0.17) 2.05/3.99 15.24 (0.09)

100 S 94.62 (0.11) 2.09/3.29 15.35 (0.05)
EnS1 94.83 (0.10) 1.93/3.24 15.41 (0.05)
EnS2 94.45 (0.11) 1.98/3.57 15.19 (0.06)
ExS1 94.91 (0.10) 1.92/3.17 15.43 (0.05)
ExS2 95.02 (0.10) 1.82/3.16 15.43 (0.05)

200 S 94.69 (0.08) 2.41/2.89 15.23 (0.04)
EnS1 94.99 (0.07) 2.20/2.81 15.35 (0.04)
EnS2 94.61 (0.08) 2.08/3.31 15.19 (0.04)
ExS1 95.10 (0.07) 2.11/2.79 15.38 (0.04)
ExS2 95.18 (0.07) 2.03/2.69 15.44 (0.04)

NOTE: Standard error (se) are in parentheses. C̄M , L̄M and se’s are computed from (24).
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