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1 Introduction:

Many different reasons may be behind the decision of a particular firm
to issue new debt: Financing a new investment project, getting founds to
operate in a period of low earnings, or simply refinancing existing debt. The
purpose of the issue is not irrelevant. An example is provided by Gande et al.
(1997), who examine differences in debt securities underwritten by Section
20 subsidiaries of bank holding companies relative to those underwritten
by investment houses. Among other results, they find that when debt is
used to refinance existing debt, the credit spread is on average 14 basis
points above the one that results considering ”other purposes”. Intuitively,
if the purpose of the issue is to finance a new investment project that will
increase the expected earnings of the firm, and its market value, the risk
premium should be lower than in the case in which debt proceeds are used to
refinance existing debt, because in this situation no added value is created.1

Refinancing current debt on the other hand seems to be one of the most
important, if not the first, reason to issue new debt. The mentioned article
for instance considers a sample in which 43.5% of the issues had the purpose
to refinance existing debt. More evidence in this line is given by Hansen
and Crutchley (1990), who investigate the relationship between corporate
earnings and sales of common stock, convertible bonds, and straight bonds.
In this case, 64% of straight bond issues were used at least partially to
refinance existing debt. This ratio grows up to 72% when they consider
convertible debt.
In spite of the fact that debt refinancing appears as an extending prac-

tice, we know little about how this can potentially affect the credit standing
of a firm in the long run. The present article represents a first attempt in
this direction. We introduce the concept of refinancing contract, modeling
dividend rates, maturities, and nominal debt payments, as part of this con-
tract. We then describe the credit spreads faced by the firm to refinance as
a function of the firm characteristics and the specific contract selected, and

1The theoretical argument given by Gande et al. (1997) to justify different credit
spreads depending on the purpose of the issue is nevertheless not the same we provide
here. They argue that when a firm has a bank loan, and wants to refinance it with public
debt, potential buyers may expect that the firm has been induced by the bank to take this
decision because the loan is at risk. However, significant differences are found even when
new issues are classified as ”investment grade”. This indicates that debt refinancing is not
a practice that firms use only in case of, or to avoid, credit distress.
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analyze how the fact that firms choose to refinance their debt can potentially
affect the credit rating and the credit spreads of those firms in the long run.
We find that debt refinancing generates systematic credit rating downgrades
unless a minimum firm value growth is observed. Deviations from such a
firm value growth path imply on the other hand asymmetric results: While
a lower value growth results in downgrades and a higher value growth results
in upgrades as expected, the same deviation will have a higher effect in ab-
solute terms when it is negative than when it is positive. This means that
we will expect that among those firms that choose to refinance their debt,
downgrades will tend to be stronger than upgrades. We also predict that
credit spreads will not be affected by variations in the risk free interest rate
in the short run, but will be positively correlated with this rate in the long
run.
The rest of the article is organized as follows: Section 2 introduces the

concept of refinancing contract, and describes when, and how, a contract
of this type with an arbitrary number of future payment dates n, can be
designed. Section 3 analyzes the effects of debt refinancing under the specific
cases of n = 1 and n = 2.2 Finally section 4 summarizes the main findings
of the paper.

2 The General Case

We will assume the following theoretical framework:

A1: There are no taxes, problems concerning indivisibility, bankruptcy
costs, transactions costs, or agency costs.

A2: Trading takes place continuously.

A3: There exits a risk free asset with constant interest rate r, that applies
for borrowing and lending, and for any maturity.

A4: Every individual acts as if she can buy or sell as much of any security
as she wishes without affecting the market price.

A5: Individuals may take short positions in any security, including the risk
free asset, and receive the proceeds of the sale. Restitution is required
for payouts made to securities held short.

2This last case can be seen as a simplification to short term debt and long term debt.
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A6: Modigliani-Miller Theorem obtains, that is, the firm value is indepen-
dent of its capital structure.

A7: The firm value, V , follows the diffusion process given by

dV = (µ− δ)V dt+ σV dz (1)

where µ is the expected rate of return on V , δ is the constant rate of
firm value which is paid to equity holders as dividends, σ is the volatility of
the rate of return which will be assumed to be constant, and z is a standard
Brownian motion.
No assumption is made at this moment about the profile of nominal

payments that constitute the corporate debt. We simply assume that a debt
contract was signed at some period prior to current period t. Under this
contract, at least a certain debt payment has to be satisfied at some future
period τ > t. This, and any posterior debt payment, is to be financed by
issuing additional equity. Under these conditions the equity and debt values
will be a function of the firm value and time. Denote then the equity value
as S (V, t), and the debt value as F (V, t).
We start by defining the general form of any refinancing contract.

Definition 1: A refinancing contract between the firm and the debt holders
at τ , is a vector Θ ≡ (δ,Ψ,Υ) ∈ <×<n×<n, with n <∞, by which:

a) The firm, which is assumed to maximize equity holders’ wealth, promises
(under limited liability) the payment of Ψ at Υ, that is, the payment of ψi
at τ i, where ψi ∈ Ψ, τ i ∈ Υ, i = 1, ..., n, and τ1 > τ .

b) The firm also restricts itself to apply a dividend rate equal to δ, and
loses the right to issue new debt. These restrictions apply until Θ has been
canceled, either by satisfying nominal payments regularly (issuing new eq-
uity), or by means of a posterior debt refinancing contract.

c) The debt holders renounce to F (V, τ ).
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We say that Θ is feasible, if and only if the firm and the debt holders are
willing to sign Θ. The set of feasible Θ is denoted by Θz.

A refinancing contract (RC) is therefore similar to a standard debt con-
tract. The main difference is that debt holders do not provide cash to the
firm at issuance, but the renounce to the payment of current debt (covenant
c)). In addition, we include an agrement on dividends (covenant b)). This
agrement prevent equity holders from extracting a higher share of the firm
value (with the implied reduction for debt holders), by increasing the divi-
dend rate after signing the contract.
The following lemma establishes a necessary condition for a feasible set

of refinancing contracts to exist.

Lemma: Let S (V,Θ, τ ) and F (V,Θ, τ) denote the equity and debt value
at τ when the value of the firm is V , the debt profile consists on the
payment of Ψ at Υ, and the dividend rate is δ. Then, Θ ∈ Θz if
and only if S (V,Θ, τ ) = S (V, τ ), implying S (V, τ) > 0 as a necessary
condition for a feasible Θ to exist.

Proof: See appendix.

Although a formal statement of the proof is in the appendix, the intuition
is straightforward: Modigliani and Miller’s theorem implies that no value is
created nor destroyed in the firm by refinancing its debt. As a consequence,
equity holders can neither gain, nor lose due to refinancing. If they are
worst off with the contract they will simply refuse it, but if they are better
off this means that debt holders are worst off, and in this case they will
be who refuse the contract. This allows us to identify the set of feasible
refinancing contracts with the set of contracts that leave equity holders with
the same value. Limited liability on the other hand makes the equity value
to be strictly positive if no current debt payment has to be satisfied, which
is the case after signing the contract. This makes S (V, τ ) > 0 finally to be a
necessary condition for a feasible contract to exists.
One implication is that equity and debt can still be valued assuming

that debt will be payed by issuing additional equity. The reason is that
the possibility of refinancing will not alter their welfare with respect to this
situation in any sense. We set up this argument as follows:

Remark 1: Refinancing does not alter neither equity holders, nor debt
holders wealth. This implies that S (V,Θ, τ ) and F (V,Θ, τ ) can be
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valued assuming that debt payments are to be financed by issuing new
equity, even if this never happens, that is, even if the firm always
chooses to refinance its debt.

Searching for a feasible contract implies at this point searching for 2n+1
elements. Assumptions B1-B2 below will allow us to reduce the dimension of
the problem to 3. Basically, we will impose some restrictions on the relation
between debt payments, and on the time spread between these payments.
B1-B2 joint with B3 will also describe the behavior of the equity value as a
function of these 3 elements. Although this behavior is stated as an assump-
tion, it will be proved to hold later on for the specific cases of n = 1 and
n = 2.

Assumption B1: Let Ψ = ψ1Φ, where Φ is the n-dimensional vector which
first element φ1 equals 1, and the remaining are some fixed values φi > 0
∀i ≥ 2. S (V,Θ, τ ) is then assumed to be a continuous and strictly
decreasing function in ψ1 (CSD (ψ1)), with S (V,Θ, τ) |ψ1=0= V , and
limψ1→∞ S (V,Θ, τ ) = E

R.N
R τ1
τ

δV (s) e−r(s−τ)ds = V
¡
1− e−δT1¢.3

Ψ = ψ1Φ reflects the ratio between nominal debt payments. In the case of
a loan, for instance, we will have φi = 1 ∀i. B1 asserts that the equity value
is a continuous and strictly decreasing function in the nominal payments
that equity holders have to satisfy. S (V,Θ, τ ) |ψ1=0= V recognizes that if
there is no debt, then the equity holders own the firm. limψ1→∞ S (V,Θ, τ) =
ER.N

R τ1
τ

δV (s) e−r(s−τ)ds indicates that as nominal debt tends to infinity,
default at τ 1 becomes unavoidable, and the unique value associated to equity
is the value of the dividends that will be received until the first debt payment
is required. Standard arguments allow us to use risk neutral valuation.

Assumption B2: Let Π = (τ 1 − τ )Λ, where Π denotes the n-dimensional
vector which first element π1 equals (τ1 − τ ), and πi equals (τ i − τ i−1)
∀i ≥ 2. Λ on the other hand denotes the n-dimensional vector which
first element η1 equals 1, and the remaining are some fixed values
ηi > 0 ∀i ≥ 2. S (V,Θ, τ) is then assumed to be a continuous and
strictly increasing function in τ 1 (CSI (τ1)), with limτ1→τ S (V,Θ, τ) =
Max {0, V −Pn

i=1 ψi},4 and limτ1→∞ S (V,Θ, τ) = V . Denote ψ̂1 the

ψ1 value such that S (V, τ ) = V − ψ1
Pn

i=1 φi, that is, ψ̂1 =
F (V,τ)Pn
i=1 φi

.

3T1 = τ1 − τ .
4V −Pn

i=1 ψi = V − ψ1
Pn
i=1 φi
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Π = (τ1 − τ )Λ describes the time spread between payment dates. If
ηi = 1 ∀i for instance, then time between one debt payment and the following
is always the same. As τ 1 tends to τ , new corporate debt tends to consist in
a single payment satisfied at τ . As τ1 tends to infinity, the present value of
future debt payments, F (V,Θ, τ), tends to zero, and the equity value tends
to the firm value.
We may denote ∆ ≡ (n,Φ,Λ) the vector that describes the corporate

debt structure that results from a given RC Θ, and Θz | ∆ the subset of Θz

that satisfies some given corporate debt structure ∆. Searching for a feasible
RC, that is, searching for an element in Θz | ∆, reduces now to search for the
possible values of δ, ψ1 and τ1 that make the equity value to be equal before
and after the contract. The following assumption completes the description
of the dependence of S (V,Θ, τ) on these three elements.

Assumption B3: S (V,Θ, τ ) is a continuous and strictly increasing func-
tion in δ (CSI (δ)), with limδ→∞ S (V,Θ, τ ) = V .

limδ→∞ S (V,Θ, τ ) = V reflects that for any τ 1 > τ , in the limit case of
δ = ∞, the equity holders liquidate the firm before any debt payment can
be required. Note also that S (V,Θ, τ) |δ=0 coincides with the case presented
in Geske (1979).
The following definition and the subsequent remark will help us to proceed

in the search of an element in Θz | ∆.

Definition 2: The sequence α − β − γ is an order of choice in δ, ψ1 and
τ1.

Remark 2: An order of choice in δ, ψ1 and τ1 implies an order of choice
in δ, Ψ and Υ, given ∆.

All of the above allows us finally to establish the following theorem:

Theorem: Suppose S (V, τ) > 0, and let ϕδ ≡ <+, ϕψ1 ≡
³
ψ̂1,∞

´
, ϕτ1 ≡

(τ ,∞). Consider any sequence α−β−γ, where α is chosen in ϕα, and
define ϕβ|α as the subset of ϕβ for which S (V,Θ, τ ) = S (V, τ ) reaches
a solution for at least one γ ∈ ϕγ, given α. For any ∆, ϕβ|α is a non
empty set. Moreover, for any α ∈ ϕα, and β ∈ ϕβ|α, there is only one
γ ∈ ϕγ such that S (V,Θ, τ) = S (V, τ).
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Proof: See appendix.

Corollary 1: Θz 6= ∅ if and only if S (V, τ ) > 0.
Proof: This holds given lemma and theorem above.¥

The theorem asserts that, whenever S (V, τ) > 0, a feasible RC with any
arbitrary capital structure can be generated, and also describes how can it
be constructed. Although this feasible Θ is not unique for a given ∆, and
there is actually an infinite number of elements in Θz | ∆, not everything
is possible. Choosing one element in Θz | ∆ could be seen as a matter of
priority. Take for instance the sequence τ 1−δ−ψ1: The maturity of the first
payment, τ1, is freely chosen in the interval (τ ,∞), however, this election
restricts the range of dividend rates, δ, that can be selected in [0,∞), and
the election of the dividend rate in the restricted interval, finally determines

a unique first debt payment, ψ1, in
³
ψ̂1,∞

´
. On the other hand, corollary

1 implies that refinancing is feasible under the same conditions it is feasible
to issue new equity to pay the debt. Note also that S (V, t) > 0 ∀t < τ given
limited liability, what would allow the firm to refinance at any t < τ .
We end this section with three additional corollaries that follow directly

from the proof of the theorem.

Corollary 2: Suppose S (V, τ) > 0, and fix ∆. Then for a given (τ 1, δ) ∈
ϕτ1 × ϕδ such that δT1 < ln

h
V

F (V,τ)

i
there exists one, and only one

ψ1 ∈ ϕψ1 , such that the RC generated in this way is feasible.

Proof: See appendix.

Corollary 2 establishes a joint restriction on possible values of τ1 and δ.

Corollary 3: Suppose S (V, τ ) > 0, and fix ∆. Then for a given (τ1,ψ1) ∈
ϕτ1×ϕψ1 such that S (V,Θ, τ ) |δ=0≤ S (V, τ), there exists one, and only
one δ ∈ ϕδ, such that the RC generated in this way is feasible.

Proof: See appendix.

Corollary 3 this time indicates the joint condition that τ1 and ψ1 have
to satisfy in any feasible RC. Although the proof of the theorem makes clear
that such a pair of values exists in (τ 1,ψ1) ∈ ϕτ1×ϕψ1, no explicit expression
is available in this case.
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Corollary 4: Suppose S (V, τ) > 0, and fix ∆. Then for a given (δ,ψ1) ∈
ϕδ × ϕψ1 there exists one, and only one τ1 ∈ ϕτ1 , such that the RC
generated in this way is feasible.

Proof: See appendix.

Finally, corollary 4 asserts that the election of δ in ϕδ, does not restrict
the set of ψ1 values in ϕψ1 that can be selected, and vice versa. This means
that for any pair (δ,ψ1) ∈ ϕδ × ϕψ1 , there will always exist a τ1 ∈ ϕτ1 such
that the resulting vector (δ, τ1,ψ1) represents a feasible RC.
The fact that any possible debt structure can be chosen, joint with the

freedom to select any sequence α − β − γ, gives the RC the possibility to
be as ”imaginative” as one may desire. We may, nevertheless, describe how
to design two types of contracts that are commonly used in practice: Loans
which are repaid in equal monthly installments, and coupon bonds.
In our notation, the type of loan described can be represented by a vector

∆, where n is equal to the number of years times 12, and Φ as well as Λ, are
given by a vector of dimension n with all elements equal to 1. In order to
guarantee that we obtain monthly payments, we may start by choosing τ1:
If we fix τ equal to zero, and if we assume that µ and σ are in annual terms,
τ1 equal to

1
12
generates the monthly payments desired. Corollary 2 finally

ensures that for any δ lower than 12 × ln
h

V
F (V,0)

i
, we will be able to find a

ψ1 value in the interval
³
F (V,0)
n
,∞
´
, such that the resulting contract allows

the firm to refinance. A contract that implies equal monthly installments.
A coupon bond will require a little bit more of elaboration. Clearly, this

way to refinance needs the debt principal to be equal to F (V, τ ). If coupons
are payed annually, then n will be the number of years, and Λ will be a vector
of ones of dimension n. Φ this time will be given by a vector of dimension
n, with all elements equal to 1 but the element n, which will be equal to
(1 + p). Consider again current period equals zero, and choose τ1 = 1 to
guarantee annual payments. Again we can use Corollary 2 to ensure that

there exits a ψ1 in the interval
³
F (V,0)
n+p

,∞
´
, that allows the firm to refinance

for any δ lower than ln
h

V
F (V,0)

i
. According to Φ, we will have equal coupon

payments between periods 1 and n − 1, and the payment of coupon plus
ψ1p at the final date n. But we need a pair of values (ψ1, p), such that the
equality ψ1p = F (V, 0) holds. As a first step we may prove that such a pair
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exists. Note that this equality, joint with restriction ψ1 >
F (V,0)
n+p

, leads to

ψ1n > 0. In short, equity holders could pay F (V, 0) at current period zero,
or defer this payment to a future period. Condition ψ1n > 0 simply says
that at least a coupon payment (n > 0) is needed in order to charge the
interests that debt holders will require for this deferment. The problem is
that in general, ψ1p will not be equal to F (V, 0). We could however use the
following algorithm: Guess p0, and evaluate ψ1 (p0). If ψ1p0 < F (V, 0), guess
a higher p1, if ψ1p0 > F (V, 0), guess a lower p1, and repeat up to the point
in which ψ1p = F (V, 0). At the end we will have designed a coupon bond
that allows the firm to refinance.
We next analyze the specific cases of n = 1 and n = 2. These will be

useful to provide the basic implications of the refinancing strategy.

3 Particular Cases:

3.1 n = 1

Although any possible initial debt structure could be considered, we will
assume in this case that n remains constant along time. This means that a
single zero coupon bond, with nominal ψ and maturity at τ , is replaced by a
single zero coupon bond, with some nominal ψ1 and some maturity τ1 > τ ,
whenever S (V, τ ) > 0.
In order to show that a feasible RC exists, we need to describe how

S (V,Θ, τ) is to be valued. Specifically, we need to find the equity value at
τ , when the corporate debt consists in the payment of ψ1 at τ1 > τ , and the
dividend rate is δ, that is, S (V,Θ, τ) for Θ ≡ (δ,ψ1, τ 1).
S (V,Θ, τ) has two sources of value: On one hand the value associated to

the dividends that will be received between τ and τ1, D (V, τ ). On the other
hand the option value, O (V, τ), that comes from the possibility of acquiring
the firm at τ1 by paying ψ1. Applying risk neutral valuation we find that

D (V, τ ) = V
¡
1− e−δT1¢

and5

5N (·) denotes the standard normal cumulative distribution function.
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O (V, τ ) = V e−δT1N (d1)− ψ1e
−rT1N (d2)

where

d1 =
ln
³
V
ψ1

´
+
³
r − δ + σ2

2

´
T1

σ
√
T1

d2 = d1 − σ
p
T1

Finally

S (V,Θ, τ) = V
¡
1− e−δT1¢+ V e−δT1N (d1)− ψ1e

−rT1N (d2) (2)

The fact that assumptions B1-B3 hold in this case is established in the
following proposition.

Proposition 1: B1-B3 hold for n = 1, making a RC with n = 1 feasible
whenever S (V, τ ) > 0.

Proof: See appendix.

Figure 1 describes two of the six alternative ways to design a RC with
n = 1: Those associated to sequences τ1−δ−ψ1 and τ 1−ψ1−δ, respectively.6
Consider first τ 1 − δ − ψ1: In principle, any dividend rate between zero

and infinity would be feasible in a RC. However, for a given maturity strictly
greater than current period τ , the set of possible dividend rates reduces to the
interval [0, δ2). We may say that the higher the debt maturity, the lower the
dividend rate that debt holders will be willing to accept to refinance existing
debt. Now let assume that a debt maturity has been chosen. Figure 1 makes
clear that the higher δ, the higher the debt payment, or in other words, the
higher the yield that debt holders will charge to the firm to refinance its debt.

6S (V,Θ, τ)ψ1ψ1 > 0, implying that S (V,Θ, τ) is a strictly convex function in ψ1.
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Sequence τ1−ψ1− δ can also be analyzed using Figure 1: In this specific
case of n = 1, it is clear that ψ̂1 = ψ. Any debt maturity strictly greater
than τ , will nevertheless lead to a strictly positive yield reflected in a higher
ψ1. For a fixed maturity, we observe on the other hand that the higher the
yield charged to equity holders, that is, the higher ψ1, the higher also the
dividend rate. In short, equity holders demand a higher dividend rate as
compensation for bearing a higher yield to maturity.

V

S(V,τ) = V[1-exp(-δ2T1)]

V[1-exp(-δ1T1)]

Θ0 ≡ (0,ψ1,τ1)

Θ1 ≡ (δ1,ψ1,τ1)

Θ2 ≡ (δ2,ψ1,τ1)

0 < δ1 < δ2

δ2 =[ln(V/ψ)]/T1

S(V,Θ2,τ)

S(V,Θ1,τ)

S(V,Θ0,τ)

   0,τ1

ψ1
   δ1,τ1

ψ1 ψ1

S(V,Θ,τ)

Figure 1: Sequences τ1 − δ − ψ1 and τ1 − ψ1 − δ for n = 1.

An interesting aspect is that in fact, the credit spread (C.S) on corporate
debt that results from refinancing, will depend on the specific RC chosen in
the feasible set; A feasible set that at the same time depends on the current
firm value, the current nominal debt, the firm return volatility, and the risk
free interest rate. We know that for any element Θ of this set, the new equity
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value, S (V,Θ, τ ), equals the previous one, S (V, τ). This can be expressed
as V − ψ1e

−RT1 = V − ψ, where R is the interest rate associated to the new
corporate debt. Then it is straightforward to show that

C.S =
ln
³
ψ1
ψ

´
T1

− r

Although the dividend rate does not explicitly appear in the expression
above, it does through its influence on ψ1 and T1.
Given the firm characteristics and the risk free rate, that is, given a vector

(V,ψ,σ, r), the C.S will be a function of the specific contract chosen, which
we represent by a vector (δ,ψ1, τ1). We have seen however that only two
of these three elements are ”freely” chosen. Consider for instance (δ, τ1)
are selected according to the restriction imposed by corollary 2, then the

credit spread will be a function of (V,ψ, σ, r, δ, τ1), with δT1 < ln
³
V
ψ

´
. In

order to make some comparative statics with respect to the C.S, we need
to derive how ψ1 depends on these variables and parameters. Let define
Γ (V,Θ, τ) = S (V,Θ, τ )−S (V, τ ). Then, Θ belongs to the feasible set if and
only if Γ (V,Θ, τ) = 0, and the derivative of ψ1 with respect to variable or
parameter j will be given by

(ψ1)j = −
Γ (V,Θ, τ )j
Γ (V,Θ, τ)ψ1

what leads to (ψ1)V < 0, (ψ1)ψ > 0, (ψ1)σ > 0, (ψ1)r > 0, (ψ1)δ > 0,
(ψ1)τ1 > 0 (see appendix for details). We may now describe the dependence
of the C.S on the firm value and the nominal debt to refinance:

C.SV =
(ψ1)V
ψ1T1

< 0

C.Sψ =
(ψ1)ψ ψ − ψ1

ψ1ψT1
> 0
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A higher leverage ratio (a lower V or a higher ψ), means a higher credit
risk, and the result is a higher C.S faced by the firm to refinance.
Figure 2 represents the C.S as a function of the maturity date for different

firm values. The base case in this and other simulations is V = 100, ψ = 30,
σ = 0.2, r = 0.05 and δ = 0.01. As mentioned above, the lower the firm
value, the higher the credit risk of the firm, and the higher the C.S that it
has to face to refinance.
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Figure 2: C.S as a function of the maturity date for different firm values.
Base case: ψ = 30, σ = 0.2, r = 0.05 and δ = 0.01.

Figure 3 provides the credit spread as a function of the maturity date for
different current nominal debt payments. We can interpret the effect of a
higher ψ in the same way we interpreted the effect of a lower V .
On the other hand

C.Sσ =
(ψ1)σ
ψ1T1

> 0

It is also reasonable to observe that the higher the firm risk, the higher
the credit spread on the firm debt. Figure 5 plots the C.S as a function of
the maturity date for different firm return volatilities, showing that it is an
increasing function of the firm risk.
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Figure 3: C.S as a function of the maturity date for different nominal debt
payments. Base case: V = 100, σ = 0.2, r = 0.05 and δ = 0.01.
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Figure 4: C.S as a function of the maturity date for different firm return
volatilities. Base case: V = 100, ψ = 30, r = 0.05 and δ = 0.01.
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The credit spread shows however to be independent of the risk free interest
rate:

C.Sr = 0

This result may appear inconsistent with that derived in Merton (1974),
where the credit spread results a decreasing function of the risk free interest
rate. In our case however, we are analyzing the credit spread of a new issued
debt at the moment it is issued, and with the goal of refinancing current
debt, which is not the case in Merton (1974).
The dependence of the credit spread on the dividend rate is described by

C.Sδ =
(ψ1)δ
ψ1T1

> 0

A higher dividend rate implies a lower expected firm value growth and
a higher default probability, what leads to a higher credit spread. Figure
4 again represents the C.S as a function of the maturity date, but now
alternative dividend rates are considered. It reflects the important effect
that the dividends have on the credit spread.

Finally

C.Sτ1 =
(ψ1)τ1 − ψ1R

ψ1T1

Although no formal proof for the fact that C.Sτ1 > 0 can be provided, this
holds in all (reported and unreported) simulations performed. Nevertheless,
it again may seem inconsistent with the results in Merton (1974). It must be
pointed out the substantial difference in the analysis of the time dependence
followed by Merton and the one we drive here (not only the inclusion of a
dividend rate): In fact, he sets the so called ”quasi debt-to-firm value ratio”
constant. In order to keep that ratio equal to a fixed q for a given firm value
and interest rate, ψ1 should be determined as qV e

rT . In our case, however,
we impose that the implied ψ1 value is consistent with a feasible RC, what

16



0
20
40

60
80
100
120

140
160
180

1 3 5 7 9 11 13 15 17 19 21 23 25

Maturity

Cr
ed

it 
Sp

re
ad

Delta=0
Delta=0.01
Delta=0.02

Figure 5: C.S as a function of the maturity date for different dividend rates.
Base case: V = 100, ψ = 30, σ = 0.2 and r = 0.05.

makes the ratio q to move from values below 1 to values above 1 for different
maturities.7

Implications of the Refinancing Strategy for n = 1.

The fact that a firm chooses to refinance its debt has also several impli-
cations in terms of the future evolution of credit ratings and credit spreads.
To start with we may represent the new nominal debt payment that

results from refinancing at τ , as a function of the firm value.8 This is done
in picture 6: As the firm value tends to the default point ψ, the new nominal
payment (and the credit spread that the firm has to face to refinance) tends
to infinity. As the firm value tends to infinity on the other hand, the new
payment tends to the previous payment capitalized at the risk free interest
rate.
Let now assume that the credit rating of the firm is measured at any

time the firm refinances, as the ratio current firm value to new nominal debt.
Picture 7 follows directly from Picture 6, and represents the credit rating

7Merton finds that the sign of C.Sτ1depends on whether q is higher, equal or lower
than 1.

8To simplify the exposition we assume a non dividend paying firm. The strict convexity
follows from (ψ1)V < 0 and (ψ1)V V > 0.
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at τ , V (τ ) /ψ1, as a function of the ratio V (τ ) /ψ. Let A = V (τ−1) /ψ be
the credit rating of the firm at issuance of ψ. Then, if the firm value stays
constant between τ−1 and τ , the credit rating falls to a. The fact that the
firm refinances makes possible to observe a downgrade in the credit rating
of the firm even if it does not lose market value, and as Picture 7 indicates,
even with a strictly positive growth (point C). In order to keep its credit
rating a firm value growth large enough (point B), has to take place. In
summary, any ratio V (τ) /ψ lower that B will be followed by a downgrade,
while any value of this ratio above B will lead to an upgrade. Note also that
deviations from B will have a different impact on the credit rating depending
on whether this deviation is positive or negative. A negative deviation will
have a higher effect in absolute terms than an equivalent positive deviation.
Debt refinancing therefore is expected to generate stronger downgrades than
upgrades.

V(τ)ψ

ψ1=ψ exp{RT1}

ψ exp{rT1}

Figure 6: ψ1 as a function of V (τ).

Refinancing also generates another testable implication in terms of credit
spreads: As has been pointed out, the credit spread will not depend on the
risk free interest rate. Nevertheless, this null influence will hold only in the
short run. The new nominal debt payment ψ1 is an increasing function of the
risk free interest rate. As a consequence, the credit spread that the firm will

18
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Figure 7: V (τ) /ψ1 as a function of V (τ) /ψ.

have to face at τ1 to refinance ψ1 will tend to be higher the higher the risk
free interest at τ , given that this risk premium is an increasing function of
the nominal debt to be refinanced. Some evidence of this ”lagged effect” has
already been provided by Guha, Hiris and Visviki (2000). Specifically, they
find that credit spreads on bonds rated by Moody’s, are positively correlated
with the two years lagged long term Government Bond Yield.

3.2 n = 2

We have analyzed the case in which the firm always maintains a single
zero coupon bond as corporate debt. The main implications derived from
assuming that the firm refinances its debt in terms of credit ratings and credit
spreads appear in this simple case. Exploring the situation in which the firm
always refinances with n = 2 is interesting however for several reasons: First,
it can be seen as a simplification to short and long term debt, what better
represents the debt structure of a firm. Second, it incorporates the fact that
equity holders do not only care about the debt that currently matures at
the time of deciding whether or not satisfying it, but also about all future
debt remaining. This makes for instance the current bankruptcy-triggering
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firm value to diverge from the current nominal debt payment, something that
does not happen with n = 1.
Proposition below ensures that at any time the firm has to satisfy a debt

payment, refinancing with n = 2 is feasible.

Proposition 2: B1-B3 hold for n = 2, making a refinancing contract with
n = 2 feasible whenever S (V, τ ) > 0.

Proof: See appendix.

Proposition 2 does not assume any specific initial debt structure. How-
ever, we may think in a model in which the firm maintains an stable corporate
debt structure with short and long term debt, keeping the ratio short term
debt/long term debt, and the time spread between them, constant. These
can be associated to the specific industry in which the firm operates.
This stable corporate debt structure translates into a vector∆ ≡ (n,Φ,Λ),

where n = 2, Φ = (1,φ) and Λ = (1, η). Assume again that the firm does
not pay dividends. As a result, it is always possible to consider that the firm
refinances not only under a constant ∆ (as stated in the theorem), but also
with some fixed constant T1 (given corollary 2).
The following proposition implies that the effect of debt refinancing on

the evolution of the credit rating of the firm described for n = 1, also applies
in this case.

Proposition 3: Let V̄ and V̄1 denote the bankruptcy-triggering firm value
at τ and τ 1 respectively. Then V̄1 is a strictly decreasing and strictly
convex function in V (τ ), with limV (τ)→V̄ =∞ and limV (τ)→∞ = V̄ erT1.

Proof: See appendix

The shape of V̄1 as a function of V will be therefore analogous to the one
we found for ψ1 with respect to ψ under n = 1. The credit rating at τ will
be now described by the ratio V (τ) /V̄1, and the same analysis with made
for V (τ) /ψ1 applies here.
Refinancing makes V̄1 to be the new bankruptcy-triggering firm value, a

critical threshold that will evolve over time as the firm refinances its debt
repeatedly. Although no explicit solution for it can be provided, it can be
shown that it belongs to the same range in which KMV Corporation finds
typically to be the default point.
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Proposition 4: Let ψ1 and ψ2 be the new short and long term debt re-
sulting from refinancing at τ , and let T be the time spread between
these payments. Then for any σ ∈ (0,∞), V̄1 ∈

¡
ψ1,ψ1 + ψ2e

−rT¢ .
Moreover limσ→0 V̄1 = ψ1 + ψ2e

−rT and limσ→∞ V̄1 = ψ1.

Proof: See appendix.

With a database over 100.000 company-years of data and over 2.000 in-
cidents of default or bankruptcy, KMV has found that firms generally de-
fault when the firm value lies somewhere between short term debt and to-
tal debt in nominal terms.9 Clearly, V̄1 ∈

¡
ψ1,ψ1 + ψ2e

−rT¢ implies that
V̄1 ∈ (ψ1,ψ1 + ψ2).

4 Conclusions:

Refinancing existing debt seems to be one of the most important, if not
the first, reason to issue new debt. We investigate the long run effects of
this extended practice on credit ratings and credit spreads. Debt refinancing
generates systematic rating downgrades unless a minimum firm value growth
is observed. Deviations from this growth path imply asymmetric results:
A lower firm value growth generates downgrades and a higher firm value
growth upgrades as expected. However, downgrades will tend to be higher
in absolute terms. Finally, credit spreads and risk free interest rate will be
independent in the short run, but positively correlated in the long run.

5 Appendix:

5.1 Proof of lemma:

S (V,Θ, τ) is what equity holders get after signing Θ, therefore they will
be willing to sign if and only if S (V,Θ, τ ) ≥ S (V, τ). F (V,Θ, τ) is what debt
holders have after signingΘ, therefore they will be willing to sign if and only if
F (V,Θ, τ) ≥ F (V, τ ). At the same time S (V,Θ, τ )+F (V,Θ, τ) = S (V, τ)+
F (V, τ ) = V . S (V,Θ, τ ) = S (V, τ) implies that F (V,Θ, τ) = F (V, τ )
and Θ ∈ Θz. On the other hand Θ ∈ Θz implies S (V,Θ, τ ) ≥ S (V, τ ).

9Crosbie, Peter J. (1999).
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Suppose S (V,Θ, τ ) > S (V, τ ), then F (V,Θ, τ ) < F (V, τ ) and Θ /∈ Θz,
what is a contradiction, proving the first argument of the lemma. Finally
S (V,Θ, τ) > 0 ∀Θ | τ1 > τ ,10 implying S (V, τ) > 0 as a necessary condition
for a feasible Θ to exist.

5.2 Proof of theorem:

We have six possible sequences α−β−γ. Let analyze each one of them:

Case 1: τ 1 − δ − ψ1

Given τ 1 ∈ ϕτ1 , S (V,Θ, τ ) is CSD (ψ1), with limψ1→ψ̂1
S (V,Θ, τ) >

S (V, τ ) ∀δ ∈ ϕδ, and limψ1→∞ S (V,Θ, τ) = V
¡
1− e−δT1¢. Therefore,

S (V,Θ, τ) = S (V, τ ) reaches a solution for at least one ψ1 ∈ ϕψ1, if and

only if V
¡
1− e−δT1¢ < S (V, τ), if and only if δ <

ln[ V
F (V,τ) ]
T1

. As a result,

ϕδ|τ1 ≡
·
0,

ln[ V
F (V,τ) ]
T1

¶
6= ∅. Because S (V,Θ, τ) is CSD (ψ1), we finally have

that for any τ1 ∈ ϕτ1 , and δ ∈ ϕδ|τ1, there is a unique ψ1 ∈ ϕψ1 such that
S (V,Θ, τ) = S (V, τ).

Case 2: τ 1 − ψ1 − δ

Given τ 1 ∈ ϕτ1, S (V,Θ, τ ) is CSI (δ), with limδ→∞ S (V,Θ, τ) = V ∀ψ1 ∈
ϕψ1 . Therefore, S (V,Θ, τ) = S (V, τ) reaches a solution for at least one
δ ∈ ϕδ, if and only if S (V,Θ, τ) |δ=0≤ S (V, τ), if and only if ψ1 ≥ ψ0,τ11 ,
where ψ0,τ11 > ψ̂1 is the ψ1 value such that S (V,Θ, τ ) |δ=0= S (V, τ).11 As
a result, ϕψ1|τ1 ≡ £ψ0,τ11 ,∞¢ 6= ∅. Because S (V,Θ, τ ) is CSI (δ), we finally
have that for any τ1 ∈ ϕτ1, and ψ1 ∈ ϕψ1|τ1 , there is a unique δ ∈ ϕδ such
that S (V,Θ, τ ) = S (V, τ ).

Case 3: δ − τ1 − ψ1

Given δ ∈ ϕδ, S (V,Θ, τ) is CSD (ψ1), with limψ1→ψ̂1
S (V,Θ, τ ) >

S (V, τ ) ∀τ 1 ∈ ϕτ1, and limψ1→∞ S (V,Θ, τ ) = V
¡
1− e−δT1¢. Therefore,

S (V,Θ, τ) = S (V, τ ) reaches a solution for at least one ψ1 ∈ ϕψ1 , if and

10Limited liability makes S (V,Θ, τ) > 0 when no payment has to be currently satisfied.
11B1 implies that ψ0,τ11 exists and is unique, and joint with B2 also implies that ψ0,τ11 >

ψ̂1.
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only if V
¡
1− e−δT1¢ < S (V, τ ), if and only if τ1 < τ +

ln[ V
F (V,τ) ]
δ

. As a result,

ϕτ1|δ ≡
µ
τ , τ +

ln[ V
F (V,τ) ]
δ

¶
6= ∅. Because S (V,Θ, τ ) is CSD (ψ1), we finally

have that for any δ ∈ ϕδ, and τ 1 ∈ ϕτ1|δ, there is a unique ψ1 ∈ ϕψ1 such
that S (V,Θ, τ ) = S (V, τ ).

Case 4: δ − ψ1 − τ 1

Given δ ∈ ϕδ, S (V,Θ, τ) is CSI (τ1), with limτ1→τ S (V,Θ, τ) = V −
ψ1
Pn

i=1 φi < S (V, τ ) ∀ψ1 ∈ ϕψ1, and limτ1→∞ S (V,Θ, τ) = V . As a result,
ϕψ1|δ ≡ ϕψ1 6= ∅. Because S (V,Θ, τ ) is CSI (τ1), we finally have that for any
(δ,ψ1) ∈ ϕδ×ϕψ1 , there is a unique τ1 ∈ ϕτ1 such that S (V,Θ, τ ) = S (V, τ ).

Case 5: ψ1 − τ 1 − δ

Given ψ1 ∈ ϕψ1 , S (V,Θ, τ ) is CSI (δ), with limδ→∞ S (V,Θ, τ) = V
∀τ 1 ∈ ϕτ1. Therefore, S (V,Θ, τ ) = S (V, τ) reaches a solution for at least

one δ ∈ ϕδ, if and only if S (V,Θ, τ) |δ=0≤ S (V, τ), if and only if τ 1 ≤ τ
0,ψ1
1 ,

where τ
0,ψ1
1 > τ is the τ1 value such that S (V,Θ, τ) |δ=0= S (V, τ).12 As

a result, ϕτ1|ψ1 ≡
³
τ , τ

0,ψ1
1

i
6= ∅. Because S (V,Θ, τ ) is CSI (δ), we finally

have that for any ψ1 ∈ ϕψ1, and τ 1 ∈ ϕτ1|ψ1 , there is a unique δ ∈ ϕδ such
that S (V,Θ, τ ) = S (V, τ ).

Case 6: ψ1 − δ − τ 1

Given ψ1 ∈ ϕψ1, S (V,Θ, τ) is CSI (τ1), with limτ1→τ S (V,Θ, τ) = V −
ψ1
Pn

i=1 φi < S (V, τ ) ∀δ ∈ ϕδ, and limτ1→∞ S (V,Θ, τ ) = V . As a result,
ϕδ|ψ1 ≡ ϕδ 6= ∅. Because S (V,Θ, τ) is CSI (τ 1), we finally have that for
any (ψ1, δ) ∈ ϕψ1 × ϕδ, there is a unique τ1 ∈ ϕτ1 such that S (V,Θ, τ ) =
S (V, τ ).¥

5.3 Proof of corollary 2:

This holds given the proof of case 1 and case 3.¥
12B2 implies that τ

0,ψ1
1 exists and is unique. B2 also implies that τ

0,ψ1
1 > τ .
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5.4 Proof of corollary 3:

This holds given the proof of case 2 and case 5.¥

5.5 Proof of corollary 4:

This holds given the proof of case 4 and case 6.¥

5.6 Proof of proposition 1:

S (V,Θ, τ) is clearly a continuous function in ψ1, with
13

S (V,Θ, τ)ψ1 = −e−rT1N (d2) < 0

S (V,Θ, τ ) | ψ1=0 = V

lim
ψ1→∞

S (V,Θ, τ ) = V
¡
1− e−δT1¢

and B1 holds. On the other hand, S (V,Θ, τ ) is a continuous function in
τ1, with

14

S (V,Θ, τ )τ1 = δV e−δT1 [1−N (d1)] +

+V e−δT1f (d1) σ
2
√
T1
+ rψ1e

−rT1N (d2) > 0

lim
τ1→∞

S (V,Θ, τ) = V

lim
τ1→τ

S (V,Θ, τ) =

 V − ψ1 if V > ψ1

0 if V ≤ ψ1

= Max {0, V − ψ1}
13S (V,Θ, τ)j denotes the first derivative of S (V,Θ, τ) with respect to j.
14f (·) denotes the standard normal density function.
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and B2 also holds. Finally, S (V,Θ, τ ) is a continuous function in δ, with

S (V,Θ, τ )δ = T1V e
−δT1 [1−N (d1)] > 0

lim
δ→∞

S (V,Θ, τ ) = V

and our last condition B3 holds as well¥.

5.7 Partial derivatives:

(ψ1)V = − e−δT1 [1−N(d1)]
e−rT1N(d2)

< 0

(ψ1)ψ =
1

e−rT1N(d2)
> 0

(ψ1)σ =
V e−δT1f(d1)

√
T1

e−rT1N(d2)
> 0

(ψ1)r = ψ1T1 > 0

(ψ1)δ =
T1V e−δT1 [1−N(d1)]

e−rT1N(d2)
> 0

(ψ1)τ1 =
δV e−δT1 [1−N(d1)]+V e−δT1f(d1) σ

2
√
T1
+rψ1e

−rT1N(d2)

e−rT1N(d2)
> 0

5.8 Proof of proposition 2:

We need to derive what is the equity value when the debt structure of
the firm is composed by short term debt ψ1, and long term debt ψ2; τ1 and τ2
are respectively short and long term debt maturities. Suppose first an asset
C (V, t) with two sources of value: On one hand it pays the firm dividends
between τ1 and τ 2. On the other hand it gives the right to buy the firm at
τ2 by paying ψ2. In the same way we derived (2), it can be shown that at
any t ≤ τ 1

C (V, t) = V e−rT1
¡
1− e−δT¢+ V e−δT2N (b1)− ψ2e

−rT2N (b2)

25



where

b1 =
ln
³
V
ψ2

´
+
³
r − δ + σ2

2

´
T2

σ
√
T2

b2 = b1 − σ
p
T2

T1 = τ 1 − t

T2 = τ 2 − t

T = τ 2 − τ1

If current and/or new potential equity holders pay ψ1 at τ1, they acquire
precisely this asset. As long as they have the option of refusing this payment

S (V,Θ, τ 1) =Max {0, C (V, τ 1)− ψ1}

C (V, τ1) is a strictly increasing function in V , with limV→0C (V, τ1) = 0
and limV→∞C (V, τ 1) =∞, therefore there exists a unique V̄1 ∈ (0,∞) such
that S (V,Θ, τ 1) > 0 ∀ V > V̄1. This will be the implicit solution to

S
¡
V̄1,Θ, τ 1

¢
= V̄1

¡
1− e−δT¢+ V̄1e−δTN (c1)− ψ2e

−rTN (c2)− ψ1 = 0

where

c1 =
ln
³
V̄1
ψ2

´
+
³
r − δ + σ2

2

´
T

σ
√
T

c2 = c1 − σ
√
T

At τ < τ1 the equity also finds two sources of value. On one hand the
value associated to dividends received from τ to τ 1, D (V, τ); On the other
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hand the option value that appears due to the possibility of buying the
described asset at τ1, O (V, τ ). The first is

D (V, τ ) = V
¡
1− e−δT1¢

The option value will be15

O (V, τ) = V e−δT1
¡
1− e−δT¢N (a1) +

+V e−δT2N2 (a1, b1; ρ)− ψ2e
−rT2N2 (a2, b2; ρ)− ψ1e

−rT1N (a2)

where

a1 =
ln
³
V
V̄1

´
+
³
r − δ + σ2

2

´
T1

σ
√
T1

a2 = a1 − σ
p
T1

ρ =

r
T1
T2

Finally

S (V,Θ, τ) = O (V, τ) +D (V, τ)

= V
¡
1− e−δT1¢+ V e−δT1 ¡1− e−δT¢N (a1) + (A8)

+V e−δT2N2 (a1, b1; ρ)− ψ2e
−rT2N2 (a2, b2; ρ)− ψ1e

−rT1N (a2)

15This expression can be derived following the methodology applied to the valuation of
compound options. For a detailed exposition see Kwok [15].
N2 (a, b; ρ) represents the cumulative standard bivariate normal distribution function,

with integration limits a and b, and correlation coefficient ρ.
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(??) converges to the expression given in Geske (1979) for two periods as
δ tends to zero. The first term on the r.h.s. is the value of the dividends that
will be received from τ to τ 1, the second is the value of the dividends that
will be received from τ 1 to τ2 if the firm does not default at τ 1, and the last
three terms represent the compound option on the firm.
According to the notation used in B1 and B2, we could express ψ2 as

φψ1, and T2 as (1 + η)T1. Then

S (V,Θ, τ) = V
¡
1− e−δT1¢+ V e−δT1 ¡1− e−δηT1¢N (a1)+

+V e−δ(1+η)T1N2 (a1, b1; ρ)− φψ1e
−r(1+η)T1N2 (a2, b2; ρ)− ψ1e

−rT1N (a2)

where

b1 =
ln
³

V
φψ1

´
+
³
r − δ + σ2

2

´
(1 + η)T1

σ
p
(1 + η)T1

b2 = b1 − σ
p
(1 + η)T1

ρ =

r
1

1 + η

At the same time, V̄1 will be the firm value that satisfies

S
¡
V̄1,Θ, τ 1

¢
= V̄1

¡
1− e−δηT1¢+ V̄1e−δηT1N (c1)− φψ1e

−rηT1N (c2)− ψ1 = 0

where

c1 =
ln
³
V̄1
φψ1

´
+
³
r − δ + σ2

2

´
ηT1

σ
√
ηT1

c2 = c1 − σ
p

ηT1
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Proving that B1 holds requires to obtain the sign of S (V,Θ, τ )ψ1 . In the

process of differentiatingN2 (a, b; ρ) it is useful to use the following expression
when applying Liebnitz’s rule:

N2 (a, b; ρ) =

aZ
−∞

f (x)N

Ã
b− ρxp
1− ρ2

!
dx

On the other hand, it must be taken into account that V̄1 will change
with ψ1. In fact

¡
V̄1
¢
ψ1
= −

S
¡
V̄1,Θ, τ1

¢
ψ1

S
¡
V̄1,Θ, τ1

¢
V̄1

=

£
1 + φe−rηT1N (c2)

¤
1− e−δηT1 [1−N (c1)] > 0

At the same time, it can be easily proved that ci =
bi−ρai√
1−ρ2 for i = 1, 2.

All this information, joint with the following definitions

m = (a1)ψ1 = (a2)ψ1

n = (b1)ψ1 = (b2)ψ1

lead to

S (V,Θ, τ)ψ1 = V e
−δT1 ¡1− e−δηT1¢ f (a1)m+

+V e−δ(1+η)T1
·
f (a1)N (c1)m+ f (b1)N

µ
a1−ρb1√
1−ρ2

¶
n

¸
−

−φe−r(1+η)T1N2 (a2, b2; ρ)−

−φψ1e−r(1+η)T1
·
f (a2)N (c2)m+ f (b2)N

µ
a2−ρb2√
1−ρ2

¶
n

¸
−

−e−rT1N (a2)− ψ1e
−rT1f (a2)m
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If we now apply the following identities:

a1 − ρb1p
1− ρ2

=
a2 − ρb2p
1− ρ2

V e−δT1f (a1) = V̄1e
−rT1f (a2)

V e−δ(1+η)T1f (b1) = φψ1e
−r(1+η)T1f (b2)

we finally get

S (V,Θ, τ)ψ1 = e
−rT1f (a2)mS

¡
V̄1,Θ, τ1

¢−
−φe−r(1+η)T1N2 (a2, b2; ρ)− e−rT1N (a2)

= − £φe−r(1+η)T1N2 (a2, b2; ρ) + e−rT1N (a2)¤ < 0
S (V,Θ, τ) is then a continuous function in ψ1, with S (V,Θ, τ)ψ1 < 0.

This, joint with

S (V,Θ, τ) |ψ1=0= V

limψ1→∞ S (V,Θ, τ ) = V
¡
1− e−δT1¢

proves that assumption B1 holds.

On the other hand, S (V,Θ, τ ) is a continuous function in τ1, with
16

16Use

S
¡
V̄1,Θ, τ1

¢
τ1
= δηV̄1e

−δηT1 [1−N (c1)]+rηφe−rηT1N (c2)+φψ1e−rηT1f (c2)
σ

2
√
ηT1

> 0,

and the same arguments applied to S (V,Θ, τ)ψ1 to derive S (V,Θ, τ)τ1 .
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S (V,Θ, τ )τ1 = δV e−δT1 [1−N (a1)]+

+δ (1 + η)V e−δ(1+η)T1 [N (a1)−N2 (a1, b1; ρ)] +

+r (1 + η)φψ1e
−r(1+η)T1N2 (a2, b2; ρ)+

+φψ1e
−r(1+η)T1f (a2)N (c2) σ

2
√
T1
+

+φψ1e
−r(1+η)T1f (b2)N

µ
a2−ρb2√
1−ρ2

¶
σ

2
√
(1+η)T1

+

+rψ1e
−rT1N (a2) + ψ1e

−rT1f (a2) σ
2
√
T1
> 0

limτ1→∞ S (V,Θ, τ) = V

limτ1→τ S (V,Θ, τ ) =

 V − ψ1 − φψ1 if V > ψ1 + φψ1

0 if V ≤ ψ1 + φψ1

=Max {0, V − ψ1 − φψ1}

proving that assumption B2 also holds. Finally, S (V,Θ, τ) is a continuous
function in δ, with17

S (V,Θ, τ )δ = T1V e
−δT1 [1−N (a1)] +

(1 + η)T1V e
−δ(1+η)T1 [N (a1)−N2 (a1, b1; ρ)] > 0

limδ→∞ S (V,Θ, τ) = V

and assumption B3 is satisfied.¥
17Use

S
¡
V̄1,Θ, τ1

¢
δ
= ηT1V̄ e

−δηT1 [1−N (c1)] > 0,
and again the same arguments applied to S (V,Θ, τ1)ψ1 to get S (V,Θ, τ1)δ.
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It is possible to analyze graphically case 1 for n = 2. Let denote S (V,Θ, τ )
simply as S, and let show that S is strictly convex in (ψ1,ψ2), where we do
not impose the restriction ψ2 = φψ1.

Sψ1 = −e−rT1N (a2)

Sψ2 = −e−rT2N (a2, b2; ρ)

Sψ1ψ1 =
e−rT1f (a2)

V̄1σ
√
T1 {1− e−δT [1−N (c1)]}

> 0

Sψ2ψ2 =
e−r(T2+T )f (a2) [N (c2)]

2

V̄1σ
√
T1 {1− e−δT [1−N (c1)]}

+

e−rT2f (b2)N
µ
a2−ρb2√
1−ρ2

¶
ψ2σ
√
T2

> 0

Sψ1ψ2 =
e−rT2f (a2)N (c2)

V̄1σ
√
T1 {1− e−δT [1−N (c1)]}

Sψ1ψ1Sψ2ψ2 −
¡
Sψ1ψ2

¢2
=
e−r(T1+T2)f (a2) f (b2)
V̄1ψ2σ

2
√
T1
√
T2

N

µ
a2−ρb2√
1−ρ2

¶
{1− e−δT [1−N (c1)]} > 0

The strict convexity of S, joint with S |(ψ1,ψ2)=(0,0)= V , and
lim(ψ1,ψ2)→(∞,∞) S = V

¡
1− e−δT1¢, leads to figure 8.

5.9 Proof of proposition 3:

Let ψ be the debt payment to be satisfied at τ . Then

S (V, τ) = V N (w1)− φψe−rηT1N (w2)− ψ

where
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ψ1

ψ2

S(V,Θ,τ)

V

   δ,τ1

ψ1

    δ,τ1

φψ1

  ~    ~
{ψ1, ψ2}≡{ψ1,ψ2 S(V,Θ,τ)= S(V,τ) }

S(V,τ)

V[1-exp(-δT1)]

φ

Figure 8: Sequence τ1 − δ − ψ1 for n = 2.

33



w1 =
ln
³
V
φψ

´
+
³
r + σ2

2

´
ηT1

σ
√
ηT1

w2 = w1 − σ
p

ηT1

and S (V, τ ) > 0 ∀V > V̄ , being V̄ the implicit solution to S ¡V̄ , τ¢ = 0.
On the other hand

S (V,Θ, τ) = V N2 (k1, l1; ρ)− φψ1e
−r(1+η)T1N2 (k2, l2; ρ)− ψ1e

−rT1N (k2)

where

k1 =
ln
³
V
V̄1

´
+
³
r + σ2

2

´
T1

σ
√
T1

k2 = k1 − σ
p
T1

l1 =
ln
³

V
φψ1

´
+
³
r + σ2

2

´
(1 + η)T1

σ
p
(1 + η)T1

l2 = l1 − σ
p
(1 + η)T1

ρ =

r
1

1 + η

and V̄1 is the implicit solution to

S
¡
V̄1,Θ, τ 1

¢
= V̄1N (h1)− φψ1e

−rηT1N (h2)− ψ1 = 0

with
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h1 =
ln
³
V̄1
φψ1

´
+
³
r + σ2

2

´
ηT1

σ
√
ηT1

h2 = h1 − σ
p

ηT1

If we define θ = V̄1
ψ1
, then previous expressions can be written as

θN (h1)− φe−rηT1N (h2)− 1 = 0

where

h1 =
ln
³

θ
φ

´
+
³
r + σ2

2

´
ηT1

σ
√
ηT1

The result is that θ is a constant, that is, θ will not depend on the firm
value at τ (although V̄1 and ψ1 will). Note also that θ =

V̄
ψ
. We can express

condition Γ (V,Θ, τ) = S (V,Θ, τ)− S (V, τ ) = 0 as

Γ (V,Θ, τ ) =
£
V N2 (k1, l1; ρ)− V̄1 φθ e−r(1+η)T1N2 (k2, l2; ρ)− V̄1 1θe−rT1N (k2)

¤−
− £V N (w1)− V̄ φ

θ
e−rηT1N (w2)− V̄ 1

θ

¤
= 0

(A9)

where

w1 =
ln
¡
V
V̄

¢
+ ln

³
θ
φ

´
+
³
r + σ2

2

´
ηT1

σ
√
ηT1

l1 =
ln
³
V
V̄1

´
+ ln

³
θ
φ

´
+
³
r + σ2

2

´
(1 + η)T1

σ
p
(1 + η)T1
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(A9) implies that as V tends to V̄ , V̄1 tends to infinity. At the same time,
limV→∞ V̄1 = V̄ erT1.18 It can also be proved that V̄1 is a strictly decreasing
function in V . In fact19

¡
V̄1
¢
V
= − Γ (V,Θ, τ)V

Γ (V,Θ, τ )V̄1

= − N (w1)−N2 (k1, l1; ρ)
φ
θ
e−r(1+η)T1N2 (k2, l2; ρ) + 1

θ
e−rT1N (k2)

< 0

Figure 9 represents S (V, τ) and S (V,Θ, τ ) as a function of V .20 Clearly,
for any V > V̄ , N (w1) > N2 (k1, l1; ρ), given that these are the derivatives of
S (V, τ ) and S (V,Θ, τ ) with respect to V . This implies

¡
V̄1
¢
V
< 0.

¡
V̄1
¢
V V
>

0 finally follows from the fact that φ
θ
e−r(1+γ)T1N2 (k2, l2; ρ) + 1

θ
e−rT1N (k2) is

a strictly increasing function in V , while N (w1) − N2 (k1, l1; ρ) is strictly
decreasing ∀V > V̄ as Figure 9 indicates, and actually tends to zero as V
grows.¥

5.10 Proof of proposition 4:

Let Z (V ) = V N (g1)− ψ2e
−rTN (g2)− ψ1

where

g1 =
ln
³
V
ψ2

´
+
³
r + σ2

2

´
T

σ
√
T

g2 = g1 − σ
√
T

then V̄1 ≡ V | Z (V ) = 0.
18Note that this implies that limV→∞ ψ1 = ψerT1 and limV→∞ φψ1 = φψerT1 , that

is, as the default risk tends to zero, new debt payments tend to current debt payments
capitalized at the riskfree interest rate.
19Use the arguments in Appendix 5.1 to derive S (V,Θ, τ)V and S (V,Θ, τ)V̄1 .
20x = V − V̄ φ

θ e
−rηT1 − V̄ 1

θ and y = V − V̄1 φθ e−r(1+η)T1 − V̄1 1θ e−rT1 . V̄ φ
θ e
−rηT1 + V̄ 1

θ <

V̄1
φ
θ e
−r(1+η)T1 + V̄1 1θe

−rT1 given V̄1 > V̄ erT1 .
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V

S(V,τ) S(V,Θ,τ)

_
V V

x y

 S(V,τ)

S(V,Θ,τ)

Figure 9: S (V, τ) and S (V,Θ, τ ) as a function of V .

Suppose first σ ∈ (0,∞) and V = ψ1, then

Z (ψ1) = ψ1N (g1)− ψ2e
−rTN (g2)− ψ1

= −ψ1 [1−N (g1)]− ψ2e
−rTN (g2) < 0

this, joint with ZV = N (g1) > 0, implies that V̄1 > ψ1 ∀σ ∈
(0,∞). We have that limσ→∞N (g1) = 1 and limσ→∞N (g2) = 0,
therefore limσ→∞Z (V ) = V − ψ1 = 0⇔ V = ψ1, proving limσ→∞ V̄1 = ψ1.
On the other hand, consider V = ψ1 + ψ2e

−rT , then

Z
¡
ψ1 + ψ2e

−rT¢ = −ψ1 [1−N (g1)] + ψ2e
−rT [N (g1)−N (g2)]

limσ→0 Z
¡
ψ1 + ψ2e

−rT¢ = 0 because limσ→0N
¡
g1 | V = ψ1 + ψ2e

−rT ¢ =
limσ→0N

¡
g2 | V = ψ1 + ψ2e

−rT¢ = 1. As a result, V̄1 = ψ1 + ψ2e
−rT in this

limit case. Given that Zσ > 0 we also have that Z
¡
ψ1 + ψ2e

−rT¢ > 0 ∀σ ∈
(0,∞). This, joint again with ZV = N (g1) > 0, implies V̄1 < ψ1 + ψ2e

−rT

∀σ ∈ (0,∞), and concludes the proof.¥
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5.11 Default probabilities:

It is possible to derive how default probabilities implicit in Merton (1974)
and Geske (1977), depend on those variables and parameters that affect them.
Non of these articles include the possibility of a positive dividend rate, so we
will consider this simplified case.

5.11.1 Merton (1974):

The equity value in this case will be given by

S (V, t) = V N (d1)− ψe−rTN (d2)

where

d1 =
ln
³
V
ψ

´
+
³
r + σ2

2

´
T

σ
√
T

d2 = d1 − σ
√
T

T = τ − t

There is only one possibility of default: Defaulting at τ , and default will
take place if and only if the firm value falls bellow ψ at that moment. As a
result, the default probability will be

P = 1−N (s) (A11.1)

where

s =
ln
³
V
ψ

´
+
³
µ− σ2

2

´
T

σ
√
T
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It is straightforward to show that P is a decreasing function in V and µ,
and an increasing function in ψ. More interesting is how P depends on r,
t and σ: In this simple case the risk free rate has no effect on the default
probability. On the other hand, the sign of the derivative of P with respect
to t and σ, will depend on V . In fact

Pt T 0 as V S ṼM (A11.2)

ṼM = ψe

³
µ−σ2

2

´
T

(A11.3)

Pσ T 0 as V S V̂M (A11.4)

V̂M = ψe
−
³
µ+σ2

2

´
T

(A11.5)

Expression (A11.2) describes the dependence of P on t: If V > ψe

³
µ−σ2

2

´
T
,

then V > ψ.21 The closer is t to maturity in this case, the lower the prob-
ability of an unfavorable firm value change before τ . Consider now V < ψ,

then V < ψe

³
µ−σ2

2

´
T
. As time goes by, the probability of a favorable firm

value change given the expected growth in V along time, falls. Obviously

it is also possible to have V < ψe

³
µ−σ2

2

´
T
and V > ψ. We could interpret

this situation in the following sense: The difference between V and ψ, al-
though positive, is small enough for t to have a negative effect, given the
lower expected growth in V before maturity.
On the other hand, (A11.4) indicates that if V is low enough, then an

increase in the firm business risk may reduce the default probability given an
increased probability of a favorable firm value change (now due to shocks).
Note that this does not imply that debt value increases: Given that equity
value will always grow with the firm risk in this case, the debt value has to
fall. The reason is that although increasing the volatility may reduce the
default probability in some cases, this has the additional effect of reducing
the expected value for debt holders in the event of default. The debt value
is given by

21We assume
³
µ− σ2

2

´
> 0.
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F (V, t) = V [1−N (d1)] + ψe−rTN (d2)

The first term on the r.h.s. represents the debt value associated to default.

[1−N (d1)] is a decreasing function in σ if and only if V < ψe
−
³
r−σ2

2

´
T
, which

holds ∀ V < V̂M .22

5.11.2 Geske (1977):

Consider the simplest version of Geske (1977) in which the corporate
debt consists only on the payment of ψ1 at τ1 (short-run), and the payment
of ψ2 at τ 2 (long-run). Under these conditions the equity value will be

S (V, t) = V N2 (a1, b1; ρ)− ψ2e
−rT2N2 (a2, b2; ρ)− ψ1e

−rT1N (a2)

where

a1 =
ln
¡
V
V̄

¢
+
³
r + σ2

2

´
T1

σ
√
T1

a2 = a1 − σ
p
T1

b1 =
ln
³
V
ψ2

´
+
³
r + σ2

2

´
T2

σ
√
T2

b2 = b1 − σ
p
T2

T1 = τ1 − t

22(A11.4) has been derived ceteris paribus. This means that we have not taken into
account the effect of a higher risk in terms of the rate of return µ, which would require
additional assumptions about how these variables relate to each other.
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T2 = τ2 − t

ρ =

r
T1
T2

and V̄ is the implicit solution to

S
¡
V̄ , τ 1

¢
= V̄ N (c1)− ψ2e

−rTN (c2)− ψ1 = 0 (A11.6)

where

c1 =
ln
³
V̄
ψ2

´
+
³
r + σ2

2

´
T

σ
√
T

c2 = c1 − σ
√
T

T = τ 2 − τ1

In section 3.2 we saw that no explicit solution exists for V̄ . It is possi-
ble however to derive how this bankruptcy-triggering firm value depends on
different variables and parameters, even with the absence of such an explicit
solution.
First note that V̄ does not depend on current firm value, V , expected

rate of return on V , µ, or time to maturity of the first debt payment, τ1, as
long as they do not appear in (A11.6). The reason is that V̄ is actually the
firm value that makes an option on the firm at τ 1, with maturity at τ 2, and
strike equal to ψ2 to worth exactly ψ1. This option value does not depend on
previous (to τ1) firm values, previous periods, or µ (this last case by standard
option valuation arguments).
V̄ will be a function of those variables and parameters that do appear in

(A11.6): Formally, V̄ = V̄ (r,ψ1,ψ2, T,σ). The derivative of V̄ with respect

to variable or parameter j, V̄j, can be found as V̄j = −
S(V̄ ,τ1)

j

S(V̄ ,τ1)
V̄

.23 Then

23The equality ψ2e
−rT f(c2)
V̄ f(c1)

= 1 is used. f (·) denotes the standard normal density
function.
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V̄r = −Tψ2e
−rTN (c2)
N (c1)

< 0 (A11.7)

V̄ψ1 =
1

N (c1)
> 0 (A11.8)

V̄ψ2 =
e−rTN (c2)
N (c1)

> 0 (A11.9)

V̄T = −
V̄ f (c1)

σ
2
√
T
+ rψ2e

−rTN (c2)

N (c1)
< 0 (A11.10)

V̄σ = − V̄ f (c1)
√
T

N (c1)
< 0 (A11.11)

Not surprisingly given the interpretation made about V̄ , its value behaves
in the opposite direction of the call option does with respect to changes in
risk free interest rate, strike, time to maturity and volatility. Finally, the
higher ψ1, the higher the firm value that makes the call option to worth
exactly ψ1. A special remark can be done with respect to (A11.11): Higher
volatility reduces the short-run bankruptcy-triggering firm value, given the
positive effect on the call option. This means that, ceteris paribus, riskier
firms support lower V values in the short-run without defaulting. This fact
drive us to the question of what is the net effect of a higher volatility on the
short-run default probability. As we will see later on, the dependence of V̄
on σ is a key element for determining whether or not entering riskier business
has a positive or negative effect on this probability.

Short-Run Default Probability

The default probability in the short-run is the probability of observing at
τ1 the firm value to fall below V̄ . If we denote by P 1 this probability, then

P 1 = 1−N (n) (A11.12)

where
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n =
ln
¡
V
V̄

¢
+
³
µ− σ2

2

´
T1

σ
√
T1

The problem of analyzing the dependence of P 1 on those variables and pa-
rameters that affect it, seems quite similar to that made in the case of only
one payment, however, we should take into account two important differ-
ences: First, the bankruptcy-triggering firm value in this case is not constant
as before, that is, it changes if the variables or parameters change. Second,
the time dependence is substantially complicated. In fact, for the case of
only one payment, where the variables related to time were t, and τ , it was
enough to obtain Pt, given that PT = Pτ = −Pt, and all the time dependence
was summarized in Pt. Now we should analyze three alternatives:

a) P 1t : Time to maturity of the short and long-term debt reduces, but
time between short and long-term debt remains constant.
b) P 1τ1 : Time to maturity of the short-term debt increases, and time

between short and long-term debt reduces (note how the presence of long-
term debt makes a) and b) not to be formally the same as before).
c) P 1τ2 : Time to maturity of the long-term debt increases, and time be-

tween short and long-term debt also increases.

What we need to have in mind is whether or not T changes, because
this has a direct influence on V̄ , and therefore on P 1 (and P 2). Specifically
P 1 = P 1

¡
V, µ, V̄ , T1, σ

¢
= P 1 (V, r, µ,ψ1,ψ2, t, σ). We next describe the

relationship of these variables and parameters with P 1; Results (A11.7) -
(A11.11) are used:

P 1V = −
f (n)

V σ
√
T1
< 0 (A11.13)

The higher the current firm value, the higher the expected firm value at
maturity and the lower the default probability.

P 1r =
f (n)

V̄ σ
√
T1
V̄r < 0 (A11.14)
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(A11.14) links P 1 with the risk free interest rate, finding an inverse rela-
tion.

P 1µ = −
f (n)

σ

p
T1 < 0 (A11.15)

Higher µ implies higher expected firm value at τ 1, and therefore lower
probability of observing this value below V̄ .

P 1ψ1 =
f (n)

V̄ σ
√
T1
V̄ψ1 > 0 (A11.16)

P 1ψ2 =
f (n)

V̄ σ
√
T1
V̄ψ2 > 0 (A11.17)

(A11.16) and (A11.17) are the consequence of the influence of ψ1 and ψ2
on V̄ .

P 1t = −f (n)
ln
¡
V
V̄

¢− ³µ− σ2

2

´
T1

2σ (T1)
3/2

T 0 as V S ṼG1 (A11.18)

where

ṼG1 = V̄ e

³
µ−σ2

2

´
T1 (A11.19)

We can interpret ṼG1 in the same way we interpreted ṼM : Basically, for
V low enough, the closer is t to τ1, the lower the chances of a growth in V
large enough for it to excess the critical threshold V̄ at τ 1.

P 1τ1 = f (n)
ln
¡
V
V̄

¢− ³µ− σ2

2

´
T1 − 2εV̄ ,T

³
ρ2

1−ρ2
´

2σ (T1)
3/2

S 0 (A11.20)

as V S ṼG1e
2εV̄ ,T

µ
ρ2

1−ρ2

¶
(A11.21)
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εV̄ ,T is the elasticity of V̄ with respect to T , that could be obtained from
(A11.10). Note that P 1τ1 is not exactly −P 1t . In this case it is not enough
that V S ṼG1 to observe that a higher τ1 reduces the short-run default

probability, because higher τ1 increases now V̄ , and this tends to increase
this probability. We should have an even lower firm value.24

P 1τ2 =
f (n)

V̄ σ
√
T1
V̄T < 0 (A11.22)

Higher τ 2 reduces P
1 because of its influence on V̄ .

P 1σ =
f (n)

σ

µ
εV̄ ,σ

σ
√
T1
+ n+ σ

p
T1

¶
S 0 as V S V̂G1 (A11.23)

where

V̂G1 = V̄ e
−
h³
µ+σ2

2

´
T1+εV̄ ,σ

i
(A11.24)

and εV̄ ,σ < 0 is the elasticity of V̄ with respect to σ, which can be easily

derived from (A11.11). Note that εV̄ ,σ increases V̂G1, that is, the higher the
effect of σ on V̄ , the easier to find that increasing the firm return volatility
reduces the short-run default probability. Again this does not mean that
total debt value increases with volatility under V < V̂G1: σ has a positive
effect on the equity value, and assuming σ does not alter V , the consequence
is a negative effect on total debt value.

Long-Run Default Probability

The probability of defaulting the payment of ψ2, P
2, is the probability of

non observing V (τ 1) > V̄ and V (τ 2) > ψ2. Formally

P 2 = 1−N2 (n,m; ρ) (A11.25)

24ṼG1e
2εV̄ ,T

³
ρ2

1−ρ2
´
< ṼG1.
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where

m =
ln
³
V
ψ2

´
+
³
µ− σ2

2

´
T2

σ
√
T2

P 2 is a function of the same variables and parameters than P 1, that is,
P 1 = P 1 (V, r, µ,ψ1,ψ2, t, σ). Let denote

J = f (n)N

Ã
m− ρnp
1− ρ2

!
= f (n)N (A) > 0

H = f (m)N

Ã
n− ρmp
1− ρ2

!
= f (m)N (B) > 0

then

P 2V = −
1

V σ

µ
J√
T1
+

H√
T2

¶
< 0 (A11.26)

The higher the current firm value, the higher the expected firm value both
in the short and in the long-run, and the lower the probability of defaulting
the payment of ψ2.

P 2r =
J

V̄ σ
√
T1
V̄r < 0 (A11.27)

In the same way it happened with P 1, we find an inverse relation between
the risk free interest rate and the long-run default probability. In both cases
due to the negative effect on V̄ .

P 2µ = −
1

σ

³
J
p
T1 +H

p
T2
´
< 0 (A11.28)
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(A11.28) reflects that the higher the expected growth in V , the lower the
probability of observing this value below critical thresholds V̄ and ψ2.

P 2ψ1 =
J

V̄ σ
√
T1
V̄ψ1 < 0 (A11.29)

P 2ψ2 =
J

V̄ σ
√
T1
V̄ψ2 +

H

ψ2σ
√
T2
> 0 (A11.30)

(A11.29) and (A11.30) have a clear interpretation: Higher nominal pay-
ments imply higher threshold values V̄ and ψ2, what leads to a higher long-
run default probability.

P 2t = −J
 ln ¡VV̄ ¢−

³
µ− σ2

2

´
T1

2σ (T1)
3/2


−H

 ln
³
V
ψ2

´
−
³
µ− σ2

2

´
T2

2σ (T2)
3/2


+
1− ρ2

2ρT2
f2 (n,m; ρ)

=
p
1− ρ2f2 (n,m; ρ)

(p
1− ρ2

2ρT2

−N (A)
f (A)

 ln ¡VV̄ ¢−
³
µ− σ2

2

´
T1

2σ (T1)
3/2


−N (B)
f (B)

 ln
³
V
ψ2

´
−
³
µ− σ2

2

´
T2

2σ (T2)
3/2

 (A11.31)

P 2t T 0 as V S ṼG2t.25 A detailed inspection of (A11.31) reveals that in
25f2 (n,m; ρ) denotes the bivariate normal density function.
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fact P 2t is positive for V lower that some threshold ṼG2t, and negative for V
higher than this value. To see this first note that second term in (A11.31)

is positive for V < ṼG1, and the third term is positive V < ψ2e

³
µ−σ2

2

´
T2 . P 2t

is then positive for V low enough. On the other hand these two terms are
continuous and strictly decreasing functions in V ,26 that in addition tend to
−∞ as V tends to infinity. As a result there is a critical value ṼG2t below
which P 2t is positive and above which P

2
t is negative. No explicit expression

exists for ṼG2t, and it cannot even be argued if it is higher or lower than ṼG1.
The interpretation however is clear: For V low enough, as time goes by, the
long-run default probability increases because this means lower time for V
to grow above critical values V̄ and ψ2.

P 2τ1 = J

 ln ¡VV̄ ¢−
³
µ− σ2

2

´
T1 − 2εV̄ ,T

³
ρ2

1−ρ2
´

2σ (T1)
3/2

− 1

2ρT2
f2 (n,m; ρ)

= f2 (n,m; ρ)
p
1− ρ2N (A)

f (A)

 ln ¡VV̄ ¢−
³
µ− σ2

2

´
T1 − 2εV̄ ,T

³
ρ2

1−ρ2
´

2σ (T1)
3/2


− 1

2ρT2

¾
(A11.32)

P 2τ1 S 0 as V S ṼG2τ1 . It could be derived an explicit solution for ṼG2τ1 ,
but no clear interpretation for this specific expression can be provided. It
could be said however that, for V low enough, longer time to maturity of the
short-term debt reduces the long-run default probability, essentially through
the reduction in the short-run default probability.

26N(x)
f(x) is positive and strictly increasing ∀x. A does not depend on V and B is strictly

increasing in V . Therefore N(A)
f(A) does not depend on V and N(B)

f(B) is strictly increasing in

V .
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P 2τ2 = J
J

V̄ σ
√
T1
V̄T +H

 ln
³
V
ψ2

´
−
³
µ− σ2

2

´
T2

2σ (T2)
3/2


+

ρ

2T2
f2 (n,m; ρ)

=
p
1− ρ2f2 (n,m; ρ)

½
N (A)

f (A)

J

V̄ σ
√
T1

+
N (B)

f (B)

 ln
³
V
ψ2

´
−
³
µ− σ2

2

´
T2

2σ (T2)
3/2


+

ρ

2T2
p
1− ρ2

)
(A11.33)

P 2τ2 may be positive or negative. The first term in (A11.33) is negative
and constant in V , while the third term is positive and also constant. Finally,
the second term is strictly increasing in V , and tends to infinity as V tends
to infinity. These arguments allow us to ensure that P 2τ2 > 0 if V is large
enough. However, it is not possible to argue that a threshold firm value
determining the sign of P 2τ2 exists in general (the limit of the second term as
the firm value tends to zero is not determined).

P 2σ =
1

σ

·
J

µ
εV̄ ,σ

σ
√
T1
+ n+ σ

p
T1

¶
+H

³
m+ σ

p
T2
´¸

(A11.34)

P 2σ S 0 as V S V̂G2. For V low enough, higher volatility reduces the
long-run default probability due to higher chances of favorable firm value
changes due to shocks.
We summarize results in Table 1.
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P P 1 P 2

V < 0
.

< 0
.

< 0
.

r 0
.

< 0
.

< 0
.

µ < 0
.

< 0
.

< 0
.

ψ > 0
.

−
.

−
.

ψ1 −
.

> 0
.

> 0
.

ψ2 −
.

> 0
.

> 0
.

t T 0 as V S ṼM
.

T 0 as V S ṼG1
.

T 0 as V S ṼG2t
.

τ 1 −
.

S 0 as V S ṼG1e
2εV̄ ,T

µ
ρ2

1−ρ2

¶
.

S 0 as V S ṼG2τ1
.

τ 2 −
.

< 0
.

S 0 as V S ṼG2τ2
.

σ S 0 as V S V̂M
.

S 0 as V S V̂G1
.

S 0∗
.

Table 1: Comparative statics. ∗ > 0 for V large enough.
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