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1 Introduction

Insurance companies often hedge a significant part of their liabilities by purchasing credit risk
free fixed income securities. Both legal constraints and the low volatility of these assets make it
convenient to draw on them when the risk level needs to be controlled.

However, some bonds issued by private companies are becoming more and more usual in hedged
portfolios. These assets do not reflect the volatility levels of shares or derivatives and they pay a
risk premium that may be interesting to risk adverse traders. Whence it may be worthwhile to
address hedging problems when both interest rate risk and credit risk are simultaneously combined.

If one analyzes the literature concerning credit risk free portfolios, there are no unified criteria
in order to hedge the interest rate risk. So, some authors try to guarantee the highest possible
return at a given date (see for instance Bierwag and Khang (1979) or Barber (1999) and references
therein) while others try to minimize the sensitivity of the portfolio price with respect to any shock
on the Term Structure of Interest Rates (henceforth TSIR). This paper will focus on the second
approach.

Besides, authors do not necessarily agree when minimizing the portfolio price sensitivity either.
In fact, they provide different hedging criteria owing to distinct answers to two key questions:
How many factors do we need to explain the TSIR behavior? What are these factors? There are
many important contributions on immunization whose differences are provoked by these topics. For
instance one can consider Chambers et al. (1988), Reitano (1992), Bierwag et al. (1993), Paroush
and Prisman (1997), Balbás et al. (2002)b, etc.

Bowden (1997) and Barber and Copper (1998) are two seminar papers that prevent the risk
generated by the factors choice. They consider infinite factors in such a way that every (square-
integrable) function is a feasible shift on the TSIR. Since they yield explicit solutions to their
problems they are providing hedging in a general framework that does not depend on any dynamic
(or static) assumption on the TSIR behavior. Unfortunately, they prove that there are no port-
folios with null sensitivity with respect to infinite factors, so their optimal sensitivity is positive.
Furthermore the optimal sensitivity is attained if the real shock coincides with “the most negative
scenario” on the TSIR (Bowden calls this scenario as Direction X).

Elton et al. (1990) and Litterman and Scheinkman (1991) are very important papers pointing
out the existence of finite number of factors reflecting the TSIR behavior. The first paper focuses
on the tie between factors and spot rates while the second one considers usual factors as level,
slope, curvature, etc.

The present paper combines the idea of Bowden, Barber and Copper along with the existence
of a finite number of significant factors. Consequently we will consider an infinite number of ranked
factors. We will look for protection versus the significant factors and later we will minimize the
residual risk according to the Barber and Copper criterion. Hence we are retrieving a consensus
between the classical and the Barber and Copper approaches. Indeed, with regard to the classical
point of view, we immunize versus the significant factors, although our analysis seems to provide
two important advantages: First, we do not fix the number of factors before analyzing how many of
them may be hedged, so we protect against as many factors as possible. Second, we also minimize
the non-linked to the factors residual risk. With regard to the Barber and Copper approach our
analysis seems to reveal another advantage since we seek immunization versus the significant factors
and, therefore, “our DirectionX” becomes much more unrealistic and we are fully immunized versus
probable shocks. In this sense our strategy should performance far better.

We will consider a wide setting far more general than that composed of bonds and the TSIR.
So we will be dealing with general securities whose prices depend on a state variable belonging to
an abstract Hilbert space. This provides an additional advantage since this broad framework also
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applies for non-credit-risk free securities.
The paper may be outlined as follows. Second section will introduce the basic concepts and

notations and will study the space of immunized portfolios. The major findings are Lemma 5 and
Theorem 6, where it is proved that there are no immunized portfolios in our general context 1

and they are also provided those methods leading to strategies immunized versus as many factors
as possible.

Section 3 provides four hedging criteria. Since total immunization is frequently infeasible,
Criteria 2, 3 and 4 try to minimize the residual risk. Criterion 2 draws on the Barber and Copper
(1998) ideas, Criterion 3 uses more classical approaches and Criterion 4 combines both kinds of
arguments. Theorem 8 seems to be another significant finding of this section because, under
convexity assumptions, it provides upper bounds for possible capital losses of hedged strategies. It
is in the line of those formulas provided by the significant contributions of Fong and Vasicek (1984)
and Shiu (1987, 1990), and it may be worth to remind that it also applies for infinite factors and
another types of risk (credit risk, for instance).

Section 4 applies the previously developed theory. Firstly we consider the classical immunization
problem, and later we add credit risk. As said above, it is important to remark the interest of
including non-credit-risk-free bonds due to their low volatility (in comparison with stocks and
derivatives) and risk premium. Furthermore, their low volatility enables us to analyze them by
using the introduced methodology, as an alternative to those procedures linked to the concept of
risk measure.

Section 5 summarizes the article.

2 The space of immunized portfolios

Consider n assets denoted by B1, B2, ..., Bn. Suppose that the separable Hilbert space H contains
the state variable h ∈ H generating the value of Bi, i = 1, 2, ..., n. 2 To be precise, let Vi :
H −→ IR, i = 0, 1, ..., n, be the function yielding the price of Bi after the shock h ∈ H on the
state variable, i.e., we are assuming the possible existence of an exogenous change h ∈ H in such
a way that the initial h0 ∈ H becomes h0 + h and the security prices vary from Vi(0) to Vi(h),
i = 1, 2, ..., n. Obviously pi = Vi(0) is the initial (previous to the shock) price of Bi, i = 1, 2, ..., n.
We will suppose that Vi is Frèchet differentiable, i = 1, 2, ..., n.

In future sections we will provide several examples adapted to the general framework above,
though we can present now the most usual one. So, suppose that B1, B2, ..., Bn are bonds. 3

Assume that T is a future date such that all of the bond maturities lie within the time interval
[0, T ]. The initial TSIR will be an element h0 ∈ L2[0, T ], Hilbert space of the real-valued square-
integrable functions on [0, T ]. In addition we can assume that any feasible shock h on the TSIR
also belongs to H = L2[0, T ]. Furthermore, for i = 1, 2, ..., n, Vi(h) is easily obtained by discounting
the coupons of Bi with the TSIR h0 + h (see Section 4 for further details). This particular case
will be referred as the “Classic Immunization Problem” (henceforth CIP ).

The vector q = (q1, q2, ..., qn) ∈ IRn will represent the portfolio composed of qi units of Bi,
i = 1, 2, ..., n. Clearly, V : IRn ×H −→ IR, given by

V (q, h) =
nX
i=1

qiVi(h),

1 Unless ideal assumtions hold
2 Those properties related to Hilbert spaces may be found for instance in Maurin (1972).
3 The theory still applies if some Bi are interest rate-linked forward or future contracts.
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is the price of q after the shock h, and

V (q, 0) =
nX
i=1

qiVi(0) =
nX
i=1

qipi

is the initial price of q. V is obviously linear in the q−variable and differentiable with respect to
h. These properties will play an important role in order to reach our major objective, i.e., the
“minimization” of the sensitivity

| V (q, h)− V (q, 0) |
which will be approximated by the first differential of

Vq = V (q,−) : H −→ IR

at 0 ∈ H.
According to the Riesz Representation Theorem, the differential of Vq = V (q,−) at 0 ∈ H may

be identified with a unique vector
∂Vq ∈ H,

usually called the gradient of Vq at 0. Consequently, the derivative of Vq with respect to u ∈ H at
0 ∈ H will be given by

DuVq =≺ ∂Vq, u Â∈ IR, (0.1)

scalar (or inner) product of ∂Vq and u.

Definition 1 A portfolio q is said to be immunized with respect to u ∈ H if DuVq = 0. Strategy q
is said to be immunized if it is immunized with respect to every u ∈ H. ¤

Recall that DuVq is called directional derivative as long as

kuk2 = 1.

According to (0.1) q is immunized with respect to those vectors orthogonal to ∂Vq. Remember
that these vectors compose a closed hyperplane of H unless ∂Vq vanishes. If so, q is immunized.
Otherwise the Cauchy-Schwartz inequality and (0.1) trivially show that the highest directional
derivative of Vq is achieved if u and ∂Vq are proportional, in which case it attains the value k∂Vqk.
Summarizing, one has the following result:

Proposition 1 The following equality holds for every q ∈ IRn .

Max{u∈H,kuk≤1} | DuVq |= k∂Vqk.

Consequently, q is immunized if and only if k∂Vqk = 0 (or, equivalently, ∂Vq = 0 ∈ H). Moreover,
if the maximum above does not vanish then it is achieved at u = ∂Vq

k∂Vqk . ¤

Let {fr}∞r=0 be a orthonormal basis of H. It is known that

h =
∞X
r=0

hrfr (1.2)
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is the Fourier representation of h ∈ H, hr ∈ IR being the coefficient

hr =≺ h, fr Â, (1.3)

for every r ∈ IN and every h ∈ H. If h ∈ H has the representation above and h∗ =
P∞
r=0 h

∗
rfr ∈ H,

then

≺ h, h∗ Â=
∞X
r=0

hrh
∗
r . (1.4)

In particular, Parseval´s equality establishes that

khk2 =
∞X
r=0

h2r (1.5)

for every h ∈ H.

Hereafter the orthonormal basis above may be understood as the set of “factors” or “factors of
risk”. We will see several examples in future sections. At the moment we can illustrate a simple
case by considering the CIP . So, H = L2[0, T ] and we can build {fr}∞r=0 by applying the Gram-
Schmidt process to the (non-orthonormal) basis of H composed of polynomials {1, t, t2, ...tr, ...}∞r=0.
In such a case Df0Vq may be interpreted as the risk level of q against additive shocks on the TSIR
(or the risk of q against the shock level), Df1Vq will be the risk related to the shock slope, Df2Vq
will represent the risk against curvature, etc.

Next we will present several properties of the set of immunized portfolios. All of them also hold
if we deal with the CIP and with a finite number of factors of risk. 4

Proposition 2 q ∈ IRn is immunized if and only if it is immunized versus all the factors {fr}∞r=0.

Proof. Suppose that q is immunized versus all the factors. Then, according to Definition 1 and
(0.1) one has that (∂Vq)r =≺ ∂Vq, fr Â= 0 for every r ∈ IN and, therefore, Parseval´s equality (1.5)
leads to k∂Vqk = 0. Now Proposition 1 applies. ¤

Denote by ∂Vi the gradient of Vi, i = 1, 2, ..., n, at 0 ∈ H. Since V (−, h) : IRn −→ IR is linear
for every h ∈ H, it is easy to prove that

∂Vq =
nX
i=1

qi∂Vi (2.6)

for every portfolio q = (q1, q2, ..., qn) ∈ IRn. Expression (2.6), along with Proposition 1, trivially
lead to:

Proposition 3 The set I0 of immunized portfolios is a vector subspace of IRn. ¤

Proposition 4 Let q = (q1, q2, ..., qn) ∈ IRn and u ∈ H. Then q is immunized with respect to u if
and only if

nX
i=1

qi ≺ ∂Vi, u Â= 0.

4 i.e., if we deal with the CIP and L2[0, T ] is replaced by a finite-dimensional space, for instance, the space of
polynomials of degree lower or equal to a fixed m (m < n), as in Chambers et al. (1988).
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Therefore, q is immunized if and only if it solves the linear and homogeneous (infinite) system of
equations

nX
i=1

qi ≺ ∂Vi, fr Â= 0 (4.7)

r = 0, 1, 2, ...

Proof. Strategy q is immunized with respect to u if and only if

≺ ∂Vq, u Â= 0.

Thus, (2.6) trivially leads to
Pn
i=1 qi ≺ ∂Vi, u Â= 0. The remainder of this lemma follows from

Proposition 2. ¤

Propositions 2 and 4 and System (4.7) may be significantly relaxed.

Lemma 5 There exists S ∈ IN such that the following assertions hold:
a) Given q ∈ IRn it is immunized if and only if it is immunized with respect to {fr}Sr=0.
b) Given q ∈ IRn it is immunized if and only if it solves the linear and homogeneous (finite)

system of equations
nX
i=1

qi ≺ ∂Vi, fr Â= 0 (5.8)

r = 0, 1, 2, ..., S.

Proof. For every r ∈ IN consider the vector of IRn whose coordinates are the rth−Fourier coefficients
of (∂Vi)i=1,2,..,n. They compose the subset

L = {(≺ ∂Vi, fr Â)i=1,2,..,n ∈ IRn; r = 0, 1, 2, ...}.

L has an infinite number of elements and therefore there exists S ∈ IN such that (≺ ∂Vi, fr Â)i=1,2,..,n
linearly depends on {(≺ ∂Vi, fs Â)i=1,2,..,n ∈ IRn; s = 0, 1, 2, ..S} whenever r > S. Whence (4.7)
and (5.8) have the same set of solutions. Now the results follow from Proposition 4. ¤

The latter theorem does not guarantee the set

{(≺ ∂Vi, fr Â)i=1,2,..,n ∈ IRn; r = 0, 1, 2, .., S}

to be linearly independent. If it is dependent then some equations of (5.8) and some elements of
{fr}Sr=0 may be eliminated in the statements above.

Suppose that {u0, u1, ...ur, ...} is a Schauder basis of H generating the orthonormal basis
{f0, f1, ...fr, ...} by means of the Gram-Schmidt process. Then it is important to remark that
the linear manifolds generated by {u0, u1, ...uR} and {f0, f1, ...fR} are identical, i.e.,

L (u0, u1, ..., uR) = L (f0, f1, ..., fR) (5.9)

for any R ∈ IN. Consequently, (5.8) is equivalent to
nX
i=1

qi ≺ ∂Vi, ur Â= 0 (5.10)
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r = 0, 1, 2, ..., S, in the sense that both systems lead to the same set of solutions. Furthermore, the
equivalence between both systems still holds if S is replaced by any R ∈ IN.

Consider the matrices of Fourier coefficients

MS =


≺ ∂V1, f0 Â,≺ ∂V2, f0 Â, ... ≺ ∂Vn, f0 Â
≺ ∂V1, f1 Â,≺ ∂V2, f1 Â, ... ≺ ∂Vn, f1 Â

.............
≺ ∂V1, fS Â,≺ ∂V2, fS Â, ... ≺ ∂Vn, fS Â


and

M∞ =


≺ ∂V1, f0 Â,≺ ∂V2, f0 Â, ... ≺ ∂Vn, f0 Â
≺ ∂V1, f1 Â,≺ ∂V2, f1 Â, ... ≺ ∂Vn, f1 Â

.............
≺ ∂V1, fS Â,≺ ∂V2, fS Â, ... ≺ ∂Vn, fS Â

≺ ∂V1, fS+1 Â,≺ ∂V2, fS+1 Â, ... ≺ ∂Vn, fS+1 Â
..............

 .

whereM∞ has an infinite number of rows. Clearly their identical

R(MS) = R(M∞) (5.11)

ranges reflect the number of linearly independent rows and cannot be larger than the number n
of available assets. Furthermore, they provide the dimension of the space I0 as well as the range
R ({∂V1,∂V2, ...,∂Vn}) of the family {∂V1,∂V2, ...,∂Vn} ⊂ H.

Theorem 6 The dimension of I0, subspace of immunized portfolios, is given by
Dim(I0) = n−R(MS) = n−R(M∞) = n−R ({∂V1,∂V2, ..., ∂Vn}) .

In particular, I0 reduces to zero if and only if
R(MS) = R(M∞) = R ({∂V1, ∂V2, ...,∂Vn}) = n.

Proof. The latter lemma shows that Dim(I0) = n−R(MS) = n−R(M∞), so it only remains to
prove that R ({∂V1,∂V2, ...,∂Vn}) = R(MS). Let be

m = R ({∂V1,∂V2, ..., ∂Vn}) (6.12)

and, to make the notation easier, suppose that

{∂V1,∂V2, ..., ∂Vm}
are independent and

{∂Vm+1,∂Vm+2, ..., ∂Vn}
linearly depend on them. Thus, Columns (m+1)th, (m+2)th, ..., nth ofMS also depend on Columns
1st, 2nd, ...,mth, from where

R ({∂V1,∂V2, ..., ∂Vn}) ≥ R(MS).

On the other hand, if
R ({∂V1,∂V2, ..., ∂Vn}) > R(MS) = p

then suppose that Columns (p+1)th, ...,mth, ...nth ofMS depend on Columns 1st, 2nd, ..., pth. Then
(5.11) shows that Columns (p+1)th, ...,mth, ...nth ofMr depend on Columns 1st, 2nd, ..., pth ofMr
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for every r ≥ S, and with identical coordinates that do not depend on r ∈ IN. Then (1.2) and (1.3)
apply and show that

{∂Vp+1,∂Vp+2, ...,∂Vm}
depend on

{∂V1,∂V2, ..., ∂Vp},
which contradicts (6.12). ¤

3 General hedging criteria

Let us denote by Q ⊂ IRn the subset of feasible strategies. Q represents those portfolios satisfying
several constraints that the investor (or the insurance company) must respect. For instance, if
there are no restrictions then

Q = IRn.

If we deal with the CIP and the investor has to compose self-financing portfolios, as in Uberti
(1997) and Hürlimann (2002), then

Q = {q ∈ IRn ;
nX
i=1

piqi = 0}.

If liabilities are fixed and can not be altered by the investor, as in the papers above, then we can
consider that they generate the nth−bond and

Q = {q ∈ IRn ; qn = −1}.

If short-sales are not allowed and the capital to invest equals C ∈ IR, as in Fong and Vasicek (1984),
Bierwag et al. (1993) or Balbás and Ibáñez (1998) amongst others, then

Q = {q ∈ IRn ;
nX
i=1

piqi = C and qi ≥ 0, i = 1, 2, .., n}.

Let us leave the CIP and return to the general case. Once the feasible set Q has been fixed we
will denote

Qr = {q ∈ Q; q is immunized versus f0, f1, ..., fr}
for r = 0, 1, 2, ..., and

Q∞ = {q ∈ Q; q is immunized} = Q ∩ I0.
Lemma 5 shows that Q∞ = QS for every Q ⊂ IRn.

Let us focus on the CIP . Literature usually provides hedging strategies by drawing on two
general principles: Firstly, agents must choose an immunized portfolio if it exists (for instance,
Fisher and Weil (1971) consider additive shifts and therefore they recommend to select a duration
matching strategy and, analogously, Chambers et al. (1988) characterize those portfolios immunized
versus m−degree polynomials, m < n, and recommend to adjust a duration vector). Secondly, if
there are no immunized portfolios, then authors recommend to immunize versus the most important
factors of risk and to minimize the “residual risk”. Significant references are, amongst others, Fong
and Vasicek (1984), where it is recommended to minimize theM−squared measure among duration
matching strategies because there is no perfect immunization against continuously differentiable
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shocks if short-sales are forbidden, or Balbás et al. (2002)b, where short-selling restrictions are
imposed too and several risk measures are proposed, minimized and empirically tested.

Going back to the general case and leaving the CIP , but following the literature, if possible,
we also recommend to select immunized portfolios:

First general hedging criterion (Criterion 1). If Q∞ 6= ∅ choose a portfolio q ∈ Q∞.
However, if (as usual) 0 /∈ Q then Q∞ 6= ∅ needs I0 \ {0} to be non-empty, and Theorem 6

implies that
{∂V1,∂V2, ...,∂Vn} ⊂ H

has to be linearly dependent. Standard literature deals with models such that Dim(H) < n and,
accordingly, the dependence of the family above is guaranteed. In our setting Dim(H) = ∞
and this dependence will hardly hold. Furthermore, under the CIP case, it is known that the
parameters of the problem (prices, TSIR, durations, etc.) are dynamic and agents must frequently
rebalance their strategies in order to get adequate hedging. So, even if Criterion 1 is attainable, it
may become infeasible some periods later.

A special important case that makes the dependence of {∂V1,∂V2, ..., ∂Vn} stable as time goes
back arises if at least one security in {B1, B2, ..., Bn} may be replicated by using the remainder
ones. It is not usual but, for instance, it might hold if we incorporated forwards and futures in the
analysis.

Since Criterion 1 may fail when dealing with infinite dimensions, we introduce:

Second general criterion (Criterion 2). Assume that Q∩ I0 = ∅. Compute the maximum
R with QR 6= ∅ and solve the optimization problem

Min
∞X

r=R+1

≺ ∂Vq, fr Â2
©
q ∈ QR. (6.13)

Since QS = ∅, the existence of R is guaranteed. The constraint q ∈ QR ensures that we are
immunizing versus the empirically most important factors of risk {f0, f1, ..., fR}. Besides, (1.2)
shows that

∂Vq =
RX
r=0

≺ ∂Vq, fr Â fr +
∞X

r=R+1

≺ ∂Vq, fr Â fr = πL(∂Vq) + πLT (∂Vq)

and ∂Vq may be obtained by adding its projection on L (f0, f1, ..., fR), linear manifold generated
by factors 0, 1st, 2nd, ..., Rth, and the projection on its orthogonal L (f0, f1, ..., fR)T . The constraint
q ∈ QR make the first projection vanish and the objective function of (6.13), along with Parseval´s
equality and Proposition 1, point out that we are following a minimax principle, as Bowden (1997)
or Barber and Copper (1998).

Theorem 7 Problem (6.13) and Problem

Minq∈QR
¡
Max{u∈H,kuk≤1} | DuVq |2

¢
(7.14)

are equivalent, in the sense that they have the same solution q̃ ∈ QR and the same optimal value
k∂Vq̃k2. Moreover, for q = q̃ one has that the objective function of (7.14) is attained at

u =
∂Vq̃
k∂Vq̃k , (7.15)

and this shift will be called worst shock of (6.13) or (7.14).
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Proof. Suppose that q ∈ QR. Since ∂Vq 6= 0 (Q∞ = Q ∩ I0 = ∅, so q /∈ I0 and Proposition 1
applies), Proposition 1 shows that the objective function of (7.14) is attained at u = ∂Vq

k∂Vqk and
achieves the value k∂Vqk2. Besides, Parseval´s equality points out that

k∂Vqk2 =
∞X
r=0

≺ ∂Vq, fr Â2=
∞X

r=R+1

≺ ∂Vq, fr Â2

because q ∈ QR and, therefore, ≺ ∂Vq, fr Â= 0 if r ≤ R. ¤

Theorem 7 illustrates several analogies and differences between our proposal and the hedging
criterion introduced in Bowden (1997) or Barber and Copper (1998). These authors deal with the
CIP and solve

Minq∈Q
¡
Max{u∈H,kuk≤1} | DuVq |2

¢
, (7.16)

analogous to (7.14) with the constraint q ∈ Q rather than q ∈ QR. Accordingly (see Proposition
1), they reach a better result in the sense that their optimal sensitivity is lower than ours, i.e.,

k∂Vq∗k ≤ k∂Vq̃k,

if q∗ solves the problem of Barber and Copper (1998) and q̃ solves (6.13) or (7.14). Nevertheless,
a possible advantage of our analysis arises if we compare the worst (most negative) scenarios. As
said above, Problem (7.14) maximizes on ∂Vq̃

k∂Vq̃k and this shift is orthogonal to L (f0, f1, ..., fR).
Thus, if we have appropriately ranked the risk factors according to the empirical evidence, then
our worst scenario may be “unrealistic” and improbable. On the contrary the worst scenario

∂Vq∗
k∂Vq∗k

of papers above (Direction X, in the terminology of Bowden (1997)) could be very probable and
q∗ could be unprotected against the most usual shocks. For instance some examples provided by
Barber and Copper (1998) illustrate that their optimal strategy is not necessarily immunized versus
additive shifts, which is a real drawback if we observe how important these shocks are in practice
(see Litterman and Scheinkman (1991), Bierwag et al. (1993), Chance and Jordan (1996) or Balbás
et al. (2002)b for further details about the empirical importance of additive shocks). So, though
Criterion 2 generates a larger minimax value it may performance much better since it immunizes
with regard to standard shocks and the minimax value only hedges the residual risk.

In some sense our proposal retrieves some “consensus” between the general criterion applied
in literature (immunize versus probable shocks and protect against residual risk) and the minimax
criterion of Barber and Copper (1998). The consensus has been achieved due to the ranking of
risks we have previously chosen.

Since Criterion 2 does not incorporate any distinction among the ranked factors (fr)∞r=R+1, we
also propose:

Third general criterion (Criterion 3). Assume that Q ∩ I0 = ∅. Compute the maximum
R with QR 6= ∅ and solve the optimization problem

Min ≺ ∂Vq, fR+1 Â2 {q ∈ QR. (7.17a)

Equality QS = ∅ again guarantees the existence of R. The major difference between Criterion
2 and Criterion 3 relies on the measurement of the residual risk. In this new case we abandon
the minimax principle and consider the first factor making it impossible to immunize. Thus, we
minimize the absolute value of the first non-null coordinate of ∂Vq rather than its norm. Criterion
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3 overcomes Criterion 2 in the sense that it hedges as much as possible against the most important
factor fR+1, but the global sensitivity (i.e., k∂Vqk) increases if we apply Criterion 3.

Focusing on the CIP one has that Criterion 3 generalizes the seminar proposal of Fong and
Vasicek (1984). They considered differentiable shifts on the TSIR and showed that duration
matching portfolios guarantee an amount of money bounded from below by the shock slope (by
≺ ∂Vq, f1 Â2 in our context). Furthermore, their result was significantly extended in the important
contributions of Shiu (1987) and (1990), as well as in the papers of Montrucchio and Peccati (1991),
Uberti (1997) and Hürlimann (2002), where it is proved that the risk level with regard to the shock
slope (≺ ∂Vq, f1 Â2 in our context) also bounds capital losses for quite general shocks, far from
differentiable.

Theorem 8 below provides an additional reason to justify Criteria 2 and 3, as well as allows
us to establish general lower bounds for capital losses in our general setting. In some sense we
complement those inequalities of Fong and Vasicek (1984), Shiu (1987, 1990) and their extensions.
It is also possible to prove that the lower bounds introduced in Nawhalka and Chambers (1996)
and Balbás et al. (2002)b are particular cases of this theorem.

Theorem 8 Let q ∈ IRn. Assume that Vq : H −→ IR is a convex function. 5 Denote by πLT the
projection from H on the orthogonal subspace of the linear manifold generated by {f0, f1, ..., fR}.

If q solves (6.13) and R2 is the achieved risk level (the optimal objective value), then

Vq(h)− Vq(0) ≥ −
p
R2 kπLT (h)k (7.17r)

holds for every h ∈ H. 6 Additionally, if the price of q is positive then capital losses in percentage
verify

Vq(h)

Vq(0)
≥ 1−

√R2
Vq(0)

kπLT (h)k (7.17s)

for every h ∈ H.
If q solves (7.17a) and R3 is the achieved risk level, then

Vq(h)− Vq(0) ≥ −
p
R3 |hR+1| (7.17t)

holds for every h ∈ L (f0, f1, ..., fR, fR+1). Moreover if the price of q is positive then
Vq(h)

Vq(0)
≥ 1−

√R3
Vq(0)

|hR+1| (7.17u)

for every h ∈ L (f0, f1, ..., fR, fR+1).
Proof. It is known that any convex function is larger than its tangent hyperplane (see Luenberger
(1969)). Therefore,

Vq(h)− Vq(0) ≥≺ ∂Vq, h Â (8.22)

=≺ ∂Vq,πL(h) + πLT (h) Â=≺ ∂Vq,πLT (h) Â
for every h ∈ H. Then the Cauchy-Schwartz inequality leads to

Vq(h)− Vq(0) ≥ − |≺ ∂Vq,πLT (h) Â| ≥ − kπLT (h)k k∂Vqk
5 For instance, if Vi is convex i = 1, 2, ..., n and q does not contain short-sales (qi ≥ 0, i = 1, 2, ..., n).
6 Consequently

Vq(h)− Vq(0) ≥ −
√R2khk

for every h ∈ H.
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for every h ∈ H, from where (7.17r) and (7.17s) trivially follow because k∂Vqk =
√R2.

Suppose now that h ∈ L (f0, f1, ..., fR, fR+1) and q ∈ QR. Then (8.22) and (1.4) show that
Vq(h)− Vq(0) ≥ (∂Vq)R+1 hR+1 =≺ ∂Vq, fR+1 Â hR+1

from where the conclusion immediately follows. ¤

Remark 1 It is worth to point out that expressions above are also interesting if the convexity fails.
In fact, although they do not provide upper bonds for capital losses they do approximate the portfolio
price after the most negative scenarios. ¤

It is easy to provide counter-examples illustrating the absence of any kind of relationships
between the solutions of (6.13) and (7.17a). Hence, we also propose:

Last general criterion (Criterion 4). Assume that Q ∩ I0 = ∅. Compute the maximum R
with QR 6= ∅ and solve the optimization problem

Min
∞X

r=R+1

≺ ∂Vq, fr Â2
½
q ∈ QR
|≺ ∂Vq, fr Â| ≤ Lr r = R+ 1, R+ 2, ...

(8.23)

Clearly Criterion 4 becomes Criterion 2 if Lr =∞, r = R+ 1, R+ 2, ...
The following result, whose proof is parallel to the proof of Theorem 7 and therefore it is

omitted, guarantees that Criterion 4 also obeys to minimax-like principles.

Theorem 9 Problem (8.23) and Problem

Min{q∈QR,|≺∂Vq,frÂ|≤Lr,r=R+1,R+2,...}
¡
Max{u∈H,kuk≤1} | DuVq |2

¢
(9.24)

are equivalent, in the sense that they have the same solution q̌ ∈ QR and the same optimal value
k∂Vq̌k2. Moreover, for q = q̌ one has that the objective function of (9.24) is attained at

u =
∂Vq̌
k∂Vq̌k , (9.25)

and this shift will be called worst shock of (8.23) or (9.24). ¤

Notice that (7.17r) and (7.17s) also apply if q solves (8.23) and R2 is substituted by the obvious
optimal value R4.

Criterion 4 may be also very useful in practice because it incorporates the positive properties
of Criteria 2 and 3. Indeed, suppose that we are very interested in controlling the whole risk level
k∂Vqk, but the solution of (6.13) reflects a high value of

|≺ ∂Vq, fR+1 Â|,
first risk-level making immunization infeasible. 7 Then Criterion 4 permits us to retrieve the
minimax rule (the minimization of k∂Vqk) by choosing acceptable levels Lr ≤ ∞ for the partial
risks

|≺ ∂Vq, fr Â|,
7 In some sense, under convexity assumptions (7.17t) and (7.17u) would be generating “bad bounds” for possible

capital losses.

11



r = R+ 1, R+ 2, ... 8

4 Computing hedging portfolios in practice

4.1 Immunizing default-free bond portfolios

Firstly we will focus on the classical immunization problem CIP . So, all the available securities
will be credit-risk-free bonds (Footnote 3 applies here), H = L2[0, T ] and H 3 h0, where h0 is
denoting the initial TSIR.

Consider the set
0 < t1 < t2 < ... < tk−1 < tk = T ∈ [0, T ]

indicating those dates when Bj pays the (maybe null) coupon ci,j, i = 1, 2, .., k and j = 1, 2, ..., n.
Then for every portfolio q = (q1, q2, ..., qn) ∈ IRn one can compute the (maybe non-positive) coupon

ci =
nX
j=1

qjci,j (9.26)

paid at ti, i = 1, 2, .., k. It is known that after a shock h ∈ L2[0, T ] one has

Vq(h) =
kX
i=1

ci

·
exp

µ
−
Z ti

0
(h0(u) + h(u))du

¶¸
which becomes

Vq(h) =
kX
i=1

c̃i

·
exp

µ
−
Z ti

0
h(u)du

¶¸
(9.27)

if

c̃i = ci

·
exp

µ
−
Z ti

0
h0(u)du

¶¸
(9.28)

8 There exists another way to incorporate the advantages of both Criteria 2 and 3. We could solve the vector
optimization problem

Min

Ã ∞X
r=R+1

≺ ∂Vq , fr Â2,≺ ∂Vq , fR+1 Â2
!
{q ∈ QR

This may be done by using balance point techniques. In such a case we must compute R2 and R3, optimal levels of
Criteria 2 and 3, choose the direction (1, d) indicating the ratio d > 0 of losses in the second objective per unit lost
in the first one, and solve the scalar problem

Min λ


q ∈ QR

k∂Vqk2 − λ ≤ R2

≺ ∂Vq , fR+1 Â2 −dλ ≤ R3

(λ, q) being the decision variable. If (λ, q) solves the latter problem then

R2 + λ

and
R3 + dλ

are the reached values of both objectives. Moreover, if Vq is convex (and Vq(0) > 0, if necessary) then the lower
bounds of Theorem 8 apply as long as one replaces R2 and R3 by the values above R2 + λ and R3 + dλ (see Balbás
et al. (2002)a for further details on balance points).
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represents the present value of ci, i = 1, 2, ..., k. Moreover, Barber and Copper (1998) prove that
∂Vq ∈ L2[0, T ] is the piecewise constant and bounded function 9

∂Vq(t) = −
X
ti≥t

c̃i (9.29)

for each t ∈ [0, T ]. Consequently, the existence of immunized portfolios verifying ∂Vq = 0 will hold
as long as c̃i = 0, i = 1, 2, ..., k, which, according to (9.28), leads to the following result:

Theorem 10 Portfolio q is immunized if and only if its coupons vanish. ¤

It immediately follows that Criterion 1 does not apply unless the available assets B1, B2, ..., Bn
are not independent. If they are independent or their replicas of “zero” are not feasible (do not
belong to the set Q) then Barber and Copper (1998) suggest to chose that portfolio q solving (7.16).
Thus, according to (9.29) managers must minimize

k∂Vqk2 =
kX
i=1

 kX
j=i

c̃j

2 (ti − ti−1)


among the feasible portfolios q ∈ Q, where t0 = 0 represents the current date (see the reference
above for further details).

As already said, the simple worst shock (9.29) could be very unrealistic, and we would be
hedging versus strange shifts, losing protection versus far more important (for instance, additive)
shocks.

As a consequence, it may be more suitable to apply our Criteria 2, 3 or 4. If so, we have
several alternatives when ranking the factors, although we will concentrate our analysis on two
quite general situations justified by the empirical evidence. So, let us consider, respectively, factors
such as “level”, “slope”, “curvature”, etc. (see Litterman and Scheinkman (1991)), or, as in the
next subsection, factors linked to spot rates (see Elton et al. (1990)).

It is known that the set of polynomials {uα(t) = tα : α = 0, 1, 2, ...} is a Schauder basis of
L2[0, T ], so one can build the orthonormal basis {fα}∞α=0 by applying the Gram-Schmidt process.
According to (5.10), given R ∈ IN, the portfolio q is immunized versus R−degree polynomials (i.e.,
(4.7) holds for r = 0, 1, ..., R) if and only ifZ T

0
tα∂Vq(t)dt = 0

α = 0, 1, ..., R. Therefore,

0 =
kX

β=1

∂Vq(tβ)
tα+1β − tαβ
α+ 1

from where

0 =
1

α+ 1

 kX
β=1

³
tα+1β − tαβ

´ kX
i=β

c̃i


9 From now on we will merely say “simple” fuction.
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=
1

α+ 1

kX
i=1

c̃i

 iX
β=1

³
tα+1β − tαβ

´
=

1

α+ 1

kX
i=1

c̃it
α+1
i

α = 0, 1, ..., R, which trivially leads to

kX
i=1

c̃it
α+1
i = 0 (10.30)

α = 0, 1, ..., R. This condition was also obtained in Chambers et al. (1988) by using different
arguments.

It is obvious that (10.30) holds if and only if assets and liabilities associated with q have similar
α−duration (or duration of order α), where the α−duration of an arbitrary portfolio q∗ with
discounted coupons c̃∗1, c̃∗2, ..., c̃∗k and price

Pk
i=1 c̃

∗
i 6= 0 is given byPk

i=1 c̃
∗
i t

α+1
iPk

i=1 c̃
∗
i

(10.31)

Let us assume that B1, B2, ..., Bn are independent and (as usual) 0 /∈ Q. According to Propo-
sition 2 and Theorem 10, Expression (10.30) can not hold for every α ∈ IN. Besides (5.10) and
Lemma 5 ensure the existence of a highest R such that q ∈ Q along with (10.30) α = 0, 1, ...R
generate a non-void set. Moreover, this set contains those portfolios immunized versus R−degree
polynomials. Criteria 2, 3 and 4 become, respectively (see (9.29))

Min
kX
i=1

 kX
j=i

c̃j

2 (ti − ti−1)
½ q ∈ QPk

i=1 c̃it
α+1
i = 0 α = 0, 1, ..., R

,

Min

 kX
i=1

 kX
j=i

c̃j

Z ti

ti−1
fR+1(t)dt

2½ q ∈ QPk
i=1 c̃it

α+1
i = 0 α = 0, 1, ..., R

and

Min
kX
i=1

 kX
j=i

c̃j

2 (ti − ti−1)


q ∈ QPk
i=1 c̃it

α+1
i = 0 α = 0, 1, ..., R¯̄̄Pk

i=1

h³Pk
j=i c̃j

´ R ti
ti−1 fs(t)dt

i¯̄̄
≤ Ls s = R+ 1, R+ 2, ...

Notice that there are no practical difficulties to solve problems above. In fact, on the one hand,
the family of orthonormal polynomials is easily computed by bearing in mind that the degree of
every fr equals r, applying a simple induction and imposing

R T
0 fr(t)

2dt = 1 and
R T
0 fr(t)fs(t)dt = 0,

r, s = 0, 1, 2, ...,s 6= r (in order to prevent the computation of the whole orthonormal basis it may
be convenient to impose Ls = ∞ for s large enough). On the other hand, taking into account
(9.26) and (9.28), and keeping aside the constraint q ∈ Q, the three problems above are quadratic
in the q−variable, and therefore they are easily solved by those techniques presented for instance
in Luenberger (1969). 10 Let us finally remark that in practice the set Q is very often given by
means of linear or quadratic restrictions (see the beginning of Section 3).

10 Notice that the second problem can also be simplified if short-sales are not allowed and fR+1 ≥ 0. In fact, in
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4.2 Immunizing versus ranked spot rates

Expression (9.29) implies that the gradient of any feasible portfolio will always be a simple func-
tion. Consequently, the worst shocks associated with Criteria 2 and 4, as well as the Direction
X of Bowden (1997), will be simple functions. Thus it may be appropriate to immunize versus a
orthonormal set {fr}∞r=0 such that fr is simple for every r ∈ IN. Furthermore, this sort of ortho-
normal factors may be adequate if the TSIR is represented by (non orthonormal) factors that are
spot rates. Indeed, as pointed out by Elton et al. (1990), spot rates work well when representing
the whole TSIR by a small number of factors. In addition, Navarro and Nave (1997) showed that
for immunization or hedging purposes the methodology of Elton et al. works well from a empirical
viewpoint.

Throughout this subsection we will consider the same framework as in the previous one, in
such a way that all the available securities will be credit-risk-free bonds (Footnote 3 applies here),
H = L2[0, T ] and h0 ∈ H represents the initial TSIR. Symbols q, Bj, ti, ci, c̃i, cij and c̃ij have
the same interpretation as they had.

Suppose that the methodology of Elton et al. (1990) permits us to rank the spot rates associated
with the set of dates {t1, t2, ..., tk}. Suppose also that ti0 is the most important date. Define the
first factor 11

u0(t) =


0 t ≤ ti0−1
1 ti0−1 < t ≤ ti0
−ti0 − ti0−1
ti0+1 − ti0

ti0 < t ≤ ti0+1
0 t > ti0+1

(10.32)

Then it is easy to show that any shock on the TSIR in the direction of u0 leads to the new
term structure h0 + λu0 and only modifies the spot rate associated with ti0 . Thus, following the
methodology above, one can build the sequence of ranked factors {u0, u1, ..., uk−1} that contains
all the relevant spot rates {ti0 , ti1 , ..., tik−1}. 12 Clearly uα is given by (10.32) if i0 is substituted
by iα, α = 0, 1, ..., k − 1.

The Gram-Schmidt process allows us to introduce the orthonormal set {f0, f1, ..., fk−1}. 13

Let q ∈ IRn and R = 0, 1, 2, ..., k − 1. According to (5.9) and (5.10), Condition q ∈ QR implies
that

0 =

Z T

0
uα(t)∂Vq(t)dt

=

Z tiα

tiα−1
∂Vq(t)dt− tiα − tiα−1

tiα+1 − tiα

Z tiα+1

tiα

∂Vq(t)dt.

Thus

0 = (tiα − tiα−1)
 kX

β=iα

c̃β

− tiα − tiα−1
tiα+1 − tiα

 kX
β=iα+1

c̃β

 (tiα+1 − tiα)
such a case the objective function may be replaced by

kX
i=1

"Ã
kX
j=i

c̃j

!Z ti

ti−1
fR+1(t)dt

#
,

that becomes linear in the q−variable.
11 Recall that t0 = 0. Throughout this section take also tk+1 =∞ and 1

∞ = 0 if necessary.
12 Actually, {ti0 , ti1 , ..., tik−1} = {t1, t2, ..., tk} though dates have been probably written with different order.
13 It is possible but useless to extend the system {f0, f1, ..., fk−1} to a basis of L2[0, T ] since functions Vq have no
sensitivity (or null sensitivity) with respect to fr for r ≥ k.
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= (tiα − tiα−1) c̃iα
α = 0, 1, ..., R. Consequently, we have:

Theorem 11 Let q ∈ IRn and R = 0, 1, 2, ..., k − 1. Then q ∈ QR if and only if q ∈ Q and

ci0 = ci1 = ... = ciR = 0.

¤

Theorem above generalizes Theorem 10 if we take R = k − 1, so once again we obtain that
Criterion 1 does not apply for independent securities. In such a scenario the remainder criteria
need the computation of R, maximum number such that System½

q ∈ QPn
j=1 ciαjqj = 0 α = 0, 1, ..., R

has non-void solution. Accordingly, Criteria 2, 3 and 4 become, respectively

Min
kX
i=1

 kX
j=i

c̃j

2 (ti − ti−1)
½ q ∈ QPn

j=1 ciαjqj = 0 α = 0, 1, ..., R

Min

 kX
i=1

 kX
j=i

c̃j

Z ti

ti−1
fR+1(t)dt

2½ q ∈ QPn
j=1 ciαjqj = 0 α = 0, 1, ..., R

and

Min
kX
i=1

 kX
j=i

c̃j

2 (ti − ti−1)


q ∈ QPn
j=1 ciαjqj = 0 α = 0, 1, ..., R¯̄̄Pk
i=1

h³Pk
j=i c̃j

´ R ti
ti−1 fs(t)dt

i¯̄̄
≤ Ls s = iR+1, iR+2, ...ik−1

As in the previous subsection, problems above are easily solved in practice.
The major difference between both possibilities, polynomials or spot rates, relies on the second

constraint. In this second case we do not adjust any duration vector but make the most sensitive
coupons vanish. Market conditions and the empirical evidence should provide the arguments to
select between both approaches, although theoretical reasons could also be considered. For instance
investors could bear in mind the upper bounds of Theorem 8. Finally, let us mention that both
possibilities (polynomials and spot rates) may be simultaneously combined in a single analysis.

4.3 Incorporating default risk

Many risk adverse agents, insurers and pension funds are considering non default-free bonds when
choosing their portfolios. The reasons seem to be clear since the credit spread is becoming more
and more significant in the market. So for instance, if one tests the period 2000 − 2004, the
European bond markets have been generating spreads close to 300 basic points for those companies
with the highest rating, i.e., the return associated with private bonds almost multiplies by two the
return of public bonds. Furthermore, private bonds are showing small volatilities, much lower than

16



those reflected by shares or derivatives, which makes them very suitable when composing hedged
strategies.

Another reason (perhaps less important) that makes it rather convenient to consider the credit
spread level is linked to the insurers´ risk or rating. Indeed, if the market imposed any risk premium
then some insurance companies should take it into account in order to evaluate short-sales, since
discount factors might be different when pricing positive or negative cash flows.

The literature has recently treated the credit risk measurement and control by using “risk
measures”. For example, Vlaar (2000) uses the Value at Risk (V aR), while Andersson et al.
( 2001) and Rockafellar and Uryasev (2002) prefer the Conditional Value at Risk (CV aR). It is
also possible to draw on the coherent measures of Artzner et al. (1999) or the convex measures of
Föllmer and Schied (2002). All of these measures provide an amount of money that the portfolio
managers must add in order to protect their clients if the market evolution is quite negative.

Despite the comment above it is worth to recall that the risk measurement in finance is very often
related to sensitivities between financial variables. For instance, the risk of derivative portfolios
is usually measured by the Greeks (see Ingersoll (1987) for further details). Moreover, since the
interest-rate-risk is frequently measured by means of sensitivities (durations), it may be convenient
to extend the analysis in order to capture the default-risk. The study of possible relationships
between both approaches is beyond our current purposes and left for future research.

Throughout this subsection B1, B2, ..., Br will be default-free bonds while Br+1, Br+2, ..., Bn
will be bonds reflecting credit risk. We will use the notations of Subsections 4.1 and 4.2 , so h0
will represent the initial TSIR. We will assume that all of the private bonds have similar rating
and therefore reflect quite similar spread. 14 So, there exists h∗0 ∈ L2[0, T ] indicating a “common
spread” that applies for Br+1, Br+2, ..., Bn. Finally, each private bond has a “less important specific
spread” hj0 ∈ L2[0, T ], j = r + 1, r + 2, ..., n. Accordingly, the present value of ci,j is given by

c̃i,j = ci,je
− R ti0 h0(u)du

for i = 1, 2, ..., k and j = 1, 2, ..., r, and

c̃i,j = ci,je
− R ti0 (h∗0(u)+hj0(u)+h0(u))du

for i = 1, 2, ..., k and j = r + 1, ...., n, and the price of a portfolio q = (q1, q2, ...qn) is

nX
j=1

qj

Ã
kX
i=1

c̃i,j

!
.

The Hilbert space will be

H = L2[0, T ]× ¡L2[0, T ]¢n−r × L2[0, T ]
endowed with its usual inner product. A shock on the state variable is represented by³

h∗,
¡
hj
¢n
r+1

, h
´
∈ H,

where the order indicates the shift of the common spread, the specific spread and the TSIR
respectively. Proceeding as in Subsection 4.1, we get

Vq
³
h∗,
¡
hj
¢n
r+1

, h
´
=

14 This assumption simplifies the exposition and technicalities but may be relaxed without altering the major results.
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rX
j=1

qj

Ã
kX
i=1

c̃i,je
− R ti0 h(u)du

!
+

nX
j=r+1

qj

Ã
kX
i=1

c̃i,je
− R ti0 (h∗(u)+hj(u)+h(u))du

!
.

Due to the analogy between the expression above and (9.27) one can follow the proof of Barber
and Copper (1998) to get

≺ ∂Vq, (h
∗, (hj)nj=r+1, h) Â= −

rX
j=1

qj

Ã
kX
i=1

c̃i,j

Z ti

0
h(u)du

!

−
nX

j=r+1

qj

Ã
kX
i=1

c̃i,j

Z ti

0

¡
h∗(u) + hj(u) + h(u)

¢
du

!
.

Manipulating we have

∂Vq = −
 nX
J=r+1

qj

X
ti≥t

c̃i,j

 ,
qj

X
ti≥t

c̃i,j

n
j=r+1

,
nX
j=1

qj

X
ti≥t

c̃i,j

 ∈ H (11.33)

and consequently

k∂Vqk2 =
 kX
i=1

 nX
j=r+1

qj

Ã
kX
l=i

c̃l,j

!2 (ti − ti−1)


+
nX

j=r+1

 kX
i=1

Ãqj kX
l=i

c̃l,j

!2
(ti − ti−1)


+

 kX
i=1

 nX
j=1

qj

Ã
kX
l=i

c̃l,j

!2 (ti − ti−1)
 . (11.34)

Thus k∂Vqk vanishes if and only if the three terms vanish which clearly holds if and only if q
replicates the zero portfolio and qj = 0, j = r + 1, r + 2, ..., n. Once again we obtain that a total
immunization is not feasible unless we deal with dependent securities. So, let us analyze Criteria
2, 3 and 4. Consider the subset of H whose “ranked” elements are 15

(1, (0)nr+1 , 0) (0, (0)nr+1 , 1)
(t, (0)nr+1 , 0) (0, (0)nr+1 , t)
(t2, (0)nr+1 , 0) (0, (0)nr+1 , t

2)
.................. ...................

 ,
where the order is given by the row and therefore the column is only considered to compare two
elements in the same row. Extend the subset above to a Schauder basis of H by adding

(0, 1, 0, ...0, 0) (0, 0, 1, 0, ...0, 0) ....
(0, t, 0, ...0, 0) (0, 0, t, 0, ...0, 0) ...
(0, t2, 0, ...0, 0) (0, 0, t2, 0, ...0, 0) ...
.................... ....................... ....


15 Once more we are considering the basis of L2[0, T ] composed of polynomials but the ideas of Subsection 4.2 also
apply here.
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Apply the Gram-Schmidt process in order to get the orthonormal basis {fs}∞s=0. We have to
compute the maximum number of factors making immunization feasible. Thus, bearing in mind
the first component of (11.33) and proceeding as in previous subsections we look for the highest R
such that

nX
j=r+1

qj

Z T

0

X
ti≥t

c̃i,j

 tαdt = 0,
α = 0, 1, ..., R, has a solution q ∈ Q. Therefore

nX
j=r+1

qj

Ã
kX
i=1

tα+1i c̃i,j

!
= 0

and thus
kX
i=1

tα+1i

 nX
j=r+1

qj c̃i,j

 = 0, (11.35)

α = 0, 1, ..., R. Analogously, the last component of (11.33) generates

kX
i=1

tα+1i

 nX
j=1

qj c̃i,j

 = 0, (11.36)

α = 0, 2, ....R. Hence (11.34), (11.35) and (11.36) imply that Criterion 2 will consist in solving the
quadratic mathematical programming problem 16

Min


Pk
i=1

·³Pn
j=r+1 qj

³Pk
l=i c̃l,j

´´2
(ti − ti−1)

¸
+
Pn
j=r+1

µPk
i=1

·³
qj
Pk
l=i c̃l,j

´2
(ti − ti−1)

¸¶
+
Pk
i=1

·³Pn
j=1 qj

³Pk
l=i c̃l,j

´´2
(tnir+1 − ti−1)

¸

s.t.


q ∈ QPk
i=1 t

α+1
i

³Pn
j=r+1 qj c̃i,j

´
= 0 α = 0, 1, ..., RPk

i=1 t
α+1
i

³Pn
j=1 qj c̃i,j

´
= 0 α = 0, 1, ..., R

.

Similar and straightforward computations lead to the general expressions of Criteria 3 and 4.
It is interesting to remark that, in order to respect the second restriction above, and bearing in

mind that private bonds will reflect higher level of risk, the problem may often attain its optimal
value at a given point q such that qj = 0, j = r+1, ..., n. However, the decision maker can prevent
this sort of solution by drawing on the constraint q ∈ Q. For instance, it may impose the use of
some private bonds if one claims for returns slightly bigger than those generated by public bonds.

5 Conclusion

The present paper has considered a general setting and several properties have been established.
First, we have proved the absence of immunized portfolios when infinite risk factors are considered.
Second, we have provided a procedure leading to the maximum number of factors against which
immunization is feasible. In this sense, since the number of factors is not previously fixed, the

16 Note that it would be sufficient if for some j the third constraint held for α = 0, 1, ..., R− 1.
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method seems to improve the literature considering a finite number of factors. Third, we have
provided several methods to protect our strategy versus the residual risk. In this sense, our analysis
could improve those papers considering infinite factors because we are hedging versus more realistic
shocks on the state variable. Fourth, under convexity assumptions, upper bounds for capital losses
of hedged portfolios have been given. Moreover these upper bounds are still useful if convexity fails,
since they provide first order approximations of the portfolio price after non favorable shocks. Fifth,
we have applied our abstract method to both credit risk free and non credit risk free portfolios of
fixed income assets. Finally, further extensions have been outlined.
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