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1 Introduction

The tractability that Ito calculus permits, as well as the possibility to allow
for continuous portfolio rebalancing, explain the popularity of the continuous-
time setting in …nancial economics1 . Interest rate modeling in particular has
bene…ted profoundly from the use of Ito processes to describe the behavior of
state variables. As a result, an enormous amount of models have followed the
seminal work of Vasicek (1977) and Cox, Ingersoll, and Ross (henceforth CIR)
(1985b). These one-factor models have a single state variable that can be iden-
ti…ed with the instantaneous riskless interest rate. Equilibrium or no-arbitrage
conditions then make it possible to price assets whose payo¤s are contingent
on the short term interest rate such as default-free bonds or options on those
bonds. The whole term structure of interest rates can thus be derived from
the prices of zero-coupon bonds with di¤erent periods to maturity. However,
the inadequacy of the Vasicek and CIR models to reproduce the observed shape
of the yield curve, along with the observation that yields do not have the same
autocorrelation as the single state variable, have motivated the inclusion of two
or more state variables, such as the two-factor model proposed by Longsta¤ and
Schwartz (1992).

The purpose of this paper is to conduct a test of the number of state variables
in a general continuous-time term structure model. The standard parametric
approach …rst speci…es a multifactor continuous time interest rate model that
nests a lower dimension model. The model parameters are then estimated, and
…nally a test is performed on whether the relevant parameters are statistically
di¤erent from the values that make the model one-dimensional. This approach
entails three main problems.

First of all, a model must be speci…ed ex ante from the wide array that
exists in the literature. Di¤erent speci…cations of the dynamic behavior of the
state variables, together with di¤erent approaches to solve the model, namely
equilibrium or arbitrage-free, have resulted in an extraordinarily large family of
interest rate models. For a review of term structure models see, for instance,
Du¢e (1996, Ch. 7), or the discrete-time versions by Backus, Foresi and Telmer
(1998).

Second, stochastic processes expressed in continuous-time have to be esti-
mated using data observed only at discrete times. The problem arises because
exact maximum likelihood estimation is generally not possible since the tran-
sition density between two discrete times is not known explicitly for most of
the di¤usions employed in the literature. As an alternative to exact maximum
likelihood, some authors have used a discretized version of the di¤usion process
using the Euler scheme and then they have applied a (quasi) maximum likelihood
or a generalized method of moments approach2 . Using Monte Carlo simula-
tion, Honoré (1997) shows that the …nite sample properties of both approaches
are inappropriate due to the approximation error. In order to avoid this dis-
cretization bias, Du¢e and Singleton (1993) and Gallant and Tauchen (1997)

1 For an extensive survey of continuous-time methods in …nance, see Sundaresan (2000).
2 See for example, Chan, Karolyi, Longsta¤, and Sanders (1992)
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use simulations to obtain unconditional moments, whereas, Pedersen (1995) and
Santa-Clara (1995) develop a simulated maximum likelihood method. Despite
the success of simulation-based estimation methods, they have a clear disadvan-
tage in terms of computing time.

Finally, many of the multi-factor interest rate models are formulated in terms
of an unobservable state variable: the stochastic volatility of the instantaneous
interest rate. Although the dynamics of the volatility factor has been mod-
eled as a process of the ARCH family3 , this approach is not consistent with
stochastic volatility. Again, we must rely on simulation-based techniques from
the stochastic volatility literature, such as Gouriéroux, Monfort and Renault’s
(1993) indirect inference or the simulated maximum likelihood estimator by
Danielsson (1998).

The paper addresses these problems. First, by studying the relationship
between the number of factors that determine interest rates and the short term
continuous-time process, we seek a hypothesis that can be tested without incur-
ring model misspeci…cation error. It is shown that if the di¤usion coe¢cient
is a function of the model’s two state variables then the whole term structure
is driven by the two stochastic factors. Although in general failure to reject
the univariate di¤usion does not imply that the state variable vector is one-
dimensional, it is shown that this is the case for the two-factor CIR model.
Thus, we may use a method designed by Aït-Sahalia, Bickel and Stoker (1998)
to test the dimension of the di¤usion function of the short rate dynamics. The
justi…cation relies on the work of Stanton (1997) and Boudoukh, Richardson,
Stanton and Whitelaw (1998) who use the in…nitesimal generator of the di¤u-
sion to prove that the …rst and second conditional moments of discrete changes
in the short rate converge to the actual drift and di¤usion functions as the ob-
servation frequency grows to in…nity. The approach we follow avoids the need
to parameterize the model since the method is nonparametric, and at the same
time provides us with a test that is consistent with continuous-time modeling.

Second, the kernel method that we use has a substantial advantage over
simulation techniques in terms of computing time. Whereas a standard Monte
Carlo-based method may require hundreds of thousands of simulated paths,
the kernel method can be easily implemented on a spreadsheet. Despite this
advantage, Chapman and Pearson (2000) …nd that Stanton’s (1997) estimator
–on which the test relies– may show spurious nonlinearities –especially in the
drift term function– when only small samples are available. However, as we
will discuss in the conclusions, this bias has a presumably minimal impact on
the paper’s main results.

Finally, if we assume that the process is globally invertible so that it can
be expressed in terms of two observable variables, e.g. the short rate and the
yield spread as an approximation of the slope of the yield curve, we avoid the
problem of the unobservability of the instantaneous volatility.

In our empirical application, we use a series of weekly observations of an-
nualized discount rates on the US Treasury Bill with three months to maturity

3 See for instance Andersen and Lund (1997).
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and on the 10-year US Government Bond, covering the period from January
1962 to May 1999. The results show that the drift of the short rate process is
a function of just the current short rate, whereas the di¤usion is a function of
both the short rate and the yield spread.

The rest of the paper is organized as follows: section 3.2 shows the approach
taken to test the dimension of the instantaneous riskless interest rate process;
section 3.3 explains the econometric method employed for conducting the test;
section 3.4 presents the results; and …nally section 3.5 concludes.

2 Testing for the dimension of the term struc-
ture

The presence of a second stochastic factor driving interest rates was suggested
among others by Dybvig (1989) and Litterman and Scheinkman (1991), and has
been found not only to easily account for the strong conditional heteroscedastic-
ity observed in the short rate series but also to allow in theory for more realistic
yield curves (Backus, Foresi and Telmer (1998)). Moreover, term structure
models that include a stochastic volatility factor such as Longsta¤ and Schwartz
(1992) and Andersen and Lund (1997) have been found to empirically accommo-
date the shortcomings of the single-factor CIR model. These …ndings however
rely on the speci…cation of a parametric model.

In a nonparametric continuous-time setting, Boudoukh, Richardson, Stanton
and Whitelaw (1998) estimate a two-factor model assuming that the short rate
and the slope of the yield curve, proxied by the yield spread, span the same
space as the true state variables. Although their estimates suggest that the
slope of the term structure plays a role in determining the di¤usion coe¢cient,
they do not provide a formal test for this relationship or explain how this relates
to the dimension of the term structure model.

The purpose of this section is to show how a dimension test can be conducted
in a nonparametric continuous-time framework.

First, it is shown that if the term structure is determined by two factors,
then either the drift of the short rate process under the risk-neutral probability
measure, the di¤usion term, or both, must be a function of the short rate process
and the second stochastic factor, provided the short rate and the second factor
can be taken as state variables. Therefore, a bivariate di¤usion function is a
su¢cient condition for the term structure to be bidimensional.

When two factors a¤ect interest rates and the corresponding vector process
is globally invertible, then any two interest-rate contingent factors can be taken
as state variables. We will assume that the instantaneous riskless interest rate,
r , and an observable variable X can be taken as state variables, and that their
evolution through time is governed by the following joint Ito process:

dr = ¹1(r; X; t)dt + ¾1(r;X; t)dw1 (1)

dX = ¹2(r; X; t)dt + ¾2(r;X; t)dw2: (2)
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where dw1 and dw2 are two independent Wiener processes. Next, we assume
that there exists an asset whose price at time t is a function of the value of the
two state variables at t. Denoting the asset’s price by P ,

P = P (r;X; t) (3)

Assuming that P (¢) is twice continuously di¤erentiable in r and X , we may
apply Ito’s lemma to the previous expression in order to …nd the stochastic
process governing the behavior of P . In particular, its drift is given by:

m =
1

2
¾2

1(r; X; t)Prr + ¹1(r;X; t)Pr +
1

2
¾2

2(r; X; t)PXX + ¹2(r; X; t)PX + Pt

(4)

If the asset pays no dividends, the absence of arbitrage implies that the drift
is a linear combination of the riskless interest rate and the market value of the
bond’s exposure to the sources of risk associated with r , and X :

m = rP + ¸r(r; X; t)Pr + ¸X (r; X; t)PX (5)

Equating both expressions we have the following valuation equation:

1

2
¾2

1(¢)Prr + (¹1(¢) ¡ ¸r(¢)) Pr +
1

2
¾2

2(¢)PXX + (¹2(¢) ¡ ¸X (¢))PX + Pt ¡ rP = 0

(6)

If the asset is a zero-coupon bond that pays one unit at time T , then its
price at time t is the solution to equation (6) with boundary condition:

P (r; X; T ) = 1: (7)

Subject only to technical conditions, the solution to (6) with (7) can be
expressed in the form of the following expectation:

Pt;T = Et

"
exp

Ã
¡

TR
t

r̂sds

!#
(8)

where r̂ denotes the risk-adjusted process, given by:

dr̂ = (¹1( r̂; X̂ ; t) ¡ ¸r(r̂ ; X̂ ; t))dt + ¾1(r̂; X̂ ; t)dw¤
1 (9)

dX̂ = (¹2( r̂; X̂ ; t) ¡ ¸X (r̂; X̂ ; t))dt + ¾2( r̂; X̂ ; t)dw¤
2 : (10)
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with:

r̂ = r , and X̂ = X (11)

From (8), (9), and (10) it is clear that the second stochastic factor X , a¤ects
bond prices indirectly through the drift and/or the di¤usion term of the risk-
adjusted short rate process. The problem is that we do not observe the risk
adjusted process but the actual process that follows the instantaneous riskless
rate. However, since the di¤usion term in both processes is the same, a di¤usion
function that depends on r, and X is a su¢cient condition for the term structure
to be driven by two factors.

The appendix shows that a bivariate di¤usion function is a necessary and
su¢cient condition for the presence of a second stochastic factor in the term
structure model in the case of a two-factor CIR model.

3 Econometric approach

3.1 Testing for the dimension of the di¤usion function

From the result of the previous section, we know that a bivariate di¤usion
function of the short rate process is a su¢cient condition for the term structure
to be driven by a second stochastic factor. Nevertheless, we will also test
whether the drift function depends on the yield spread as well as on the short
rate process.

Assume that the behavior of the short rate and the yield spread is described
by the following time-homogeneous vector Ito process:

dr = ¹r(r; S)dt + ¾r1(r; S)dW1 + ¾r2(r; S)dW2 (12)

dS = ¹S(r; S)dt + ¾S1(r; S)dW1 + ¾S2(r; S)dW2 (13)

where S represents the yield spread and dW1 and dW2 are two independent
Wiener processes.

We will test the following two hypotheses:

² Hypothesis 1 (henceforth H1):

¹r(r; S) = ¹r(r) (14)

² Hypothesis 2 (henceforth H2):

V (r; S) = ¾2
r1(r; S) + ¾2

r2(r; S) = V (r) (15)
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Stanton (1997) and Boudoukh, Richardson, Stanton, and Whitelaw (1998),
show that …rst-order approximations to ¹r and V are given by the conditional
…rst and second moments of the Euler discretization of the short rate process:

¹r =
1

¢
Et [rt+¢ ¡ rt ] + O(¢); (16)

V =
1

¢
Et

£
(rt+¢ ¡ rt)

2
¤

+ O(¢): (17)

Where ¢ is the interval between the times when rt and rt+¢ are observed.
As the observation frequency increases to in…nity, ¢ ! 0, the approximations
converge to the actual values of the drift and di¤usion functions. This suggests
that the hypotheses can be restated as:

² H1:

E [rt+¢ ¡ rt j rt ; St ] = E [rt+¢ ¡ rt j rt ] ; (18)

² H2:

E
£
(rt+¢ ¡ rt)

2 j rt; St

¤
= E

£
(rt+¢ ¡ rt)

2 j rt

¤
: (19)

Recall that if H1 is rejected, we cannot assure that interest rates are driven
by two stochastic factors, unless the risk premiums are zero, in which case the
drift of the actual and risk-adjusted short rate processes coincide. Also, failure
to reject H1 does not imply that only one factor a¤ects the term structure,
as is the case with the two-factor CIR model. However, the test of H1 may
have interesting implications regarding the way the actual short rate process
should be modeled. In particular, if H1 is not rejected, e¢ciency gains could
be attained when estimating continuous-time models of the term structure if
the short-rate drift is modeled as a univariate function.

On the other hand, if H2 is rejected, then as explained above we know that
the price of interest-rate contingent assets is driven by (at least) two factors,
which by assumption can be taken as the short rate and the yield spread. Fur-
thermore, since the di¤usion term is a key variable in option pricing, the result
would imply that the price of options on …xed-income assets is a¤ected by the
current level of the short-term interest rate as well as the slope of the yield
curve.

3.2 The method
The method described in this subsection enables us to test nonparametrically
the following hypothesis:
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E [Y j W; V ] = E [Y j W ] ; (20)

so it serves our purposes in a straightforward fashion:

² H1 can be tested by setting:

Y = rt+¢ ¡ rt;

W = rt ;

V = St ;

² H2 can be tested by setting:

Y = (rt+¢ ¡ rt)
2;

W = rt;

V = St :

The test in question was proposed by Aït-Sahalia, Bickel and Stoker (1998)
and uses kernel methods to estimate the regression under the restricted speci…ca-
tion and under the alternative. Then, the di¤erence between the restricted and
the unrestricted kernel regression is measured via the residual sum of squares.

It should be noted that although the test in principle applies to a data sample
of independent and identically distributed observations, the distribution of the
test statistic is unchanged by serial dependence in the data provided that this
is strictly stationary ergodic and the amount of serial dependence in the data
decays su¢ciently fast.4 . We will assume that this condition holds true for the
data set.

If the sample data consists of Zi = (Yi ; Vi; Wi); i = 1; :::; N the test answers
the question of whether the predictor variables V can be omitted from the
regression of Y on (W; V ). The regression function of Y on (W; V ) is de…ned
by

m(w; v) ´ E(Y j W = w; V = v) =

R
yf (y; w; v)dy

f (w; v)
(21)

and the regression function of Y on W by

4 More technically, if Zi is the vector of observations at time i, then it must be the case
that:

1. The data fZi; i = 1; :::;Ng are strictly stationary and ¯ -mixing with ¯N = O(N¡k); k >
19=2:

2. The joint density f1;j(¢; ¢) of (Z1 ; Z1+j) exists for all j and is continuous on (R£S)2 :
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M(w) ´ E(Y j W = w) =

R
yf (y; w)dy

f (w)
(22)

These conditional moments may be consistently estimated using the Nadaraya-
Watson kernel regression method:

m̂h(w; v) ´
PN

i=1 Kh(w ¡ Wi; v ¡ Vi)YiPN
i=1 Kh(w ¡ Wi; v ¡ Vi)

(23)

M̂H (w) ´
PN

i=1 KH (w ¡ Wi)YiPN
i=1 KH (w ¡ Wi)

(24)

where Kh(u) = h¡dK (u=h) and KH (u) = H¡dK (u=H), d being the dimen-
sion of the vector u that measures the distance of the observed regressor data to
the design point. The shape of the kernel weights is determined by K, whereas
the size of the weights is parameterized by the bandwidth, denoted by h5 .

The test statistic is based on the distance, measured in a mean squared error
way, between both regression functions or more precisely their estimates. If we
de…ne the following statistic:

~¡ ´ 1

N

NX

i=1

n
m̂h(Wi; Vi) ¡ M̂H (Wi)

o2

Ai (25)

where Ai is the value that a weighting function6 takes for Wi; Vi, then ~¡
is a consistent estimator of the weighted expected squared di¤erence between
m(W; V ) and M (W ). Under the null hypotheses ~¡ is asymptotically zero.

The distribution of the test statistic is derived under standard assumptions
about the density functions and the kernel. Specially relevant are those con-
cerning the kernel function and the bandwidth choice:

1. The kernel K is a bounded function on R, symmetric about 0, with
R

j
K (z) j dz < 1;

R
K(z)dz = 1;

R
zjK(z)dz = 0 for 1 � j � r: Further,

r > 3(p + q)=4 (26)

where p and q are the dimensions of W and V respectively.
2. As N ! 1, the unrestricted bandwidth sequence h = O(N¡1=±) is such

that
5 More details on kernel smoothing techniques can be found in Härdle (1990).
6 This weighting function allows us to test goodness-of-…t for particular value ranges and/or

avoid technical problems such as the estimation of conditional expectation in areas of low
density. In this application Ai is an indicator function that equals 1 if both Wi and Vi are
between the 5th and 95th percentiles of their respective samples, and zero otherwise.
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2(p + q) < ± < 2r + (p + q)=2 (27)

while the restricted bandwidth H = O(N¡1=±) satis…es

p < ¢ � 2r + p (28)

as well as

±p=(p + q) � ¢ < ± (29)

The authors show that under the null hypothesis that V can be omitted
from the regression:

¿̂ ´ ¾̂¡1
11 (Nh(p+q )=2 ¢ ~¡ ¡ h¡(p+q)=2°̂12 ¡ h(q¡p)=2°̂22 ¡ h(p+q)=2H¡p°̂32) ! N (0; 1)

(30)

where the critical values are calculated in the following way:

¾̂2
11 =

2C11

N

XN

i=1

¾̂4
h(Wi; Vi)A

2
i

f̂h(Wi; Vi)
; °̂12 =

C12

N

XN

i=1

¾̂2
h(Wi; Vi)Ai

f̂h(Wi; Vi)

°̂22 = ¡2C22

N

XN

i=1

¾̂2
h(Wi; Vi)Ai

f̂H (Wi; Vi)
, °̂32 =

C32

N

XN

i=1

¾̂2
H (Wi)Ai

f̂H (Wi)

with ¾̂2
h(Wi; Vi) and ¾̂2

H (Wi) being the conditional variances of Y estimated
nonparametrically. The constants Cij are determined by the choice of kernel.
In our application:

C12 = 1=(2
p

¼)2; C22 = 1=
p

2¼; C32 = 1=(2
p

¼); C11 = 1=(2
p

2¼)2

Following Aït-Sahalia, Bickel and Stoker (1998), the following bandwidth
functions are used for the unrestricted and restricted regressions:

h = h0N
¡1=± with ± = 4:75 (31)

H = H0N
¡1=¢ with ¢ = 4:25 (32)

Although there is not one single commonly agreed upon method, a cross-
validation procedure was employed to determine the values of h0 and H0 that
minimize the mean squared error of the estimates. The method employed here
works as follows: for every observation, Zi use all observations except for those
in its neighborhood to estimate m(W; V ) or M(W ) and then compute the sum
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of squared di¤erences between Y and m(W; V ) or M (W ). Finally h0 and H0

are chosen to minimize the sum of squared residuals7 . Results strongly suggest
that h0 in the …rst test should be set equal to 0.19 and H0 ought to be 0.15.
For the second test, h0 was chosen to equal 0.11 and H0 was chosen to equal
0.09.

Finally, the test was performed using an independent Gaussian kernel

KH (w ¡ Wi) = H¡1 1p
2¼

exp(¡ 1
2 (w¡Wi

H )2)

Kh(w ¡ Wi; v ¡ Vi) = h¡2 1p
2¼

exp(¡ 1
2 (w¡Wi

h )2) £ 1p
2¼

exp(¡ 1
2 ( v¡Vi

h )2)

(33)

4 Data and results

A series of daily observations of annualized discount rates on US Treasury Bills
with three months to maturity and on 10-year US Government Bonds was ob-
tained from the Internet Site of the Federal Reserve. The rates correspond
to secondary market closing bid rates. The missing observations problem was
overcome by constructing a weekly series in which each observation corresponds
to the rate quoted on Wednesday (the day of the week with the least number
of missing observations). If the observation on a given Wednesday was not
available, the quote from the day before was used8 . Finally, discount rates
were converted to annualized continuously compounded yields. The result-
ing series covers the period from January 1962 to May 1999 – a total of 1,948
observations– and is displayed on Figure 1. Table 1 shows descriptive statistics
of the dataset. Figure 2 contains the plot of weekly changes in the short-term
interest rate. As Gray (1996) observes, periods of high volatility coincide with
periods of high interest rates, whereas periods of low volatility happen when
the short rate is lower. He consequently identi…es two di¤erent regimes. In
particular, the high variance/high interest rate regime comprises the 1973-1975
period (the time of the OPEC oil crisis), the 1979-1982 period (when the Fed
targeted nonborrowed reserves instead of interest rates), and the months after
the 1987 stock market crash.

Next, we test whether the drift function depends only on the current level
of the short-term interest rate.

The test statistic ¿̂ associated with H1 and its corresponding p-value is
shown in Table 2 for the values obtained from the cross validation approach
(H0 = 0:15; h0 = 0:19) as well as for neighboring values of the parameters that
determine the kernel bandwidths through (32) and (31). The results imply that
we cannot reject the null hypothesis H1 at the 5% or 10% signi…cance levels.
Even when considering bandwidth departures, the test suggests that the slope

7 In particular, the cross-validation methods employed left between 2 and 6 observations
out on each side of the observation point, that is roughly between half a month and one
and a half months. Optimal bandwidth estimates appeared to be robust to the number of
observation left out.

8 In constructing the series we have followed Andersen and Lund (1997).
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of the yield curve contains no predictive power about future changes of interest
rates. This result is consistent with most model speci…cations and empirical
…ndings.

Next, we test whether the di¤usion function depends only on the current
level of the instantaneous riskless interest rate.

The test statistic ¿̂ associated with H2 and its corresponding p-value is
shown in Table 3 for the values obtained from the cross validation approach
(H0 = 0:09; h0 = 0:105) as well as for neighboring values of the parameters
that determine the kernel bandwidths through (32) and (31). The test shows
that the null hypothesis that the conditional variance of instantaneous changes
in interest rates is a function of only the short rate is rejected at the 10% level
in all cases and at the 5% level in all cases considered but one. Although
the spread’s additional e¤ect on the conditional second moment of the short
rate changes appears to be signi…cant, the analysis performed suggests that this
result is sensitive to bandwidth choices. In fact, p-values range from practically
zero to almost 8% for small changes in the bandwidths.

In order to explore the reason for this lack of robustness we need to analyze
the estimates of the di¤usion coe¢cient under the restricted and unrestricted
speci…cations. Figure 3 shows the shape of the estimated di¤usion function when
only the short rate is used as the conditioning variable and …gure 4 shows the
shape of the di¤usion function when dependence on the yield spread is allowed.
Comparing the two, we see that a univariate di¤usion function underestimates
the instantaneous volatility of the short rate process when the short rate level
is high and the yield curve has a steep negative slope. Therefore, given that
periods of high short-term interest rates usually happen when the slope of the
yield curve is negative, an increase in interest rates will most likely result in
an increase in the conditional variance that is higher than that predicted by
single-factor models. Allowing for a second stochastic factor therefore accounts
for the larger conditional volatility observed in the high variance regime, as well
as for the larger degree of dependence of future volatility upon the short rate
for high levels of the short-term interest rate (see Gray (1996)).

Furthermore, …gure 4 shows that the dependence of the short rate di¤usion
upon the yield spread is higher the higher the short rate. Since the short-term
interest rate spends most of the time in the low variance/low short rate regime,
it appears that we would need a larger sample to provide stronger evidence
for a bivariate di¤usion function, especially considering that the tails have been
trimmed out of the sample in order to perform the test. Even so, the test rejects
the null hypothesis H2 for the optimal bandwidth values, so we may conclude
that an adequate US term structure continuous-time model should contain at
least two state variables.

5 Conclusions

The main contribution of this paper is two-fold: it explains how to conduct a
nonparametric test of the number of factors underlying the short rate process
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and explores the implications of such a test regarding the dimension of the state
variable vector in a continuous-time term structure model. Furthermore, the
analysis provides a rationale for using the yield spread as a second stochastic
factor in testing for the dimension of the term structure.

A major …nding is that the dependence of the di¤usion function on the short
rate and the yield spread is generally a su¢cient condition for the presence of
a second stochastic factor. Moreover, it is a necessary and su¢cient condition
only in special cases, such as the two-factor CIR model.

The econometric approach is appropriate for three reasons. First, because
it is nonparametric it is free of model misspeci…cation problems. This is of
particular importance given the broad range of modeling possibilities that one
…nds in the interest rate literature. Second, the estimation method attached
to the test yields consistent estimations of the conditional mean and variance
of changes in the short rate so results apply directly to continuous-time mod-
els provided the discrete approximation is accurate enough. In addition, the
test does not rely on computationally intensive simulations and can be easily
implemented on a spreadsheet. Finally, under the assumption that the short
rate and the yield spread completely describe the state of the system, we have
avoided the need to adjust an ARCH-type model to the short rate or to perform
a simulation-based estimation of the conditional volatility.

The results suggest that the drift of the continuous-time stochastic process
governing the short rate dynamics should be modeled as a function of just one
factor, whereas the di¤usion term does depend on the spread as well as on the
level of the short rate. There is however a number of reasons why this result
should be taken with caution.

First of all, the method may be biased in small samples due to the strong
persistence in the short rate and spread series. In fact, Chapman and Pear-
son (2000) have shown that non-linearities displayed by Stanton’s kernel drift
estimates may be spurious. This problem is however minimized on this appli-
cation. First, according to Chapman and Pearson (2000), the larger bias in
Stanton’s estimates occurs for values of the conditioning variable close to the
support of the distribution of the sample. Our choice of the weighting function
Ai ; however, ensures that only observations in the center of the distribution are
taken into account when constructing this test. Second, Chapman and Pearson
(2000) also show that more accurate estimates can be attained by using band-
widths obtained through cross-validation9 , which is the method chosen in this
application. Finally, this problem can neither be attributed to a discretization
bias nor to the use of a kernel method, but to a truncation of the sample that
a¤ects the estimation of the drift exclusively. Our main result however rests
on the test concerning the di¤usion function.

Another source of concern is the great subjectivity underlying the choice of
H0 and h0; aggravated by the sensitivity of the test statistic to the bandwidth
values. This problem, associated with kernel regressions, becomes especially

9 It should be noted however that the method they use is based on a function that penalizes
the sum of squared residuals for small bandwidths, rather than the ”leave-out” approach
employed here.
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important when the goal is hypothesis testing. The sensitivity analysis per-
formed shows that conclusions for the conditional mean are quite consistent
across di¤erent bandwidth values, whereas results for the conditional variance
are somewhat less clear. This problem however could be overcome if the tails of
the distribution were appropriately accommodated rather than trimmed away.
Also, using two distinct bandwidths rather than a single smoothing parame-
ter for the bivariate regressor would presumably result in the test detecting a
higher dependence on the second stochastic factor. The reason is that the
term spread’s in‡uence is underestimated when a single smoothing parameter
is employed given that the spread series exhibits less dispersion.

Finally, controlled experiments should be carried out in order to assess the
…nite-sample properties of the method for persistent series, such as the ones
usually found in Finance. It could be sensible to use the empirical rather
than the asymptotic distribution given the high serial autocorrelation in the
regressors. Therefore, a bootstrap approach seems like a plausible alternative
to the asymptotic test.

A natural extension of this paper would be a test for a third factor driving
interest rates. A problem likely to arise is the well known curse of dimension-
ality associated with fully nonparametric estimators: as the dimension of the
independent variables grows, the speed of convergence decreases exponentially.

13



Appendix: the two-factor CIR model
Let us assume the following joint di¤usion:

dx1 = µ1(¹x1 ¡ x1)dt + C1
p

x1dW1 (34)

dx2 = µ2(¹x2 ¡ x2)dt + C2

p
x2dW2; (35)

where dW1 and dW2 are independent pure Brownian motions, x1 and x2 are the
unobservable state variables, and µ1, µ2, ¹x1, ¹x2, C1, C2 are constants. Equations
(34) and (35) with µ1, µ2 > 0, imply that the state variables revert to their
means: ¹x1 and ¹x2.

The model is completed with the following implications for the instantaneous
riskless interest rate and the risk-premium speci…cations:

r = x1 + x2; (36)

¸1(x1; x2) = ¸1x1; (37)

¸2(x1; x2) = ¸2x2; (38)

where ¸1 and ¸2 are constants.
The model given by (34), (35), (36), (37), and (38) is known as the two-

factor CIR model, a special case of which is the Longsta¤ and Schwartz (1992)
model: the state variables in their model represent economic factors a¤ecting
expected returns on physical investment and ¸1 equals zero.

Let us assume that the model can be speci…ed in terms of the short rate, r,
and the instantaneous variance of changes in the interest rate, V , as in Longsta¤
and Schwartz (1992). Let us consider as state variables, however, the short rate
and the yield spread. First, it is necessary to write the state variable vector
process under the risk neutral measure Q:

dx = ¹(x)dt + ¾(x)dW ¤ (39)

where

¹(x) =

�
µ1(¹x1 ¡ x1) ¡ ¸1x1

µ2(¹x2 ¡ x2) ¡ ¸2x2

¸
(40)

¾(x) =

�
C1

p
x1 0

0 C2
p

x2

¸
(41)

dW ¤ = [dW ¤
1 ;dW ¤

2 ]
T (42)

with dW ¤
1 , and dW ¤

2 , being the Brownian motions under Q.
Du¢e and Kan (1996) show that when ¹, ¾¾T , and r are a¢ne, i.e., linear

in the vector of state variables x, then the solution to the valuation equation
for zero-coupon bonds is exponential a¢ne:
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P (x; T ¡ t) = exp[A(T ¡ t) + B(T ¡ t) ¢ x]: (43)

The terms A(¢) and B(¢) are constant for a given maturity, and can be
obtained solving an ordinary di¤erential equation.

The solution (43) implies that the yield on the zero-coupon bond is a¢ne:

L =
¡ log P (x; T ¡ t)

T ¡ t
=

¡A(T ¡ t) ¡ B(T ¡ t) ¢ x
T ¡ t

(44)

As Du¢e and Kan observe, we may specify a d-factor term structure model
in terms of the yields on any d bonds, ruling out singularities. For the model
considered here, Du¢e and Kan’s condition holds10 as can be veri…ed from (40)
and (41) so we have that

L = ¡a ¡ b¤
1x1 ¡ b¤

1x2; (45)

where a ´ A(T ¡t)
T ¡t

and b¤ = (b¤
1; b

¤
2) ´ B(T¡t)

T ¡t
:

We can thus write the following equation system:

Z¤ = K ¤x (46)

with

Z¤ = (r; L + a)T (47)

K¤ =

�
1 1

¡b¤
1 ¡b¤

2

¸
(48)

Provided that K¤ is invertible, i.e. b¤
1 6= b¤

2, we can make a change of variables
by noting that

x = (K¤)¡1Z¤ (49)

Similarly, we can also take the short rate and the yield spread, S, as state
variables, since:

S = L ¡ r

= ¡a ¡ (1 + b¤
1)x1 ¡ (1 + b¤

2 )x2

= ¡a ¡ b1x1 ¡ b2x2: (50)

10 The two-factor CIR model is in fact a special case of the a¢ne-yield models.
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We invert the system

Z = Kx (51)

with

Z = (r; S + a)T (52)

K =

�
1 1

¡b1 ¡b2

¸
; (53)

to obtain:

x1 = ¡ b2

b1 ¡ b2

r ¡ 1

b1 ¡ b2

(S + a) (54)

x2 =
b1

b1 ¡ b2
r +

1

b1 ¡ b2
(S + a): (55)

Applying Ito’s lemma to the system given by (52) and (53), we get:

dr = dx1 + dx2 (56)

dS = ¡b1dx1 ¡ b2dx2; (57)

substituting from (34) and (35),

dr = µ1(¹x1 ¡ x1)dt + C1
p

x1dW1 + µ2(¹x2 ¡ x2)dt + C2
p

x2dW2 (58)

dS = ¡b1[µ1(¹x1 ¡ x1)dt + C1
p

x1dW1] ¡ b2[µ2(¹x2 ¡ x2)dt + C2
p

x2dW2] (59)

Finally, we replace the values of x1 and x2 obtained in (54) and (55) into
(58) and (59):

dr = ¹r(r; S)dt + ¾r1(r; S)dW1 + ¾r2(r; S)dW2 (60)

dS = ¹S(r; S)dt + ¾S1(r; S)dW1 + ¾S2(r; S)dW2 (61)

with:

¹r(r; S) =
µ2b1 ¡ µ1b2

b1 ¡ b2
(¹r ¡ r) +

µ2 ¡ µ1

b1 ¡ b2
( ¹S ¡ S) (62)

var(dr) = ¾2
r1(r;S) + ¾2

r2(r; S)

=
C 2

2 b1 ¡ C 2
1 b2

b1 ¡ b2
r ¡ C 2

2 ¡ C2
1

b1 ¡ b2
(S + a) (63)
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¹S (r; S) =
b1b2(µ1 ¡ µ2)

b1 ¡ b2
(¹r ¡ r) +

b1µ1 ¡ b2µ2

b1 ¡ b2
( ¹S ¡ S) (64)

var(dS) = ¾2
S1(r; S) + ¾2

S2(r;S)

=
C 2

2 b1b
2
2 ¡ C 2

1 b21b2

b1 ¡ b2
r ¡ C2

2 b2
2 ¡ C2

1 b2
1

b1 ¡ b2
(S + a) (65)

It is interesting to consider the special case when the mean reversion param-
eters of the state variables have the same value:

µ1 = µ2 = µ

Then we have that

¹r(r; S) = ¹r(r) = µ(¹r ¡ r) (66)

¹S (r; S) = ¹S (r; S) = µ( ¹S ¡ S) (67)

which clearly shows that neither the dimension of the drift function of the actual
short rate process nor the dimension of the drift function of the yield process
necessarily coincide with the number of factors driving interest rates.

Similarly, when C 2
1 = C 2

2 ; from (63) the instantaneous variance is a function
of only the short rate. This case is however ruled out by the assumption that
the volatility can be taken as a state variable since C 2

1 6= C 2
2 is a necessary and

su¢cient condition for the following system to be invertible:

�
r
V

¸
=

�
1 1

C2
1 C 2

2

¸ �
x1

x2

¸

Therefore, under the model assumptions, the di¤usion coe¢cient of the short
rate process is a bivariate function if and only if interest rates are driven by two
stochastic factors.
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Table 1. Summary statistics of the 3-month T-Bill yield, the yield on the
10-year US Bond, the yield spread, and weekly changes in the 3-month
T-Bill. The series covers the period from January 1962 to May 1999.

Variable Mean Std. Dev. Autocorr.
3-m. yield 0.06142 0.02567 0.99494

10-yr. yield 0.05537 0.01371 0.99815
Spread -0.00604 0.01545 0.98931

3-m. weekly changes -0.000013 0.00277 0.08328

Correlation Matrix 3-m. yield 10-yr. yield Spread
3-m. yield 1

10-yr. yield 0.8641 1
Spread -0.8945 -0.5479 1

3-m. changes -0.0539 -0.0310 0.0620
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Table 2. Test of H1. This table shows the test statistic values and the corresponding
p-values for the null hypothesis that the yield spread does not contribute to explaining
changes in the drift function of the short rate process. The test statistic was computed
for di¤erent values of H0 ( the smoothing parameter in (32)) and h0 (the smoothing
parameter in (31)). The cell in the center of the table corresponds to the optimal smoo-
thing parameter values obtained through cross validation.

h0

0.18 0.19 0.2

0.14
0:3035
(0:38)

0:2268
(0:41)

0:1539
(0:43)

H0 0.15
0:4006
(0:34)

0:3252
(0:37)

0:2533
(0:40)

0.16
0:4896
(0:31)

0:4151
(0:33)

0:3438
(0:36)
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Table 3. Test of H1. This table shows the test statistic values and the corresponding
p-values for the null hypothesis that the yield spread does not contribute to explaining
changes in the conditional instantaneous variance of the short rate process. The test
statistic was computed for di¤erent values of H0 ( the smoothing parameter (32))
and h0 (the smoothing parameter in (31)). The cell in the center of the table corres-
ponds to the optimal smoothing parameter values obtained through cross validation.

h0

0.095 0.105 0.115

0.08
2:3512

(0:0094)
3:3059

(0:0004)
4:5669

(0)

H0 0.09
1:7674

(0:0386)
2:4475

(0:0072)
3:4059

(0:0003)

0.10
1:3866

(0:0828)
1:8194

(0:0344)
2:5024

(0:0062)
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Figure 1. Time series plot of the short-term interest rate (solid line)
and the spread between the three-month yield and the 10-year yield
(dashed line) for the 1962-1999 period.
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Figure 2. First di¤erences of the time series of the short-term interest rate.
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Figure 3. Estimated …rst-order approximation to the di¤usion as a function of the
short rate using the Nadaraya-Watson estimator.
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Figure 4. Estimated …rst-order approximation to the di¤usion as a function of the
short rate and the yield spread using the Nadaraya-Watson estimator.
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