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1 Introduction

Many theoretical models in the social sciences depend on conceptual variables that
cannot be observed. For example, economic models often postulate the existence of
such concepts as permanent income, expected price, human capital, personal ambi-
tion and ability. The omission of unobservables in the estimation procedures usu-
ally produces severe biases. Griliches and Mason (1972), Chamberlain and Griliches
(1975) Chamberlain (1977), and Griliches (1977) have all noticed the bias inherent in
income-education regressions caused by the omission of unobservable variables mea-
suring initial ability.

Following the work of Griliches (1974) and Goldberger (1974), a large body of
econometrics and statistics literature has addressed the estimation of models con-
taining unobservables. The estimation of these models requires the assumption of
a structure for the unobservables (either assuming a probability distribution or con-
sidering proxy variables and postulating a measurement error model). The consis-
tency of these estimators is conditioned to the validity of the postulated hypotheses.
Nonobservability renders the diagnosis of these hypotheses difficult to implement,
even though its fulfilling will be crucial to reject an economic theory as false for
contradicting empirical analysis. This limitation sometimes leads to testing theories
based on facts to which they were not meant to be applied. Hence, it seems relevant
to study robust estimation approaches in order to deal with unobservables.

One of the most popular techniques is the use of proxies with an “errors in variables
model”. Aigner (1974) uses the 1967 Survey of Economic Opportunities (SEO) to
estimate the labor-supply function as an errors in variables model. Hum and Simpson
(1994) suggest that a bias in labour-supply estimation is caused by the omission of
such unobservable individual variables as ambition and preferences. Attempts to solve
this problem using household wealth as a proxy are unsatisfactory because wealth is
endogenous, and is, itself, a source of bias. Hum and Simpson (1994) recommend
caution as there are many hidden pitfalls in the available methodology.

Sometimes, there are many available proxies for an unobservable variable but no
theoretical reasons to choose among them. Goldberger (1974) discusses various in-
ference methods for models with unobservables and multiple proxies. Some problems
can be expressed as a simultaneous equation model, which can be estimated under
sufficient identification assumptions. However, it is virtually impossible to check the
validity of these assumptions in this context. Jöreskog (1973, 1978) suggests the
identification of each unobservable variable with a common factor of its proxies. This
identity is a strong assumption, which, if invalid, would generate biased estimators
in the procedure. Furthermore, some dependence between observations is introduced
through the factor analysis.

The first econometric works focused on linear regression models with proxy vari-
ables and measurement errors. In this context, only measurement errors on regressors
affect Ordinary Least Squares (OLS) consistency. The parameters can be consistently
estimated under identification assumptions using some observed instrument or speci-
fying the probability distribution of observation errors. The literature is extensive (see
Sargan (1958), Zellner (1970), Goldberger (1972), Robinson (1974), and the reviews
of Aigner, Hsiao, Kapteeyn and Wansbeek (1984), Bowden and Turkington (1984),
and Fuller (1987), among others). For non linear models, the existence of an instru-
ment is not always sufficient to estimate their parameters consistently, although some
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cases are tractable (see e.g., Amemiya, 1985a; Hausman, Newey, Ichimura, and Pow-
ell, 1991; Hausman, Newey and Powell, 1995; and Li and Hsiao, 2004). Measurement
errors in the endogenous variables also affect consistency in such nonlinear models
as binary choice models (Hausman, Avrevaya, and Scott-Morton, 1998), multino-
mial models (Hsiao and Sun, 1999), and count models (Li, Trivedi, and Guo, 2003).
The usual procedure for estimating these models is to make a distributional assump-
tion for the unobservable variables. The Expectation-Maximization (EM) algorithm
(see Dempster, 1977) and the Simulated EM algorithm (see Wei and Tunner, 1990)
are popular procedures for finding maximum likelihood estimators when some of the
variables are unobserved but their probability distribution is postulated.

Despite advances in econometric theory, much can be done to enlarge the cata-
logue of techniques for estimating econometric models with unobservables. Further
development in the enhancement of the alliance between economic theory and empir-
ical analysis is worthwhile, and would be appreciated by practitioners (see e.g., Hum
and Simpson, 1994).

The aim of this article is to present a robust method that we will call “worst-
case (WC) estimation method” in order to estimate econometric models containing
observable and unobservable variables. The estimation procedure guarantees the best
parameter estimation in view of the worst-case values of the unobservable variables.
The WC estimation method should be seen as a complement approach to standard
techniques that postulate distributional assumptions for the unobservable variables.
A cautious modeller should consider different estimation methods and balance the
resulting estimates to determine a robust model. Robust modeling has been put
forward in recent macroeconomic literature (see e.g. Hansen and Sargen, 2000).
Under appropriate conditions, we prove consistency and asymptotic normality of
WC estimators. We also discuss the relevance of these methods to reduce the adverse
effect of the Lucas (1976) critique.

Worst-case techniques have been applied in game theory in the study of decision
making in n-person conflicts (see e.g., Rosen, 1965). In a worst-case strategy, deci-
sion makers seek to minimize the maximum damage that their rival can inflict upon
them. When the rival can be interpreted as nature, rather than another individual,
the worst-case strategy seeks optimal responses in the worst-case value of uncertainty.
Minimax principles have also been applied to different statistical problems, including
such problem as the statistical efficiency of point estimators (see e.g., Lehmann, 1983,
pp. 249-290), hypothesis tests for maximizing the minimum power when there is no
uniformly most powerful test (see, Lehmann, 1986, Chapter 9), uniform bounds for
the consistency of nonparametric density estimators (see e.g., Devroye, 1987), and
optimal sampling designs from finite populations (see e.g., Gabler, 1990). As Hu-
ber (1994, pp. 59) points out, “the least favorable situation is safeguarding against,
far from being unrealistically pessimistic, is more similar to actually observed error
distributions than the normal model”. Huber (1964) introduces a groundbreaking
robust method of estimating location parameters for contaminated normal distrib-
utions, minimizing the maximal (worst-case) asymptotic variance that can happen
over a neighborhood of the specified model (see also Huber, 1994, Chapter IV). The
risk robustness of worst-case methods has also been appreciated in finance, with ap-
plications in portfolio management, see e.g. Rustem and Howe (2002).

In Section 2 of this paper we present the WC estimation method. Section 3 is
devoted to the asymptotic properties of the WC estimators. Section 4 extends the
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method to overidentified problems, presenting a worst-case Generalized Method of
Moments (GMM). Because minimax problems usually turn out to be too unman-
ageable for closed solutions Section 5 addresses the numerical computation of WC
estimators. In Section 6, we conduct a Monte Carlo simulation to study the finite
sample behavior of WC estimators. Section 7 presents an illustration of the applica-
bility of the method to Economics. Appendix A contains some instrumental results
on minimax. Finally, proofs are placed in Appendix B.

2 The estimation method

A general framework encompassing most econometric estimators is the class of M-
estimators, introduced by Huber (1964, 1967) as a generalization of Maximum Like-
lihood. These estimators are the minimizers of some loss function that depends
on data. Let Θ ⊂ R

K be a compact set of parameters and (X,Y ) be a ran-
dom vector of variables. Parameters θ0 are defined as the minimizers of a loss
function Q (θ) = E [g (X,Y, θ)] on Θ, where g is a continuous function. Follow-

ing the analogy principle (see Manski, 1994), given a sample {Xt, Yt}Tt=1 identically
distributed as (X, Y ), parameters θ0 can be consistently estimated by minimizing

QT (θ) = T−1
∑T

t=1 g (Xt, Yt, θ) on Θ. This minimizer θ̂T is known as M-estimator.
Its asymptotic theory can be found in many econometric reviews (see e.g., Amemiya,
1985b; Bierens 1981, 1994; Wooldridge, 1994; and Pötscher and Prucha, 1991a, 1991b,
1997; among others). For a review of the statistical literature, see e.g., van der Vaart
(1998) and van Geer (2000).

In this section we present the WC approach for determining and estimating op-
timal parameters of a model in a robust way against the worst-case value of the
unobservable variables. Consider that the random vector Y is unobservable. Let
Q (θ, y) = E [g (X, y, θ)] denote the WC loss function, where θ ∈ Θ and y is a vector
of unobservables defined on Y ⊂ RS. The worst-case strategy considers parameters
θwc that solves the problem:

min
θ∈Θ

max
y∈Y

Q (θ, y) . (1)

These parameters θwc are those that best fit the available data in view of the unob-
servable variable Y . The WC strategy safeguards against the worst-case outcomes of
the variable Y and makes no assumptions about the statistical nature of the unob-
servable.

Given the sample {Xt}Tt=1 , identically distributed as X, and the sample analog of
Q (θ, y) ,

QT (θ, y) = T−1
T∑

t=1

g (Xt, y, θ) ,

the WC estimator θ̂
wc

T of θwc is defined as the solution to:

min
θ∈Θ

max
y∈Y

QT (θ, y) . (2)
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The worst-case criterion yields robust estimations in the sense that it protects
against the distribution of the unobservable variables being concentrated on the
”worst” state of nature. Despite there are no assumptions about the statistical na-
ture of the unobservables, WC estimators have small asymptotic biases for standard
regression models. Section 6 reports the bias of WC estimators with respect to the
true parameters θ0 for linear and non linear regression models. The Euclidean norm
of these biases are 0.0006, and 0.004 respectively, showing the good performance of
this approach.

As mentioned in the Introduction, there are approaches that consider a prior
distribution F on Y, when Y is unobservable. The parameter θF that minimizes∫
Q (θ, y)F (dy) can be consistently estimated by minimizing its sample analogous∫
QT (θ, y)F (dy). Here we discuss the reasons why risk averse modelers would prefer

WC estimators. Let F0 denote the true probability distribution for Y. Inequality
maxy∈Y Q (θwc, y) ≥ Q (θwc, y) for all y ∈ Y implies that

max
y∈Y

Q (θwc, y) ≥
∫
Q (θwc, y)F0 (dy) ,

i.e., WC parameters guarantee an improvement of the true loss function, no matter
which is the unknown F0. This robustness is a key characteristics of WC methods.
The true loss value associated with θwc is upper bounded, and the bound can be

estimated by maxy∈Y QT

(
θ̂
wc

T , y
)
. Therefore, robust WC estimators are a sensible

alternative for testing economic theories.
F -integration methods do not have an upper bound as it is not guaranteed that∫

Q
(
θF , y

)
F (dy) ≥

∫
Q

(
θF , y

)
F0 (dy). However, when F = F0, integrated methods

outperform WC techniques as
∫
Q (θwc, y)F0 (dy) ≥ min

θ∈Θ

∫
Q (θ, y)F0 (dy) =

∫
Q

(
θF , y

)
F0 (dy) .

Economists rarely have information on the probability of the unobservables, and the
choice of F is typically a matter of convenience rather than an expression of actual
knowledge. Hence, risk adverse modelers should avoid F -integration methods when
F is only a postulated distribution.

In practice, the sets Θ and Y are determined in the light of economic theory and
econometric literature. Without loss of generality, we assume that the parameters set
is of the form Θ =

{
θ ∈ RK : h (θ) ≤ 0

}
, where h is a continuous vector function on

Θ.
Analogously to nonlinear least squares methods, parametric constrains have no as-

ymptotic effect if θwc is an interior point ofΘ, i.e. θwc ∈ int {Θ} =
{
θ ∈ RK : h (θ) < 0

}
.

However, if θwc /∈ int {Θ} , the asymptotic distribution will be affected and this
fact provides the basis for deriving asymptotic tests for the null hypothesis H0 :
{hj (θwc) = 0} .

In the next sections we examine the theoretical properties of
(
θ̂
wc

T − θwc
)
, such

as existence, consistency, asymptotic normality and computation in a finite number
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of steps. The compactness of Y is crucial for the arguments used in the proofs of
these theoretical properties. If y has a multinomial distribution, Y is finite. But
the compactness of Y often entails a truncation of Y. Nonetheless, choosing a large
enough compact set, we can ensure that Pr (Y /∈ Y) < ε for an arbitrarily small ε > 0
(see e.g., Billingsley, 1968, Theorem 1.4). Additional notation should be introduced
to derive the asymptotic distribution of WC estimators. Assume Q is continuous and
Y is a nonempty compact set. For each θ ∈ Θ, there exists a set

Y (θ) =

{
y ∈ Y : Q (θ, y) = max

z∈Y
Q (θ, z)

}
.

Therefore, Y (θwc) is the set of the worst-case unobservables. This set can be estimated

by means of YT

(
θ̂
wc

T

)
, where

YT (θ) =

{
y ∈ Y : QT (θ, y) = max

z∈Y
QT (θ, z)

}
.

Some properties of these sets are presented in Appendix A (see Lemma 8).
To obtain WC estimators, we are faced with the problem of solving a minimax

continuous problem. Pioneering contributions to the study of minimax optimization
have been made by Danskin (1967), Bram (1966), Rockafellar (1970), and Dem’yanov
and Malozemov (1972). An algorithm for solving these problems is presented in
Section 5.

Worst-case methods possess an additional interest for economic decision makers,
as these methods can be used to reduce the damages derived from Lucas’ critique.
Lucas (1976) has pointed out that macro-econometric models cannot be used for pol-
icy analysis, if the implementation of the policy would change the conditional model
on which the policy was based. The fact that agents have rational expectations over
future policy actions, Lucas argued, turns this situation into a common problem.
Control variables that are not affected by this problem are called super-exogenous.
Consider an economic model where Y are variables controlled by the economic au-
thority. If changes in the control variables Y affect the true parameters θ0, we can
use the worst-case parameter θwc which is relatively robust to changes in the controls

Y. Therefore θ̂
wc

T could be a more stable tool for designing economic policies in the
absence of super exogeneity. This approach can be used to design optimal economic
policies in situations in which Lucas’ (1976) critique would render impossible the
success of traditional approaches.

3 Asymptotic properties of WC estimators

In this section we study the consistency and asymptotic normality of worst-case es-
timators. To prove consistency it is helpful to impose some regularity conditions.

A.1. For all T,
QT (θ, y)−QT (θ

′, y′) = Kθ′,y′ (θ, y)− tT (θ, y)

where Kθ′,y′ (θ, y) is a nonstochastic function, and |tT (θ, y)| → 0 almost surely
(in probability) when T →∞, uniformly in θ ∈ Θ and y ∈ Y.
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A.2. For some θwc ∈ Θ and ywc ∈ Y (θwc), it is satisfied that, ∀ε > 0, ∃δ > 0,

inf
‖θ−θwc‖≥ε

sup
y∈Y

Kθwc,ywc (θ, y) > δ.

The first assumption ensures that the objective function for WC estimation can
be decomposed as the sum of a deterministic function and an asymptotically negligible
stochastic term. AssumptionA.2 requires that θwc solves problem infθ∈Θ supy∈Y Kθwc,ywc (θ, y)
uniquely in a neighborhood of θwc (uniqueness is an asymptotic identification require-
ment).

An alternative set of conditions to prove consistency can be given by means of the
following tautology:

QT (θ, y)−QT (θ
wc, z) = Kθwc,z (θ, y) + tT (θ, y) ,

Kθwc,z (θ, y) = Q (θ, y)−Q (θwc, z) , (3)

tT (θ, y) = QT (θ, y)−Q (θ, y) +Q (θwc, z)−QT (θ
wc, z) .

Then, it is sufficient for A.1 and A.2 (and therefore the consistency of θ̂
wc

T ) that
θwc ∈ Θ be a locally unique solution to (1), and that

sup
θ∈Θ

sup
y∈Y

|QT (θ, y)−Q (θ, y)| → 0,

almost surely (in probability). The uniform convergence of QT (θ, y) − Q (θ, y) in
Θ × Y can be checked using standard Uniform Laws of Large Numbers (ULLN).
Dudley (1999, Section 6.6), van der Vaart and Wellner (1996, Section 2.4) and van
Geer (2000) review ULLN literature for independent variables {Xt} . Davidson (1994,
Chapter 21), Wooldridge (1994), and Pötscher and Prucha (1997, Chapter 5) review
the econometric literature, including dependent data.

Theorem 1 Consistency of WC estimators. Let θ̂
wc

T ∈ Θ ⊂ RK be the solution
to (2) with QT measurable for each θ ∈ Θ and y ∈ Y. Assuming A.1 and A.2,

θ̂
wc

T → θwc

almost surely (in probability).

The next results are necessary to derive the asymptotic distribution of WC esti-

mators. First, we study the consistency of WC unobservables YT
(
θ̂
wc

T

)
and consider

the Hausdorff distance dH (A,B) between two non empty Euclidean sets A, B; i.e.,

dH (A,B) = max

{
sup
a∈B

d (a,B) , sup
b∈B

d (A, b)

}
,

where d (a,B) = infb∈B ‖a− b‖ denotes the distance between the point a and the set
B. For compact sets A and B, it is satisfied that dH (A,B) = 0 if and only if A = B.
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Note that YT

(
θ̂
wc

T

)
and Y (θwc) are compact when QT and Q satisfy Condition (i)

of Lemma 8 (see Appendix A).

An additional condition ensures the consistency of WC unobservables YT
(
θ̂
wc

T

)
.

A.3. ∀ε > 0, ∃δ > 0,
inf

{y1,y2∈Y:‖y1−y2‖>ε}
inf
θ∈Θ

Kθ,y1 (θ, y2) > δ.

Define Kθ,y1 (θ, y2) = Q (θ, y2)−Q (θ, y1), as in (3). A sufficient condition for A.3
is

|Q (θ, y2)−Q (θ, y1)| > r (θ) f (‖y2 − y1‖) ,
where f (x) > 0 for all x > 0, and infθ∈Θ r (θ) > 0.

Proposition 2 Consistency of WC unobservables. Under assumptions A.1,

A.2 and A.3, dH

(
YT

(
θ̂
wc

T

)
,Y (θwc)

)
→ 0, almost surely (in probability).

Similar behavior can be expected of WC multipliers {(µ̂i, ŷi)}k̂i=1 associated with

Problem (2) and θ̂
wc

T (see Appendix A, for definition and properties of WC multipli-

ers). The next result gives sufficient conditions ensuring that {(µ̂i, ŷi)}k̂i=1 converges
almost surely to the WC multipliers {(µi, yi)}ki=1 associated with Problem (1) and
θwc.

Proposition 3 Consistency of WC multipliers. Under the assumptions in The-
orem 9, A.1, A.2, A.3, if, in addition, maxθ∈Θ,y∈Y |QT (θ, y)−Q (θ, y)| → 0 almost

surely (in probability), then {(µ̂i, ŷi)}k̂i=1 converges to {(µi, yi)}ki=1 almost surely (in
probability).

Next we obtain the asymptotic distribution of WC estimators, under the following
assumptions:

B.1. θwc ∈ int {Θ} solves (1), and θ̂
wc

T →p θ
wc,

B.2. {(µ̂i, ŷi)}k̂i=1 →p {(µi, yi)}ki=1,

B.3. for all T, QT (θ, y) is C2,1 almost surely, Y ⊂ RS and Θ ⊂ R
K are nonempty

compact sets, and
√
T
∂QT (θ

wc, y)

∂θ
→d Z (y)

uniformly on C (Y) , where Z is a second order Gaussian process, with zero
mean and covariance R (y1, y2) = E

[
Z (y1)Z (y2)

′] ,
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B.4. for any sequence θ̃T →p θ
wc,

k̂∑

i=1

µ̂i

∂2QT

(
θ̃T , ŷi

)

∂θ∂θ
′

→p B :=
k∑

i=1

µi
∂2Q (θwc, yi)

∂θ∂θ
′

,

where B is a nonsingular deterministic real matrix.

Theorem 4 Asymptotic Normality. Let θ̂
wc

T be the solution to (2). Assume

B.1, B.2, B.3 and B.4. Then,
√
T

(
θ̂
wc

T − θwc
)
→d N (0, B−1AB−1) , where A =

∑k
i=1

∑k
j=1 µiµjR (yi, yj) is a positive definite real matrix.

Consistency of WC estimators and multipliers (considered in Assumptions B.1
and B.2) can be proven using Theorem 1 and Propositions 2 and 3. Assumption B.3
can be established applying a standard functional central limit theorem for empirical
processes. These central limit theorems require weak convergence of finite dimensional
projections and a uniform tightness Condition. For an introduction to this topic, see
Billingsley’s (1968) classical monograph, Wichura (1969), and Bickel and Wichura
(1971). Pollard (1989, 1990), Dudley (1999) and van der Vaart and Wellner (1996)
review a different approach, particularly fruitful under independence assumptions.
Assumption B.4 can be derived from the uniform consistency condition

∥∥∥∥
∂2QT (θ, y)

∂θ∂θ
′

− ∂2Q (θ, y)

∂θ∂θ
′

∥∥∥∥ →p 0

uniformly on C (Y×Θ) , which requires a ULLN. Assumption B.4 can also be estab-
lished applying the following result:

Proposition 5 Sufficient conditions for B.4 are:

C.1. BT =
∑k̂

i=1 µ̂i∂
2QT (θ

wc, ŷi)
/
∂θ∂θ

′ →p B, and

C.2. E

[
sup

‖θ−θwc‖≤δ

sup
y∈Y

∥∥∥∂2QT (θ, y)
/
∂θ∂θ

′ − ∂2QT (θ
wc, y)

/
∂θ∂θ

′

∥∥∥
]
→
δ↓0

0, for all T.

ConditionC.1 follows fromB.2, whenever ∂2QT (θ
wc, y)

/
∂θ∂θ

′ → ∂2Q (θwc, y)
/
∂θ∂θ

′

uniformly on C (Y). For Condition C.2 it is sufficient that
∥∥∥∥
∂2QT (θ, y)

∂θ∂θ
′

− ∂2QT (θ
wc, y)

∂θ∂θ
′

∥∥∥∥ ≤ fT (y) ‖θ − θwc‖α (4)

for some α ∈ (0, 1) , and E
[
supy∈Y |fT (y)|

]
<∞. For (4), it suffices that the elements

in ∂2g (θ, y) /∂θ∂θ
′

satisfy a Lipschitz condition.
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Often,

R (y1, y2) = lim
T→∞

1

T

T∑

t1=1

T∑

t2=1

E

[
∂g (Xt1 , yi, θ)

∂θ

∂g (Xt2 , yj , θ)

∂θ′

]
.

Therefore, if {Xt} are independently distributed, A can be estimated by

ÂT =
k̂∑

i=1

k̂∑

j=1

µ̂iµ̂j


 1

T

T∑

t=1

∂g
(
Xt, ŷi, θ̂

wc

T

)

∂θ

∂g
(
Xt, ŷj , θ̂

wc

T

)

∂θ′


 ,

and B by

B̂T =
k̂∑

i=1

µ̂i

∂2QT

(
θ̂
wc

T , ŷi
)

∂θ∂θ
′

=
k̂∑

i=1

µ̂i


 1

T

T∑

t=1

∂2g
(
Xt, ŷi, θ̂

wc

T

)

∂θ∂θ′


 .

Analogously, we can establish sufficient conditions for the asymptotic normality of
WC estimators when θwc /∈ int {Θ} (i.e. there exist some p such that hj (θ

wc) = 0 for

j = 1, ..., p). In particular, we obtain the asymptotic distribution of
√
T

(
θ̂
wc

T − θwc, λ̂
wc

T

)
,

which allows us to derive asymptotic parametric tests. The proof of asymptotic nor-
mality is similar to that of Theorem 4; however, we should slightly modify Assumption
B.1 as follows:

B.1′. θwc ∈ Θ solves (1), satisfying that hj (θ
wc) = 0 for j = 1, ..., p , and hj (θ

wc) < 0
for j = p + 1, ..., P , where {∂hj (θwc) /∂θ}pj=1 are linearly independent. Also,

θ̂
wc

T →p θ
wc.

Theorem 6 Asymptotic Normality of constrained WC estimators. Let θ̂
wc

T

be the solution to (2) with Lagrange multipliers λ̂
wc
. Assume B.1′, B.2, B.3 and B.4.

Then,

√
T




θ̂
wc

T − θwc

λ̂
wc


 →d N (0, V ) ,

where,

V =




B H ′

H 0




−1


A 0

0 0







B H ′

H 0




−1

,

with H = ∇θHp (θ
wc), Hp (θ) = (h1 (θ) , ..., hp (θ))

′ , and matrices A and B as defined
in Theorem 4.
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Consider 


C11 C ′12

C12 C22


 =




B H ′

H 0




−1

.

We can express the asymptotic covariance matrix as,

V =




V11 V ′
12

V12 V22


 =




C11AC11 C ′12AC11

C11AC12 C ′12AC12


 .

The explicit form of this matrix can be obtained applying standard formulae for the
inverse of a partitioned matrix,

C11 = B−1 −B−1H ′
(
HB−1H ′

)−1
HB−1,

C12 =
(
HB−1H ′

)−1
HB−1.

If A = B, we can simplify V to,



V11 V ′
12

V12 V22


 =




B−1
(
I −H ′ (HB−1H ′)

−1
HB−1

)
0

0 (HB−1H ′)
−1


 .

The unrestricted WC estimate, by contrast, has an asymptotic covariance ma-
trix B−1, and thus is generally less efficient than the constrained WC estimator (as

B−1H ′ (HB−1H ′)
−1
HB−1 is nonnegative definite). It means that by incorporating

valid restrictions we cannot reduce efficiency, but generally improve it.
Theorem 6 can be used to test Lagrange multiplier hypotheses. For example, the

statistic for testing H0 : hj (θ
wc) = 0 for j = 1, ..., p, is ΥT := T λ̂

′
V̂ −1
22 λ̂ →d χ

2
K−p,

where V̂22 →p V22 > 0. Other asymptotic tests, such as Wold type tests and general-

ized likelihood ratio tests, can be derived in a similar way, using
∑k̂

i=1 µ̂i∇θQT (θ, ŷi)
as a score function.

4 Worst-Case estimation for overidentified models

Hansen’s (1982, 1985) GMM for overidentified models consider θ0 as the minimizer
of a quadratic loss function Q (θ) = E [g (X,Y, θ)]′WE [g (X, Y, θ)] on Θ, where W
is a positive definite matrix. Following the analog principle, the parameters are
consistently estimated by the minimizer of

QT (θ) =

(
T−1

T∑

t=1

g (Xt, Yt, θ)

)′

WT

(
T−1

T∑

t=1

g (Xt, Yt, θ)

)
,

10



where WT →p W. A review of the literature can be found, e.g. in Hall (1993), Ogaki
(1993), Newey (1993), Newey and McFadden (1994) and Wooldridge (1994), among
others.

This section show how the worst-case approach is embedded in the GMM frame-
work. Assume that Y is unobserved and consider the loss function

Q (θ, y) = E [g (X, y, θ)]′WE [g (X, y, θ)]

on Θ×Y. We define θwc as the solution of minθ∈Θmaxy∈YQ (θ, y). Given the sample

data {Xt}Tt=1 and the sample analog

QT (θ, y) =

(
T−1

T∑

t=1

g (Xt, y, θ)

)′

WT

(
T−1

T∑

t=1

g (Xt, y, θ)

)
, (5)

where WT →p W almost surely (in probability), the WC GMM estimator θ̂
wc

T of θwc

is defined as the solution to minθ∈Θmaxy∈YQT (θ, y).
Consistency results derived in the previous sections are valid to this extension (see

Theorem 1 and Proposition 2). However, to prove asymptotic normality, we should
consider the following assumptions:

D.1. θwc ∈ int {Θ} solve minθ∈Θmaxy∈YQ (θ, y) , where

Q (θ, y) = E [g (X, y, θ)]′ W E [g (X, y, θ)] ,

W is positive definite, and θ̂
wc

T →p θ
wc,

D.2. {(µ̂i, ŷi)}k̂i=1 →p {(µi, yi)}ki=1,

D.3. g (X, θ, y) ∈ C1,1 (Θ×Y) almost surely, Y ⊂ RS and Θ ⊂ R
K are nonempty

compact sets, and

1√
T

T∑

t=1

g (Xt, y, θ
wc)→d G (y)

uniformly on C (Y) , where G is a second order Gaussian process, with zero
mean and covariance R (y1, y2) = E

[
G (y1)G (y2)

′] ,

D.4.

T−1
T∑

t=1

∂

∂θ
g (Xt, y, θ)→p S (y, θ) := E

[
∂

∂θ
g (X, y, θ)

]

uniformly on C (Y×Θ).

11



Theorem 7 Asymptotic Normality of WC GMM. Let θ̂
wc

T be the solution to
(2), and QT be given by (5). Assume D.1, D.2, D.3, and D.4. Then,

√
T

(
θ̂
wc

T − θwc
)
→d N

(
0, E−1DE−1

)
,

where

D =
k∑

i=1

k∑

j=1

µiµj S (yi, θ
wc) W R (yi, yj) W

′ S (yj , θ
wc)′ ,

E =
k∑

i=1

µi S (yi, θ
wc) W S (yi, θ

wc)′ .

The asymptotic variance of WC GMM estimators is more complex than the one
of the classical GMM estimators. If R (yi, yj) = S (yi, θ

wc)S (yj , θ
wc)′ , the asymptotic

variance is E−1DE−1 = I. In the WC context, if k > 1 it is not straightforward to
ensure that D = E by an appropriate choice of W.

The asymptotic distribution for WC GMM constrained estimators can be derived
analogously to Theorem 6.

5 Computational issues

Computing WC estimators involves solving a minimax continuous problem. We use
the global optimization algorithm developed by Shimizu and Aiyoshi (1980), see also
Žakovíc and Rustem (2003). They consider an algorithm for solving semi-infinite
programming problems, as any continuous minimax problem of the form minθ∈Θ
maxy∈Y QT (θ, y) can be written as minθ∈Θ, ρ∈R {ρ : maxy∈YQ (θ, y) ≤ ρ}, which is
equivalent to the semi-infinite problem:

minθ∈Θ, ρ∈R ρ

s.t. QT (θ, y) ≤ ρ, for all y ∈ Y.
(6)

This algorithm uses a global optimization approach with respect to y ∈ Y and
cutting planes to reduce the feasible region when constraints violation is encountered.
In particular, the l-th iteration of this algorithm consists of solving the problem:

min
θl+1∈Θ, ρl+1∈R

{
ρl+1 : QT

(
θl+1, yi

)
≤ ρl+1, i = 1, ..., kl

}
, (7)

given {yi}kli=1 ⊂ Y
(
θl

)
. Next we check if the solution is feasible up to an arbitrary

positive tolerance ε. If
max
y∈Y

QT

(
θl+1, y

)
> ρl+1 + ε,

12



iterate, else if maxy∈Y QT

(
θl+1, y

)
≤ ρl+1+ ε, terminate and θ̂

wc

T = θl+1 is a solution
of the minimax problem. This algorithm terminates in a finite number of iterations
(see e.g., Shimizu and Aiyoshi, 1980, Theorem 3). Under convexity assumptions of

Problem (6), the Lagrange multipliers {µi}ki=1 associated with the last iteration of

Problem (7) are the coefficients {µi}ki=1 in Theorem 9.
The global optimization approach is essential to guarantee the robustness prop-

erty of the solution of minimax problems because one of the crucial steps in solving
the semi-infinite problem is to find {yi}kli=1 ⊂ YT

(
θl

)
for all θl ∈ Θ by computing

the global maximizers in the programmaxy∈Y QT

(
θl, y

)
. In global optimization algo-

rithms, all candidates for local maximizers must usually be bracketed by a comparison
of function values QT

(
θl, y

)
on a sufficiently dense finite subset of Y. To reduce the

cost of computing global optima, it is recommended that the domains Θ and Y be
restricted as much as possible given the information available. Computing time can
be saved by a parallel computation of the maximizers.

Problem (6) can be efficiently computed using standard nonlinear programming
packages. In Sections 6 and 7, we use theMATLAB subroutine fseming (http://www.
mathworks.com).

The surveys in Hettich and Kortanek (1993) and Reemtsen and Görner (1998) pro-
vide an excellent introduction to semi-infinite programming algorithms. The mono-
graph of Rustem and Howe (2002) is focused on the computation of minimax prob-
lems.

6 Monte Carlo study of finite sample behavior

A small Monte Carlo study was conducted in order to study the finite sample per-
formance of worst-case estimates. We first consider the linear regression model (i)
yt = αx1t + βx2t + ut, where (α, β) denote the 3-dimensional parameter vector, and
x1t ∼ N (0, 1) , x2t ∼ U ([−3,−1]) , and ut ∼ N (0, 1) are identically and indepen-
dently distributed random variables, for all t = 1, ..., T ; where N (0, 1) denotes the
standard normal distribution and U ([a, b]) the uniform distribution on the interval
[a, b] . Assuming α0 = −2 and β0 = 2, the experiment was carried out for T = 30 and
T = 40.

Consider the problem of estimating the WC estimators for (α, β) assuming that
x2 is unobservable. Following the nonlinear least-square approach, we define

QT (α, β, x2) = T−1
T∑

t=1

(yt − (αx1t + βx2t))
2 ,

and the worst-case problem as

min
α∈[−3,−1],β∈[1,3]

max
x2∈[−3,−1]

QT (α, β, x2) .

In order to illustrate the accuracy of the asymptotic distribution, we perform a
Monte Carlo with N = 400 realizations. Table 1 reports expectation, variance and
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absolute bias with respect to true parameters of WC estimators, α̂wc and β̂
wc
, using

T = 30 and T = 40. The Euclidean norm of the WC bias with respect to the true
parameters is equal to 0.00152 for T = 30 and 0.0006 for T = 40.

T = 30 T = 40

E [α̂wc] −2.0373 −2.0018

V [α̂wc] 0.1401 0.1175

|E [α̂wc]− α0| 0.0013 3.45E − 06

E
[
β̂
wc

]
1.9713 1.9744

V
[
β̂
wc

]
0.0202 0.0177

∣∣∣E
[
β̂
wc

]
− β0

∣∣∣ 0.0008 0.0006

Table 1. Finite sample results for Model (i)

Figure 1 displays the normal probability plot for α̂wc and β̂
wc
, respectively, for

T = 30.
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Figure 1. Normal Probability Plot for WC estimators model (i), with T = 30.

Note that linear regression models with an intercept δ0 are not identified for
the WC approach because once the WC variable is determined, the parameters are
estimated by OLS given a fixed value of the unobservable, which is collinear with the
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constant regressor. Nonetheless, we can still apply WC strategies using a linear model
without intercept and mean-centered variables. An indicative value of the intercept

can be given by δ̂ = y − α̂wcx1 − β̂
wc
x2, where y and x1 are the sample averages of

the observables and x2 is an average of computed worst-case values.
A nonlinear regression model (ii) yt = exp(α + βx1t + γx2t) + ut, was also simu-

lated, where (α, β, γ) denote the 3-dimensional parameter vector, and x1t ∼ N (0, 1) ,
x2t ∼ U ([−2, 2]) , and ut ∼ N (0, 1) are identically and independent distributed ran-
dom variables, for all t = 1, ..., T. Assuming α0 = 0.9, β0 = 0.75, and γ0 = 0.2, a
Monte Carlo with N = 300 was carried out for T = 30 and T = 40. Table 2 re-
ports expectation, variance and absolute bias with respect to true parameters of WC

estimators α̂wc, β̂
wc

and γ̂wc, when x2 is unobservable. The Euclidean norm of the
WC bias with respect to the true parameters is 0.004 for T = 30 and T = 40. The

WC absolute bias is larger for γ̂wc than for the estimators α̂wc and β̂
wc

related to
observable variables, by contrast with model (i) where the parameter associated to
the unobservable has lower bias.

T = 30 T = 40

E [α̂wc] 1.0084 1.0054

V [α̂wc] 0.0064 0.0048

|E [α̂wc]− α0| 0.0117 0.0111

E
[
β̂
wc

]
0.7458 0.7443

V
[
β̂
wc

]
0.0036 0.0033

∣∣∣E
[
β̂
wc

]
− β0

∣∣∣ E − 05 E − 05

E [γ̂wc] 0.002 0.0008

V [γ̂wc] 0.0003 0.0003

|E [γ̂wc]− γ0| 0.0391 0.0396

Table 2. Finite sample results for Model (ii)

Figure 2 shows the normal probability plot for α̂wc, β̂
wc

and γ̂wc, respectively, for
T = 30.
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Figure 2. Normal Probability Plot for WC estimators model (ii), with T = 30.

Figures 1 and 2 show that the normal approximation is satisfactory for T = 30,
although there is room for improvement in the tails. Second order asymptotic meth-
ods, such as Edgeworth expansion-based corrections or some resampling methods
(e.g., bootstrap and subsampling), seem to provide interesting approaches for WC
inferences with small samples. But for large samples they may not be worth empha-
sizing over first order weak asymptotic approximations, as in classical M-estimation.

7 An economic example

In this section we present an empirical application to illustrate the economic inter-
est of the presented method. Consider the problem given in Hansen and Singleton
(1982). Assume that a representative agent decides about consumption and invest-
ment, solving the dynamic optimization problem:

max
{ct,wt}

∞

t=0

{
∞∑

t=0

θr1E [u (ct) |F0 ] : ct +
N∑

j=1

pj,tqj,t ≤
N∑

j=1

rj,tqj,t−mj
+ wt

}
,

where ct denotes consumption, wt denotes labor income, and qt is a portfolio of N
assets with respective maturities mj, with spot price pj,t and payoff rj,t by stock at
time t − mj. The utility function u satisfies uc > 0, ucc < 0, and θ1 ∈ (0, 1) is the
subjective discount factor. Furthermore, F0 is the information set available at time
t. The solution to this problem satisfies,

pj,tu
′ (ct) = θ

mj

1 E
[
rj,t+mj

u′
(
ct+mj

)
|Ft

]
⇔

0 = E

[(
θ
mj

1

u′
(
ct+mj

)

u′ (ct)

rj,t+mj

pj,t
− 1

)
|Ft

]
j = 1, ...,N.

See Hansen and Singleton (1982) for details.
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Assuming that u (c) = c1−θ2/1 − θ2 where θ2 > 0, θ2 �= 1 is the coefficient of
relative risk aversion, and u (c) = log c when θ2 = 1, then

E

[(
θ
mj

1

(
ct+mj

ct

)1−θ2 rj,t+mj

pj,t
− 1

)
|Ft

]
= 0, j = 1, ..., N.

Therefore, for any set Zt known in t, the actual θ = (θ1, θ2)
′ satisfies,

E

[(
θ
mj

1

(
ct+mj

ct

)1−θ2 rj,t+mj

pj,t
− 1

)
Zt

]
= 0, j = 1, ..., N.

Following Hansen and Singleton (1982), this expression can be used to estimate
by GMM when all the required information is available. In this case, they considered
that a subset of rj,t+mj

/pj,t is observed for a subgroup of the N assets. Unfortunately,
the GMM methodology cannot be applied if some of these variables have not been
observed. Often, the spot price of an asset is not observed in the sampled range, but
traders have an idea about its variation rank. For example, this happens when a new
asset j is introduced in the market. The worst-case approach presented can be an
useful tool to obtain an indicative value of model parameters.

Then, assuming that pj,t are not observed but take values in the range [115, 180] ,
we consider the worst-case GMM estimation associated with the moment conditions

E [g (Xt, y, θ)] = E

[(
θ
mj

1

(
ct+mj

ct

)1−θ2 rj,t+mj

y
− 1

)
Zt

]
= 0,

with Xt =
(
ct, ct+mj

, rj,t+mj
, Zt

)
. In particular we solve

min
0≤θ1≤1, 1≤θ2≤30

max
115≤y≤180

(
1

T − 2

T−1∑

t=2

g (Xt, y, θ)

)
WT

(
1

T − 2

T−1∑

t=2

g (Xt, y, θ)

)
,

with WT the identity matrix, mj = 1, Zt = (rt, rt−1)
′ , and Xt = (ct, ct+1, rj,t+1, Z

′
t)
′ ,

for t = 2, ..., T − 1.
Taking the equally weighted return on IBM stocks listed on the New York Stock

Exchange (see http://www. princeton.edu/~data/datalib/timeser.html) and the real
personal consumption expenditures of durable goods from the Federal Reserve (see
http://www.economagic.com/ fedstl.htm#CPI) during 1986-1987, the worst-case pa-

rameters estimates obtained using the described procedure are θ̂
wc

1 = 0.85 and θ̂
wc

2 =

1.25, the maximum optimum in YT

(
θ̂
)
is ŷ1 = 155, and the associated Lagrange’s

multiplier is µ̂1 = −1.
Note that when a tax is about to be introduced in the financial market such that

the spot prices pj,t will be modified, the estimated WC parameters are more robust
to price changes than are the ordinary parameters estimated by GMM. Therefore, if
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the tax decision is based on the estimated model, an analysis based on WC modelling
is less sensitive to Lucas’ (1976) critique.

APPENDIX A: MINIMAX
The following result summarizes some properties of sets YT (θ) and Y (θ) , that

will be used to establish consistency. Below we present the first order conditions for
minimax problems, that are used to establish the asymptotic normality.

Lemma 8 Let Θ⊂ RK and Y ⊂ RS be non empty compact sets and Q ∈ C (Θ× Y) .
Then there exist θwc ∈ Θ and ywc ∈ Y such that

Q (θwc, ywc) = min
θ∈Θ

max
y∈Y

Q (θ, y) .

Furthermore, the set Y (θ) satisfies the following properties: (i) If Q (θ, ·) is concave
on Y for each θ ∈ Θ and Y is convex, then the correspondence Y (θ) is upper hemi-
continuous and takes values that are non empty compact convex sets. (ii) If Q (θ, ·) is
strictly convex for each θ ∈ Θ and Y is convex, then Y (θ) is a continuous function.
(iii) The same properties can be applied to YT (θ) when QT (θ, ·) is (strictly) concave
for each θ ∈ Θ.

The minimax existence follows from a standard application of the Weierstrass
Theorem and Berge’s (1963) Maximum Theorem. The result is a consequence of
the Maximum Theorem under convexity assumptions (see Sundaram, 1996, Theorem
9.17, pp. 237-238) that is a consequence of Berge’s (1963) Theorem.

The following Theorem provides first order necessary conditions for the solution
to (1). It is usually credited to Schmitendorf (1977) (see also Shimizu and Aiyoshi,
1980, Theorem 1). Nonetheless, first order conditions for minimax optima have been
previously considered in the Russian literature, and translated into English before
1977 (see e.g., Dem’yanov and Malozemov, 1972). Also, there exist sufficient condi-
tions for a point satisfying the first order conditions to be a minimax optima (e.g.,
Bector and Bhatia, 1985).

Theorem 9 First order conditions for Minimax problems. Let Q : RK×RS →
R be C1, Y ⊂ RS be a nonempty compact set, and Θ =

{
θ ∈ RK : h (θ) ≤ 0

}
where

h : RK → R
P are C1. Let θwc denote the solution tominθ∈Θmaxy∈YQ (θ, y). If vectors

{∇θhj (θ
wc) : hj (θ

wc) = 0} are linearly independent, then there exist a positive integer

k, vectors yi ∈ Y (θwc), and multipliers µi ≥ 0 for i = 1, ..., k, with
∑k

i=1 µi = 1, and
λj ≥ 0 for j = 1, ..., p such that

k∑

i=1

µi∇θQ (θwc, yi) +

p∑

j=1

λj∇θhj (θ
wc) = 0, (8)

p∑

j=1

λjhj (θ
wc) = 0, (9)

with 1 ≤ k + p ≤ K + 1, where p is the number of nonzero λj. If θwc ∈ int {Θ} ,
Equations (8) and (9) simplify to

∑k
i=1 µi∇θQ (θwc, yi) = 0.
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The necessary conditions for the solution of minimax problems can be derived
from the classical theory of optimization in Banach spaces. Notice that Problem (1)
can be expressed as minθ∈Θ, ρ∈R {ρ : Q (θ, y) ≤ ρ, ∀y ∈ Y} . The associate Lagrange
function is defined as

L = ρ+

∫
(Q (θwc, y)− ρ)µ (dy) +

p∑

j=1

λjhj (θ)

=

∫
Q (θwc, y)µ (dy) +

p∑

j=1

λjhj (θ) + ρ

(
1−

∫
µ (dy)

)
,

where µ is a bounded Borel measure on Y. Under an appropriate constraint qualifi-
cation, the first order conditions of Problem (1) are:

∫
∇θQ (θwc, y)µ (dy) +

p∑

j=1

λj∇θhj (θ
wc) = 0, 1−

∫
µ (dy) = 0, (10)

λjhj (θ
wc) = 0, hj (θ

wc) ≤ 0, λj ≥ 0, j = 1, ..., p,

and
∫
(Q (θwc, y)− ρ)µ (dy) = 0, Q (θwc, y) − ρ ≤ 0. Therefore, as µ integrates one,

ρ =
∫
Q (θwc, y)µ (dy) . Furthermore,

∑p
j=1 λjhj (θ

wc) = 0.
The Lagrange multiplier µ is a discrete measure with support in Y (θwc) and can

be expressed as µ =
∑k

i=1 µiδ (yi) for some k ≤ K + 1 and yi ∈ Y (θwc) . This is
because the set of measures µ satisfying the functional conditions (10) is convex,
bounded and closed in the weak-* topology, and is therefore weakly-* compact. It
follows from the Krein-Millman theorem that this set is equal to the convex hull
of its extreme points. The extreme points can be shown to be discrete measures
supported on k ≤ K + 1 points because they satisfy K + 1 equations in (10), pro-
vided {∇θhj (θ

wc) : hj (θ
wc) = 0} are linearly independent vectors (see Shapiro (1994)

and Shapiro (1998, pp. 112-113) for details). Alternative arguments based on the
Caratéodory’s Theorem can be found in Hager and Presler (1987). Because µ is a
discrete probability measure, we can express (10) as,

k∑

i=1

µi∇θQ (θwc, yi) +

p∑

j=1

λj∇θhj (θ
wc) = 0,

k∑

i=1

µi = 1.

Any continuous minimax problem of the form (1) satisfying the assumptions in
Theorem 9 can be written as:

min
ρ,θ∈Θ

{ρ : Q (θ, yi) ≤ ρ, i = 1, ..., k} . (11)

The optima θwc and {yi}ki=1 ⊂ Y (θwc) , and Lagrange’s multipliers {µi} , {λj} of
Problem (1) coincide with the optima and Lagrange’s multipliers of Problem (11).

This result will be applied to prove consistency of multipliers {µ̂i}k̂i=1 to {µi}
k
i=1 .
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APPENDIX B: PROOFS
Proof of Theorem 1. The supremum and infimum on Euclidean spaces are

measurable functions, as a consequence of the separability of Euclidean spaces. Then,
the WC estimators can be chosen to be measurable (see e.g., Jennrich, 1969).

For any ε > 0, let define Bε = {θ ∈ Θ, ‖θ − θwc‖ < ε} and Bc
ε = Θ\Bε. Then, as

θwc ∈ Bε

{∥∥∥θ̂
wc

T − θwc
∥∥∥ ≥ ε

}
=

{
θ̂
wc

T ∈ Bc
ε

}
⊂

{
inf
θ∈Bcε

sup
y∈Y

QT (θ, y) ≤ inf
θ∈Bε

sup
y∈Y

QT (θ, y)

}

⊂
{

inf
θ∈Bcε

(
sup
y∈Y

QT (θ, y)−QT (θ
wc, ywc)

)
≤ 0

}

=

{
inf
θ∈Bcε

sup
y∈Y

(Kθwc,ywc (θ, y)− tT (θ, y)) ≤ 0

}

⊂
{

inf
θ∈Bcε

sup
y∈Y

Kθwc,ywc (θ, y)− sup
θ∈Θ

inf
y∈Y
|tT (θ, y)| ≤ 0

}

⊂
{
sup
θ∈Θ

inf
y∈Y
|tT (θ, y)| > δ

}
⊂

{
sup
θ∈Θ

sup
y∈Y

|tT (θ, y)| > δ

}

but this sequence of events tends to zero almost surely (in probability) by assumption.
Proof of Proposition 2. We will prove that

sup
ywc∈Y(θwc)

d
(
YT

(
θ̂
wc

T

)
, ywc

)
→ 0,

for any ywc ∈ Y (θwc) in Part 1. Part 2 proves the Proposition.
Part 1.
For any ywc ∈ Y (θwc) and any ε > 0, we define the setNε (y

wc) = {y ∈ Y : ‖y − ywc‖ < ε} ,
and Nε (y

wc)c its complementary. Since ywc ∈ Nε (y
wc), then

⋃

ywc∈Y(θwc)

{
d

(
YT

(
θ̂
wc

T

)
, ywc

)
≥ ε

}
=

⋃

ywc∈Y(θwc)

{
YT

(
θ̂
wc

T

)
⊂ N c

ε (y
wc)

}

⊂
⋃

ywc∈Y(θwc)

{
sup

y∈Nε(ywc)
c

QT

(
θ̂
wc

T , y
)
≥ sup

y∈Nε(ywc)

QT

(
θ̂
wc

T , y
)}

⊂
⋃

ywc∈Y(θwc)

{
sup

y∈Nε(ywc)
c

QT

(
θ̂
wc

T , y
)
≥ QT

(
θ̂
wc

T , ywc
)}

⊂
⋃

ywc∈Y(θwc)

{
sup

y∈Nε(ywc)
c

(
QT

(
θ̂
wc

T , y
)
−QT

(
θ̂
wc

T , ywc
))
≥ 0

}

=
⋃

ywc∈Y(θwc)

{
inf

y∈Nε(ywc)
c

(
−QT

(
θ̂
wc

T , y
)
+QT

(
θ̂
wc

T , ywc
))
≤ 0

}
.
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Therefore, under A.1, A.2, and A.3,
⋃

ywc∈Y(θwc)

{
inf

y∈Nε(ywc)
c

(
QT

(
θ̂
wc

T , ywc
)
−QT

(
θ̂
wc

T , y
))
≤ 0

}

⊂
⋃

ywc∈Y(θwc)

{
inf

y∈Nε(ywc)
c

(
Kθ̂

wc

T ,y

(
θ̂
wc

T , ywc
)
− tT

(
θ̂
wc

T , ywc
))
≤ 0

}

⊂
⋃

ywc∈Y(θwc)

{∣∣∣tT
(
θ̂
wc

T , ywc
)∣∣∣ > δ

}
⊂

{
sup
θ∈Θ

sup
y∈Y

|tT (θ, y)| > δ

}

and the result follows.
Part 2.

Note that
{
dH

(
YT

(
θ̂
wc

T

)
,Y (θwc)

)
> ε

}
is equal to

⋃

ywc∈Y(θwc)

{
d

(
YT

(
θ̂
wc

T

)
, ywc

)
> ε

} ⋃

ŷ∈YT (θ̂
wc

T )

{d (ŷ,Y (θwc)) > ε} .

We have proved that the first set union in the right-hand side is included in{
sup
θ∈Θ

sup
y∈Y

|tT (θ, y)| > δ

}
.

Next we consider the second union of sets. Let Nε (ŷ) = {y ∈ Y : ‖y − ŷ‖ ≤ ε} , and
Nε (ŷ)

c its complementary. Notice that

⋃

ŷ∈YT (θ̂
wc

T )

{d (ŷ,Y (θwc)) > ε} =
⋃

ŷ∈YT (θ̂
wc

T )

{
inf

ywc∈Y(θwc)
‖ŷ − ywc‖>ε

}

⊂
⋃

ŷ∈YT (θ̂
wc

T )

{
sup

ywc∈Y(θwc)∩Nε(ŷ)
c

QT

(
θ̂
wc

T , ywc
)
≥ sup

y∈Y(θwc)∩Nε(ŷ)

QT

(
θ̂
wc

T , y
)}

⊂
⋃

ŷ∈YT (θ̂
wc

T )

{
sup

ywc∈Y(θwc)∩Nε(ŷ)
c

(
QT

(
θ̂
wc

T , ywc
)
−QT

(
θ̂
wc

T , ŷ
))
≥ 0

}

=
⋃

ŷ∈YT (θ̂
wc

T )

{
inf

ywc∈Y(θwc)∩Nε(ŷ)
c

(
QT

(
θ̂
wc

T , ŷ
)
−QT

(
θ̂
wc

T , ywc
))
≤ 0

}

⊂
⋃

ŷ∈YT (θ̂
wc

T )

{
inf

ywc∈Y(θwc)∩Nε(ŷ)
c
Kθ̂

wc

T ,ywc

(
θ̂
wc

T , ŷ
)
− tT

(
θ̂
wc

T , ŷ
)
≤ 0

}

⊂
⋃

ŷ∈YT (θ̂
wc

T )

{∣∣∣tT
(
θ̂
wc

T , ŷ
)∣∣∣ > δ

}
⊂

{
sup
θ∈Θ

sup
y∈Y

|tT (θ, y)| > δ

}
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and the result follows.
Proof of Proposition 3. From Proposition 2, we can always take sets {ŷi}k̂i=1 ⊂

YT

(
θ̂
wc

T

)
, and {yi}ki=1 ⊂ Y (θwc) in such a way that dH

(
{ŷi}k̂i=1 , {yi}

k
i=1

)
→ 0, and

k̂ → k, almost surely (in probability), without loss of generality. As {µi}ki=1 are the
Lagrange multipliers associated with the problem

min
ρ
{ρ : Q (θwc, yi) ≤ ρ, i = 1, ..., k}

and {µ̂i} are Lagrange multipliers associated with the problem

min
ρ

{
ρ : QT

(
θ̂
wc

T , ŷi

)
≤ ρ, i = 1, ..., k̂

}
,

it is sufficient to check that the Lagrange functions associated with these two prob-
lems,

L (ρ, µ) = ρ−
k∑

i=1

µi (Q (θwc, yi)− ρ)

LT (ρ, µ) = ρ−
k̂∑

i=1

µi

(
QT

(
θ̂
wc

T , ŷi
)
− ρ

)
,

converge uniformly. Since that k̂ → k, and
∑k

i=1 µi = 1, with nonnegative µi, the
Kolmogorov distance between Lagrange functions satisfies,

sup
ρ,µ
|LT (ρ, µ)− L (ρ, µ)| = sup

ρ,µ

∣∣∣∣∣

k∑

i=1

µi

(
QT

(
θ̂
wc

T , ŷi

)
−Q (θwc, yi)

)∣∣∣∣∣ + o (1)

≤ max
y∈Y

∣∣∣QT

(
θ̂
wc

T , y
)
−Q (θwc, y)

∣∣∣ + o (1) ,

where the o (1) term is uniform in ρ, µ. Next,

max
y∈Y

∣∣∣QT

(
θ̂
wc

T , y
)
−Q (θwc, y)

∣∣∣ → 0,

when maxθ∈Θ,y∈Y |QT (θ, y)−Q (θ, y)| → 0, and θ̂T → θwc almost surely (in proba-
bility). The result follows from a standard application of the Consistency Theorem
for extreme estimators on a compact domain (the positive simplex in Rk, and any
compact interval containing the optima ρ∗ = Q (θwc, yi) for all i).

Proof of Theorem 4. Given an arbitrary vector δ such that δ
′

δ = 1, let

dT = δ
′ (
B−1AB−1

)−1/2√
T

(
θ̂
wc

T − θwc
)
.
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If θwc ∈ int {Θ} solves Problem (1) and θ̂
wc

T is a consistent estimator, then Pr
(
θ̂
wc

T /∈ int {Θ}
)
→

0. Therefore,

Pr (dT ≤ x) = Pr
(
dT ≤ x | θ̂wcT ∈ int {Θ}

)
+

+
[
Pr

(
dT ≤ x | θ̂wcT /∈ int {Θ}

)
− Pr

(
dT ≤ x | θ̂wcT ∈ int {Θ}

)]
Pr

(
θ̂
wc

T /∈ int {Θ}
)

= Pr
(
dT ≤ x | θ̂wcT ∈ int {Θ}

)
+ o (1)

uniformly in x.

By Theorem 9, there exists a positive integer 1 ≤ k̂ ≤ K+1, vectors ŷi ∈ Y
(
θ̂
wc

T

)

and multipliers µ̂i ≥ 0 for i = 1, ..., k̂ with
∑k

i=1 µ̂i = 1, such that

k̂∑

i=1

µ̂i∇θQT

(
θ̂
wc

T , ŷi

)
= 0.

Applying the mean value theorem,

0 =
√
T

k̂∑

i=1

µ̂i

∂QT

(
θ̂
wc

T , ŷi

)

∂θ

=
√
T

k̂∑

i=1

µ̂i
∂QT (θ

wc, ŷi)

∂θ
+

k̂∑

i=1

µ̂i

∂2QT

(
θ̃T , ŷi

)

∂θ∂θ′
√
T

(
θ̂
wc

T − θwc
)
,

where
∥∥∥θ̃T − θwc

∥∥∥ ≤
∥∥∥θ̂T − θwc

∥∥∥. Under B.4., it follows that,

0 =
√
T

k̂∑

i=1

µ̂i
∂QT (θ

wc, ŷi)

∂θ
+ [B + op (1)]

√
T

(
θ̂
wc

T − θwc
)
.

Using Conditions B.2. and B.3.,

√
T

k̂∑

i=1

µ̂i
∂QT (θ

wc, ŷi)

∂θ
→d Np (0, A) .

Thus,

B−1 [B + op (1)]
√
T

(
θ̂T − θ0

)
= −B−1




√
T

k̂∑

i=1

µ̂i
∂QT (θ

wc, ŷi)

∂θ



 →d N

(
0, B−1AB−1

)
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and the result follows.
Proof of Proposition 5. By Condition C.2,

E


 sup
‖θ−θwc‖≤δ

∥∥∥∥∥∥

k̂∑

i=1

µ̂i

(
∂2QT (θ, ŷi)

∂θ∂θ
′

− ∂2QT (θ
wc, ŷi)

∂θ∂θ
′

)∥∥∥∥∥∥




≤ E


 sup
‖θ−θwc‖≤δ

sup
y∈Y

∥∥∥∥
∂2QT (θ, y)

∂θ∂θ
′

− ∂2QT (θ
wc, y)

∂θ∂θ
′

∥∥∥∥
k̂∑

i=1

µ̂i



δ

→
δ↓0

0;

as
∑k̂

i=1 µ̂i = 1.
Next, we use that ∀ε > 0,

Pr




∥∥∥∥∥∥

k̂∑

i=1

µ̂i

∂2QT

(
θ̃, ŷi

)

∂θ∂θ
′

−B

∥∥∥∥∥∥
> ε


 ≤ Pr




∥∥∥∥∥∥

k̂∑

i=1

µ̂i
∂2QT (θ

wc, ŷi)

∂θ∂θ
′

−B

∥∥∥∥∥∥
>
ε

2


 +

Pr




∥∥∥∥∥∥

k̂∑

i=1

µ̂i



∂2QT

(
θ̃, ŷi

)

∂θ∂θ
′

− ∂2QT (θ
wc, ŷi)

∂θ∂θ
′




∥∥∥∥∥∥
>
ε

2


 .

The first term tends to zero by Condition C.1. The second term tends to zero

by Condition C.2 and Markov’s inequality, since
∥∥∥θ̃T − θwc

∥∥∥ →p 0, so we can build a

sequence δT → 0 such that
∥∥∥θ̃T − θwc

∥∥∥ ≤ δT except for sets of probability tending to
zero.

Proof of Theorem 6. The proof is analogous to that of Theorem 4. Assuming

B.1′ and h is continuous, it is satisfied that hj
(
θ̂
wc

T

)
= 0 for j = 1, ..., p, except for

a set of probability tending to zero. Applying the mean value theorem to the first
order necessary conditions,

k̂∑

i=1

µ̂i
∂

∂θ
QT

(
θ̂
wc
, ŷi

)
+

p∑

j=1

λ̂j
∂

∂θ
hj

(
θ̂
wc

)
= 0,

hj

(
θ̂
wc

)
= 0, j = 1, ..., p
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we obtain,



∑k̂
i=1 µ̂i

∂
∂θ
QT

(
θ̃, ŷi

)
∂
∂θ
Hp

(
θ̃
)′

∂
∂θ
Hp

(
θ̃
)

0



√
T




θ̂
wc

T − θwc

λ̂
wc




=




√
T

∑k̂
i=1 µ̂i

∂
∂θ
QT (θ

wc, ŷi)

0




where Hp (θ) = (h1 (θ) , ..., hp (θ))
′ . The asymptotic normality follows analogously to

Theorem 4, with covariance matrix V equal to

V =




B H ′

H 0




−1


A 0

0 0







B H ′

H 0




−1

,

where H = ∂Hp (θ
wc) /∂θ .

Proof of Theorem 7. The proof is similar to that of Theorem 4. Under
conditions D.1, D.2, D.3 and D.4

k̂∑

i=1

µ̂i

(
T−1

T∑

t=1

∂

∂θ
g

(
Xt, ŷi, θ̂

wc

T

))
WT

(
1√
T

T∑

t=1

g (Xt, ŷi, θ
wc)

)
→d N (0, D)

applying the delta method, and for any sequence θ̃T →p θ
wc,

k̂∑

i=1

µ̂i

(
T−1

T∑

t=1

∂

∂θ
g

(
Xt, ŷi, θ̃T

))
WT

(
T−1

T∑

t=1

∂

∂θ
g

(
Xt, ŷi, θ̃T

))
→p E.

When θ̂T ∈ int {Θ} ,

0 = 2
√
T

k̂∑

i=1

µ̂i

∂QT

(
θ̂
wc

T , ŷi
)

∂θ

=
√
T

k̂∑

i=1

µ̂i

(
1

T

T∑

t=1

∂

∂θ
g

(
Xt, ŷi, θ̂T

))
WT

(
1

T

T∑

t=1

g
(
Xt, ŷi, θ̂T

))
.

Applying the mean value theorem,

g
(
Xt, ŷi, θ̂T

)
= g (X, ŷi, θ

wc) +
∂

∂θ
g
(
Xt, ŷi, θ̃T

)(
θ̂T − θwc

)
,
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with
∥∥∥θ̃T − θwc

∥∥∥ ≤
∥∥∥θ̂T − θwc

∥∥∥ , and therefore

0 =
k̂∑

i=1

µ̂i

(
1

T

T∑

t=1

∂

∂θ
g

(
Xt, ŷi, θ̂T

))
WT

(
1√
T

T∑

t=1

g (Xt, ŷi, θ
wc)

)

+
k̂∑

i=1

µ̂i

(
1

T

T∑

t=1

∂

∂θ
g

(
Xt, ŷi, θ̂T

))
WT

(
1

T

T∑

t=1

∂

∂θ
g

(
Xt, ŷi, θ̃T

))
√
T

(
θ̂
wc

T − θwc
)
.

It follows that

E−1 [E + op (1)]
√
T

(
θ̂
wc

T − θwc
)

= −E−1
k̂∑

i=1

µ̂i

(
1

T

T∑

t=1

∂

∂θ
g

(
Xt, ŷi, θ̂T

))
WT

(
1√
T

T∑

t=1

g (Xt, ŷi, θ
wc)

)

→ dN
(
0, E−1DE−1

)
.
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