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1. INTRODUCTION

Let P be a probability function in
(
R
d,Bd

)
absolutely continuous with respect to the σ-finite

measure µ and f = dP /dµ be the corresponding Radon-Nikodym derivative, which belongs to

L1
(
R
d,Bd, µ

)
. Usually, it is considered the Lebesgue’s measure λ, with f = dP /dλ the correspond-

ing probability density function (pdf), but other possibilities cannot be disregarded. For example,

the Lebesgue measure restricted to an interval (e.g., [−π, π]d in Fourier series context), or the dis-

tribution associated to some control population (e.g., in design of experiments).

Given a random sample of independent observations {Xi, 1 = 1, ..., n} from P, a delta estimator

of f is defined as,

f̂n (x) =
1

n

n∑

i=1

Kmn
(x;Xi) ,

where mn = m (n) is known as the smoothing sequence, and {Kmn
}n∈N as the generalized kernel

sequence. The sequence {mn}n∈N is not necessarily a sequence of numbers, it may be a sequence of

positive definite matrices ordered by decreasing a norm, in the usual kernel estimator of a multivariate

density; or the order of a polynomial, in the Fourier series estimator. The smoothing sequence belongs

to some directed set I, which is a non empty set endowed with a partial preorder ≤, such that if

m1,m2 ∈ I, then there exists an m3 ∈ I such that m1 ≤ m3 and m2 ≤ m3. It is assumed that the

smoothing sequence {mn}n∈N diverges in I as n → ∞, (i.e., for all M ∈ I there exists an nM ∈ N

such that mn ≥M for all n ≥ nM).

Delta estimators were introduced by Whittle (1958), encompassing all the linear nonparametric

estimators of density functions. However, Whittle’s (1958) original specification of delta estimators,

f̂n (x) = n−1
∑n
i=1Kn (x;Xi), does not introduce specifically the smoothing parameter mn which

plays a crucial role in consistency arguments. Some examples of delta estimators are,

Estimators Generalized Kernel Index set I

Histograms Km (x, z) =
∑
A∈m IA (x) IA (z) /λ (A) measurable partitions

Kernels Km (x, z) = det (m)
−1
K
(
m−1 (z − x)

)
def + matrices,

Biorthonormal Basis Km (x, z) =
∑m
k=1 ak (x) bk (z) non negative integers

where IA (x) denotes the characteristic function of the set A (i.e., IA (x) = 1 if x ∈ A, and zero

otherwise), K is integrable and integrates one, and {ak, bk}k∈N is a biorthonormal basis on Lp (µ) :=

Lp
(
R
d,Bd, µ

)
, provided f ∈ Lp (µ) . Furthermore, many non linear estimators can be approximated,

at least asymptotically, by a delta estimator. Terrell (1984) and Terrell and Scott (1992) have shown
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that all nonparametric density estimators which are continuous and differentiable functionals of the

empirical distribution function, can be asymptotically interpreted as delta estimators.

Often, the literature assumes an integrability condition on the pdf (e.g., it belongs to Lp
(
R
d,Bd, µ

)
,

with 1 < p < ∞) and a smoothness requirement (e.g., f belongs to a Sobolev space). Watson and

Leadbetter (1963), Walter and Blum (1979) and Prakasa Rao (1983) have provided sufficient con-

ditions for global consistency in norm Lp (λ) and pointwise consistency of delta estimators. Winter

(1973, 1975) has studied uniform consistency and the consistency of the corresponding smooth inte-

grated distribution function estimator. Watson and Leadbetter (1964) have established asymptotic

normality. Basawa and Prakasa Rao (1980, Chapter 11) have provided results for dependent obser-

vations. In this literature, consistency is achieved under restrictive smoothness conditions on the

pdf.

Universal consistency was introduced by Stone (1977), to ensure global L1-consistency of non-

parametric estimators regardless of any smoothness assumption on f . The literature is extensive

(for a review, see e.g., Devroye and Györfi (1985) and Devroye (1987) focused on density estimation,

Györfi et al (2002) on regression estimation and Devroye et al (1996) on pattern recognition). Usu-

ally, universality refers to L1 (µ) space, but some problems could be confined to other spaces. For

example, L2 is the standard space in nonparametric regression, and L2 is also the natural framework

for density estimation with orthogonal basis. In this context, universality refers to nonsmoothness

requirements on the pdf. Universal consistency for delta estimators using Lp norms has been studied

in Vidal-Sanz (1999).

The literature on pointwise universal consistency is not so large, and it is focused on the estimation

of regression functions, see e.g. Devroye (1981), Greblicki et al (1984) and Walk (2001). In this

paper we study the pointwise universal consistency of delta estimators in L1 (µ).

Definition 1 Pointwise Universal Consistency (PUC). Let µ be a σ-finite measure in
(
R
d,Bd

)
,

and P a probability function P << µ (i.e., P absolutely continuous with respect to µ). We say that

a delta estimator f̂n is strongly (weakly) consistent almost everywhere, if

∣∣∣f̂n (x)− f (x)
∣∣∣→ 0,

almost surely (in probability), for almost every x ∈ Rd with respect to the measure µ. We say that

the convergence is universal when it holds for all P << µ.

Note that PUC property is also relevant for establishing global universal consistency on L1 (µ) ,

by the Scheffe’s Theorem. Some estimators do not satisfy PUC, but a weakened version of this

2



property holds; namely, that pointwise consistency is satisfied for all density f ∈ Lp (µ) , for some

p ∈ (1,∞) . For example, Fourier series estimators do not satisfy PUC, but pointwise consistency is

satisfied for all density f ∈ L2 ([−π, π]) , without smoothness requirements. This weakened form of

universality is interesting as pointwise consistency can be used to prove Lp-global consistency using

dominated convergence arguments. Though we will not stress this research line, our results can be

readily adapted to a Lp (µ) space.

The aim of this paper is to provide fairly primitive conditions which are sufficient for universal

pointwise consistency of delta estimators. To this end, we use the triangular inequality,

∣∣∣f̂n (x)− f (x)
∣∣∣ ≤
∣∣∣E
[
f̂n (x)

]
− f (x)

∣∣∣+
∣∣∣f̂n (x)−E

[
f̂n (x)

]∣∣∣ . (1)

The first term on the right hand side is known as the bias term, which is deterministic, and the

second term as the variation term, which is stochastic. In order to study the pointwise universal

convergence to zero of the bias term we will consider some functional analysis results related to the

approximation theory. In order to study the convergence to zero of the variance term we will use

laws of large numbers for triangular arrays.

Section 2 considers pointwise universal unbiasedness. We consider pointwise boundedness of lin-

ear operators and provide a characterization for pointwise universal asymptotic unbiasedness. We

present some examples that illustrate the application of these results. Section 3 considers suffi-

cient conditions for the weak and strong universal convergence of the variation term. Examples are

included to show the application of these conditions.

2. POINTWISE UNIVERSAL UNBIASEDNESS

In this section we study the problem in pointwise sense. Let

αn (f) (x) =

∫
Kmn

(x, z) f (z) µ (dz)

be the expected value of f̂n (x) with respect to the probability distribution P with pdf f . Notice

that αn is a linear operator, and the estimator f̂n is universally asymptotically unbiased in L1-global

sense, for any smoothing number {mn}n≥1, if and only if {αn} is an approximate identity in L1 (µ);

in other words,

lim
n→∞

‖αn (f)− f‖L1(µ) = 0, ∀f ∈ L1 (µ) .

Regarding the pointwise convergence, we say that αn (f) converges almost everywhere (a.e.) to
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f , if and only if |αn (f) (x)− f (x)| → 0 except for sets of µ-null measure; i.e. ∀δ > 0,

lim
n→∞

µ

({
x ∈ Rd : sup

n′≥n
|αn′ (f) (x)− f (x)| > δ

})
= 0, ∀f ∈ L1 (µ) .

To characterize the pointwise approximation property, first we introduce a boundedness condition:

Definition 2 Boundedness in measure. Let αn be a linear operator on L1
(
R
d,Bd, µ

)
. We say

that αn is bounded in measure (i.e., it is an operator of weak type-1), if and only if ∀ε > 0, ∃δ > 0

such that,

sup
‖f‖L1(µ)

≤1
µ
({
x ∈ Rd : |αn (f) (x)| > δ

})
≤ ε.

A sequence {αn} of linear operators is uniformly bounded in measure if the maximal operator

αM (f) (x) = supn∈N |αn (f) (x)| satisfies, ∀ε > 0, ∃δ > 0 such that,

sup
‖f‖L1(µ)

≤1

µ
({
x ∈ Rd : αM (f) (x) > δ

})
≤ ε. (2)

If αn is bounded in norm, then it is bounded in measure, by the Markov’s inequality. Notice that

the maximal operator is not linear, but a sublinear operator.

Next, we present a Banach-Steinhaus type result, which plays a crucial role for the arguments used

in the theory of pointwise approximation. Garsia (1970, Chapter 1) presents some related results.

Given a topological space, a Gδ set is a set that can be obtained as a numerable intersection of open

sets. Note that in Banach spaces without isolated points, such as L1
(
R
d,Bd, λ

)
, every dense Gδ set

is non numerable (see e.g., Rudin 1974, Theorem 5.3.3).

Theorem 1 Theorem type Banach-Steinhaus in measure. Let {αn} be a sequence of linear

operators in L1
(
R
d,Bd, µ

)
, all of them bounded in measure. Then only one of the next statements

holds:

1. {αn}n∈N is uniformly bounded in measure,

2. ∀ε > 0, ∃Cε ⊂ L1 (µ), where Cε is a dense Gδ set, such that,

µ
({
x ∈ Rd : αM (f) (x) =∞

})
> ε, ∀f ∈ Cε. (3)

Proof.

Define the set

V δε =
{
f ∈ L1 (µ) : µ

({
x ∈ Rd : αM (f) (x) > δ

})
> ε
}
,
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∀ε > 0 and ∀δ > 0. We first prove that this is an open set.

We say that the linear operator αn is continuous in measure, n ∈ N, if and only if, for all {gk}k∈N , g

in L1 (µ) such that lim
k→∞

‖gk − g‖L1(µ) = 0, it is satisfied,

lim
k→∞

µ
({
x ∈ Rd : |αn (gk;x)− αn (g;x)| > δ

})
= 0, ∀δ > 0.

Since αn is bounded in measure, it is continuous in measure. Thus, for each n ∈ N, the sub-linear

operator

αMn (f) (x) = sup
n′≤n

|αn′ (f) (x)|

is also continuous in measure. Then, ∀n ∈ N, the sets,

{
f ∈ L1 (µ) : µ

({
x ∈ Rd : αMn (f) (x) > δ

})
> ε
}

are open, what implies that V δ
ε is open.

Now consider a sequence {δk}k∈N dense in R+. Thus, ∀ε > 0 we have a sequence
{
V δk
ε

}
k∈N

of

open sets. Assume that there exists a k ∈ N such that V δkε is not dense in L1 (µ). Then ∃f0 ∈ L1 (µ)

and r > 0 such that ‖f‖L1(µ) ≤ r implies (f0 + f) /∈ V δk
ε . Thus,

µ
({
x ∈ Rd : αM (f0 + f) (x) > δk

})
≤ ε.

∀f ∈ L1 (µ) such that ‖f‖L1(µ) ≤ r.

Note that f = (f0 + f)− f0, so then,

µ
({
x ∈ Rd : αM (f) (x) > 2δk

})
≤ µ

({
x ∈ Rd : αM (f0 + f) (x) > δk

})
+

+µ
({
x ∈ Rd : αM (f0) (x) > δk

})

≤ 2ε.

Therefore,

sup
‖f‖L1(µ)

≤1

µ
({
x ∈ Rd : αM (f) (x) > 2δk

})
≤
2ε

r
,

which implies that αM is bounded in measure, with ε = 2ε/r and δ = 2δk.

On the other hand, if every V δk
ε is dense in L1 (µ) then

Cε =
⋂

k∈N

V δk
ε

is a dense Gδ set in L1 (µ) , by the Baire’s Theorem (see e.g. Rudin, 1974). Obviously, ∀f ∈ Cε we

have,

µ
({
x ∈ Rd : αM (f) (x) > δk

})
> ε, ∀δk,
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and {δk}k∈N is dense in R+, so that Condition (3) follows.

An analogous result to the previous theorem can be established on Lp
(
R
d,Bd, µ

)
, with 1 < p <∞.

For spaces Lp, the uniform boundedness can often be established using an interpolation theorem

(see Zygmund (1959,Vol. II, Chapter XII, Section 4), Bergh and Löfström (1976) and Jørsboe and

Mejlbro (1982, Theorem 1.9, pp. 8-9)).

The following theorem provides conditions on the generalized kernel sequence {Kmn
(x, z)} , which

are sufficient for guaranteeing that the sequence {αn} satisfies a.e. convergence and, therefore, the

associated delta estimator is universally asymptotically pointwise unbiased.

Theorem 2 Pointwise Approximation Central Theorem. Let {αn} be a sequence of linear

operators in L1
(
R
d,Bd, µ

)
. Assume that:

1. The sequence {αn} is uniformly bounded in measure.

2. ∃G ⊂ L1 (µ) dense, such that, αn
(
f̃
)
→ f̃ almost everywhere, ∀f̃ ∈ G.

Then, {αn} is an approximate identity in almost everywhere sense, i.e., αn (f) → f, a.e. ∀f ∈

L1 (µ). If the operators {αn} are all bounded in measure on L1 (µ), then Assumptions 1 and 2 are

also necessary.

Proof.

Part I: Sufficient Conditions.

Assume that ∃G ⊂ L1 (µ) dense, such that ∀f̃ ∈ G

lim
n→∞

µ

({
x ∈ Rd : sup

n′≥n

∣∣∣αn′
(
f̃
)
(x)− f̃ (x)

∣∣∣ > δ

})
= 0, ∀δ > 0.

As G is a dense set, ∀f ∈ L1 (µ) and ∀ε > 0, ∃f̃ ∈ G such that
∥∥∥f − f̃

∥∥∥
L1(µ)

≤ ε. By the triangular

inequality, for each n and each x ∈ Rd, it is satisfied that

sup
n′≥n

|αn′ (f) (x)− f (x)| ≤ sup
n′≥n

∣∣∣αn′ (f) (x)− αn′
(
f̃
)
(x)
∣∣∣

+sup
n′≥n

∣∣∣αn′
(
f̃
)
(x)− f̃ (x)

∣∣∣+
∣∣∣f̃ (x)− f (x)

∣∣∣ ,
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Thus, ∀f ∈ L1 (µ) and ∀δ > 0,

µ

({
x ∈ Rd : sup

n′≥n
|αn′ (f) (x)− f (x)| > δ

})
≤ µ

({
x ∈ Rd : sup

n′≥n

∣∣∣αn′
(
f − f̃

)
(x)
∣∣∣ > δ

3

})

+µ

({
x ∈ Rd : sup

n′≥n

∣∣∣αn′
(
f̃
)
(x)− f̃ (x)

∣∣∣ > δ

3

})

+µ

({
x ∈ Rd :

∣∣∣f̃ (x)− f (x)
∣∣∣ > δ

3

})
.

The first term is arbitrarily small by uniform boundedness in measure,

µ

({
x ∈ Rd : sup

n′≥n

∣∣∣αn′
(
f − f̃

)
(x)
∣∣∣ > δ

3

})
≤ µ

({
x ∈ Rd : αM

(
f − f̃

)
(x) >

δ

3

})

≤ µ







x ∈ Rd : αM




f − f̃∥∥∥f − f̃
∥∥∥
L1(µ)


 (x) ·

∥∥∥f − f̃
∥∥∥
L1(µ)

>
δ

3








≤ sup
‖f‖L1(µ)

≤1

µ

({
x ∈ Rd : αM (f) (x) >

δ

3ε

})
≤ ε1.

Notice that ε1 can be made arbitrarily small for ε small enough.

Then, ∀f ∈ L1 (µ) and ∀δ > 0,

µ

({
x ∈ Rd : sup

n′≥n
|αn′ (f) (x)− f (x)| > δ

})
≤ ε1 +

+µ

({
x ∈ Rd : sup

n′≥n

∣∣∣αn′
(
f̃
)
(x)− f̃ (x)

∣∣∣ > δ

3

})
+

∥∥∥f̃ − f
∥∥∥
L1(µ)

δ
3

≤ ε1 + µ

({
x ∈ Rd : sup

n′≥n

∣∣∣αn′
(
f̃
)
(x)− f̃ (x)

∣∣∣ > δ

3

})
+
3ε

δ
.

Since ε, ε1 > 0 are arbitrarily small, and

lim
n−→∞

µ

({
x ∈ Rd : sup

n′≥n

∣∣∣αn′
(
f̃
)
(x)− f̃ (x)

∣∣∣ > δ

3

})
= 0, ∀δ > 0,

the a.e. approximation follows.

Part II: Necessary Condition.

Assume that αn (f)→ f a.e. ∀f ∈ L1 (µ) . Thus, the same property trivially holds for every dense

set G ⊂ L1 (µ).

Assume that {αn} is an approximate identity in a pointwise a.e. sense, and that all of the αn

operators are bounded in measure but uniform boundedness in measure is not satisfied. Thus by

Theorem 1, ∀ε > 0, ∃Cε ⊂ L1 (µ), which is a dense Gδ set, such that

µ

({
x ∈ Rd : sup

n∈N
|αn (f) (x)| =∞

})
> 2ε, ∀f ∈ Cε.
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In other words, ∃B ⊂ Rd, with µ (B) > 2ε such that ∀x ∈ B,

sup
n∈N

|αn (f) (x)| =∞, ∀f ∈ Cε.

On the other hand, |f (x)|
a.e.
< ∞ holds ∀f ∈ L1 (µ) (in particular, for all f ∈ Cε), because ∃δε > 0

such that,

µ
({
x ∈ Rd : |f (x)| > δε

})
≤
‖f‖L1(µ)

δε
< ε.

In other words, ∀ε > 0, ∃A ⊂ Rd with µ (Ac) < ε such that sup
x∈A

|f (x)| <∞.

By the triangular inequality,

|αn (f) (x)− f (x)| ≥ ||αn (f) (x)| − |f (x)|| .

Define C = A
⋂
B. Obviously, ∀x ∈ C

|αn (f) (x)− f (x)| ≥ ||αn (f) (x)| − |f (x)|| =∞, ∀f ∈ Cε.

Notice that µ∗ (C) > ε since,

µ (B) = µ
(
A
⋂

B
)
+ µ
(
Ac
⋂

B
)
≤ µ

(
A
⋂

B
)
+ µ (Ac) = µ (C) + µ (Ac) ,

so then,

µ (C) ≥ µ (B)− µ (Ac) > 2ε− ε = ε.

Thus, ∀ε > 0, ∃Cε ⊂ L1 (µ), which is a dense Gδ set, such that,

µ

({
x ∈ Rd : sup

n∈N
|αn (f) (x)− f (x)| =∞

})
> ε, ∀f ∈ Cε. (4)

Since all elements of the sequece {αn} are bounded in measure, the triangular inequality implies

that

|αn (f) (x)− f (x)| ≤ |αn (f) (x)|+ |f (x)|
a.e.
< ∞, ∀n ∈ N.

Thus ∀f ∈ Cε,

{
x ∈ Rd : sup

n∈N
|αn (f) (x)− f (x)| =∞

}
=

{
x ∈ Rd : lim

n∈N
|αn (f) (x)− f (x)| =∞

}
.

Therefore, (4) implies,

µ

({
x ∈ Rd : lim

n∈N
|αn (f) (x)− f (x)| =∞

})
> ε, ∀f ∈ Cε,

that contradicts the a.e. approximation property.
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Assume that {αn} satisfies a.e. universal approximation property in L1 (µ). Then, for all {fr}r∈N ,

f ⊂ L1 (µ) such that lim
r→∞

‖fr − f‖L1(µ) = 0, it is satisfied

lim
r→∞

lim
n→∞

|αn (fr) (x)− f (x)|
a.e.
−→ 0.

The proof is a slight modification of the above result.

Next we present sufficient conditions for the pointwise approximation property. First we define

the positive majorized operator of αn (f) (x) =
∫
Kmn

(x, z) f (z) µ (dz), as the operator

|α|n (f) (x) =

∫
|Kmn

(x, z)| f (z) µ (dz) .

Theorem 3 Sufficient Conditions for Pointwise Approximation. Let {αn} be a sequence

of linear operators on L1
(
R
d,Bd, µ

)
. Assume that:

1. The sequence {|α|n} is uniform bounded in measure,

2.
∫
Kmn

(x, z)µ (dz)→ 1, a.e.

3. ∀δ > 0, ∃Mδ > 0 such that supn∈N
∫
‖x−z‖<δ

|Kmn
(x, z)|µ (dz) < Mδ, a.e.,

4.
∫
‖x−z‖>δ |Kmn

(x, z)|µ (dz)→a.e. 0, ∀δ > 0.

Then αn (f)→ f a.e. for all f ∈ L1 (µ).

Proof.

First, we prove that if {|α|n} is uniformly bounded in measure, then {αn} also is uniformly

bounded in measure. As the maximal operators satisfy,

αM (f) (x) = sup
n∈N

|αn (f) (x)| ≤ sup
n∈N

∫
|Kmn

(x, z)| |f (z)| µ (dz) = |α|M (|f |) (x) ,

with |α|M = supn∈I |α|n . Then, ∀δ > 0,

µ
({
x ∈ Rd : αM (f) (x) > δ

})
≤ µ

({
x ∈ Rd : |α|M (|f |) (x) > δ

})
.

Taking the supremum in the unit ball ‖f‖L1(µ) ≤ 1 the result follows.

Let Cc
(
R
d
)

be the set of continuous and compactly supported functions. Next, we prove the

approximation property for any f ∈ L1 (µ) with some version in Cc
(
R
d
)
. As Cc

(
R
d
)
is a dense set

in Lp (µ) , 1 ≤ p <∞, the result follows from Theorem 2. We proceed in 2 steps.
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Step 1) For all δ > 0 and all h (x, z) ∈ Cc
(
R
d ×Rd

)
, it is satisfied that

∣∣∣∣∣

∫

{z:‖x−z‖>δ}

h (x, z)Kmn
(x, z) µ (dz)

∣∣∣∣∣ ≤ ‖h‖∞ ·
∫

{z:‖x−z‖>δ}

|Kmn
(x, z)| µ (dz)

a.e.
−→ 0,

using Assumption 4, and ‖h‖∞ <∞.

Step 2) We prove that for all f ∈ L1 (µ) with some version in Cc
(
R
d
)
, the sequence αn (f)→ f

a.e. By the triangular inequality,

sup
n′≥n

|αn′ (f) (x)− f (x)| ≤ sup
n′≥n

∣∣∣∣
∫
(f (z)− f (x)) Kmn′

(x, z) µ (dz)

∣∣∣∣

+sup
n′≥n

∣∣∣∣
∫

Kmn′
(x, z)µ (dz) f (x)− f (x)

∣∣∣∣ .

By Assumption 2,

sup
n′≥n

|αn′ (f) (x)− f (x)| ≤ sup
n′≥n

∣∣∣∣
∫
(f (z)− f (x)) Kmn′

(x, z) µ (dz)

∣∣∣∣

+ ‖f‖∞ sup
n′≥n

∣∣∣∣
∫

Kmn′
(x, z)µ (dz)− 1

∣∣∣∣

= sup
n′≥n

∣∣∣∣
∫
(f (z)− f (x)) Kmn′

(x, z) µ (dz)

∣∣∣∣+ o (1) ,

where the o (1) convergence holds in a.e. sense. Then,

sup
n′≥n

|αn′ (f) (x)− f (z)| ≤ sup
n′≥n

∣∣∣∣∣

∫

{z:‖x−z‖≤δ}

(f (z)− f (x)) Kmn′
(x, z) µ (dz)

∣∣∣∣∣+

+sup
n′≥n

∣∣∣∣∣

∫

{z:‖x−z‖>δ}

(f (z)− f (x)) Kmn′
(x, z) µ (dz)

∣∣∣∣∣+ o (1) .

As f is uniformly continuous, ∀ε > 0, ∃δ > 0 such that ‖x− z‖ ≤ δ implies that |f (x)− f (z)| ≤ ε,

applying Assumption 3 we obtain,

sup
n′≥n

|αn′ (f) (x)− f (x)|
a.e.

≤ ε ·Mδ + sup
n′≥n

∣∣∣∣∣

∫

{z:‖x−z‖>δ}

h (x, z) Kmn′
(x, z) µ (dz)

∣∣∣∣∣+ o (1)

with h (x, z) = (f (z)− f (x)). The first term on the right hand side is arbitrarily small, whilst the

second term tends to zero a.e. by Step 1, and the result follows.

A sufficient condition for Assumption 4 in Theorem 3 is: for some s ≥ 1, it is satisfied that

lim
n→∞

µ

({
x ∈ Rd : sup

n′≥n

∫ ∣∣Kmn′
(x, z)

∣∣ ‖x− z‖s µ (dz) > δ

})
= 0,

10



for all δ > 0. This is a consequence of I{‖x−z‖>δ} (z) < ‖x− z‖s · δ−s, and since |α|n is a monotone

operator, then ∀δ > 0

sup
n′≥n

|α|n′
(
I{‖x−z‖>δ} (z)

)
(x) < δ−s sup

n′≥n
|α|n′ (‖x− z‖s) (x) .

Theorems 2 and 3 can be applied to the most popular nonparametric estimators, using the Hardy-

Littlewood-Paley theory. The Hardy-Littlewood maximal operator on L1
(
R
d,Bd, λ

)
defined as

β∗ (f, x) = sup
ε>0

1

λ (B (x, ε))

∫

B(x,ε)

f (z) dz,

with B (x, ε) the ε-ball, satisfies for some cd > 0, ‖β∗ (f, x)‖Lp(λ) ≤ cd ‖f‖L1(λ) for all f ∈ L1; and

therefore βε (f, x) = f (z) I (B (x, ε)) /λ (B (x, ε)) is uniformly bounded in measure. For details, see

Stein (1970), de Guzman (1975) and Wheeden and Zygmund (1977).

Example 1 Consider the kernel estimator in L1
(
R
d,Bd, λ

)
, defined by means of,

Km (x, z) =
1

det (m)
K
(
m−1 (z − x)

)
, (5)

and a smoothing sequence {mn} ⊂ I, where I is the set of positive definite matrices. If there exists

a closed interval C ⊂ Rd such that c1IC (u) ≤ |K (u)| ≤ c2IC (u) for some c1, c2 > 0 then,
∫
sup
m∈I

∫
|Km (x, z)| f (z) dzdx ≤ c ‖f‖L1(λ) ,

by the Hardy-Littlewood argument, so that kernel operators are uniformly bounded in measure. The

pointwise universal unbiasedness readily follows from Theorem 3.

Example 2 Define the set I0 of regular partitions of R
d as the set of Borel measurable partitions

m of finite diameter, satisfying infA∈m λ (A) > 0, such that the maximum diameter of the partition

tends to zero as partitions become thinner, and all subsets form a Vitali system (the definition can

be found in, e.g., Shilov and Gurevich, 1997). Consider the histogram in L1
(
R
d,Bd, λ

)
, with kernel

Km (x, z) =
∑

A∈m

IA (x) IA (z)

λ (A)
,

defined for {mn} ⊂ I0. Using that

β∗ (f, x) = sup
ε>0

Pf (B (x, ε))

λ (B (x, ε))

satisfies ‖β∗ (f, x)‖L1(λ) ≤ cd ‖f‖L1(λ), then

∫ (
sup
n∈N

∫ ( ∑

A∈mn

IA (x) IA (z)

λ (A)

)
f (z) dz

)
dx

=

∫
sup
n∈N

∑

A∈mn

IA (x)Pf (A)

λ (A)
dx ≤ c ‖f‖L1(λ) ,

11



and the operators are uniformly bounded in measure. The pointwise universal unbiasedness follows

from an argument analogous to Györfi et al (2002, Lemma 24.5), which is related to the Lebesgue

density theorem,

lim
n→∞

∑

A∈mn

Pf (A)

λ (A)
IA (x) = f (x) , a.e.

Alternatively we can apply Theorem 2 to prove that the approximation theory is satisfied for

all simple functions S ⊂ L1
(
R
d,Bd, λ

)
, which is a dense class in L1. If g ∈ S, then g (z) =

∑s
r=1 βr · IBr (z) , for some finite measurable partition m = (B1, ..., Bs) of Rd, with λ (Br) <∞ for

r = 1, ..., s. By definition,

αn (g) (x) =
∑

A∈mn

(
1

λ (A)

∫

A

g (z)λ (dz)

)
IA (x)

=
∑

A∈mn

(
s∑

r=1

βr
1

λ (A)

∫

A

IBr
(z)λ (dz)

)
IA (x)

=
∑

A∈mn

(
s∑

r=1

βr
λ (A ∩Br)

λ (A)

)
IA (x) .

Thus, using that
∑
A∈mn

IA (x) = 1, a.e.,

λ ({|αn (g) (x)− g (x)| > δ})

= λ


 sup
n′≥n

∣∣∣∣∣∣

∑

A∈mn′

s∑

r=1

βr
λ (A ∩Br)

λ (A)
IA (x)−

s∑

r=1

βrIBr (x)

∣∣∣∣∣∣
> δ




≤ λ


 sup
n′≥n

∑

A∈mn′

1

λ (A)

∣∣∣∣∣

s∑

r=1

βr (λ (A ∩Br)− λ (A) IBr
(x)) IA (x)

∣∣∣∣∣ > δ


 .

Next we prove that this measure tends to zero. If mn ≥ m, i.e. mn is thinner than m, then ∀Br ∈m

and ∀A ∈ m, and therefore we have one of the following cases: (i) either A ∩Br = ∅ and therefore

λ (A ∩Br) = 0, I{A∩Br} (x) = 0, or (ii) A ⊂ Br and thus λ (A ∩Br) = λ (A), IA∩Br (x) = IA (x) so

that

|λ (A ∩Br) IA (x)− λ (A) IA∩Br (x)| = 0.

Thus, ∀g ∈ S, ∃m such that supm≥m |αm (g) (x)− g (x)| = 0, except for sets of null measure, and

the result follows.

Example 3 We also consider the almost everywhere convergence of the Dirichlet’s approximate

identity {αn} related to the Fourier sums in Lp ([−π, π]), with 1 ≤ p < ∞. This operator can be

12



expressed by

αn (f) (x) =
1

2π

∫ π

−π

(
sin
((
mn +

1
2

)
(z − x)

)

sin
(
1
2 (z − x)

)
)
f (z) dz.

with {mn} ⊂ N. A detailed exposition about Fourier sums can be seen, e.g. in Bary (1964), Zygmund

(1959) and Edwards (1979). Using Theorem 2, we only need to establish a.e. convergence for a dense

set of functions and uniform boundedness in measure.

• The trigonometric polynomials are a dense subspace in Lp ([−π, π]) with 1 ≤ p < ∞ and the

Fourier sums of trigonometric polynomials converges a.e. to the respective polynomials. See,

e.g. Mozzochi (1970, pp. 9), Jørsboe and Mejlbro (1982, pp. 17-20), and Arias de Reyna

(2002, Part II).

• The Carleson-Hunt Theorem establishes that the Fourier sums are uniform bounded in measure

in the space Lp ([−π, π]) , with 1 < p < ∞. This result was first proved by Carleson (1966)

for p = 2, and extended to the case 1 < p <∞ by Hunt (1968). The original Carleson-Hunt

Theorem proves that,

sup
‖f‖Lp([−π,π])≤1

∥∥αM (f)
∥∥
Lp([−π,π])

<∞. (6)

Then, by Markov’s inequality, (6) implies the result.

Thus, Theorem 2 implies that the Fourier sums satisfies the almost everywhere approximation

property for every curve in Lp ([−π, π]) with 1 < p < ∞. The proof of (6) presents great technical

difficulties. Monographs of Mozzochi (1971), Jørsboe and Mejlbro (1982) and Arias de Reyna (2002)

are devoted to self-contained proofs. Garsia (1970) studies a simplification of Carleson’s result. In

Fefferman (1971) and Sjölin (1971) the Carleson Hunt theorem is extended to dimensions d > 1.

However, in L1 ([−π, π]) the Fourier sums are bounded in measure, but they are not uniformly

bounded in measure. As a consequence of Theorem 2, the almost everywhere approximation fails.

This is a well known problem. A very famous counter-example due to Kolmogorov (1926), shows

that for some function in L1 ([−π, π]) the Fourier sum diverges almost everywhere. Some additional

results on pointwise divergence can be seen in Körner (1981), Edwards (1979, pp. 80) and the

monograph of Zygmund (1959, sec. 8.4). As we can see in the proof of Theorem 2, there is a dense

Gδ set of functions in L1 ([−π, π]) that αn (f) (x) diverges almost everywhere. Since any dense Gδ

set in L1 ([−π, π]) is non numerable, the curve considered by Kolmogorov is just one in the dense

and uncountable set of functions with divergence problems.
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3. POINTWISE CONVERGENCE OF THE VARIATION TERM

In this section, our aim is to prove that

∣∣∣f̂n (x)−E
[
f̂n (x)

]∣∣∣ = n−1
n∑

i=1

(Kmn
(x,Xi)−E [Kmn

(x,Xi)])→ 0,

almost surely (in probability) for almost every x ∈ Rd with respect to µ, which is immediate by

using a simple LLN for triangular arrays. As usual, a condition on the smoothing number {mn} is

necessary in order to prove consistency.

Proposition 1 Universal Pointwise Weak Consistency of Variation Term. Assume that

for all probability P with f = dP /dµ ∈ L1 (µ) , the triangular array {Kmn
(x,Xi) : 1 ≤ i ≤ n}n∈N

satisfies that for some r > 1,

E [|Kmn
(x,X)|r] = o

(
n(r−1)

)
, (7)

almost everywhere [µ] . Then,

E
[∣∣∣f̂n (x)−E

[
f̂n (x)

]∣∣∣
r]

→ 0,
∣∣∣f̂n (x)−E

[
f̂n (x)

]∣∣∣ → p0,

almost everywhere [µ] ,with f = dP/dµ, and the result holds universally in P.

Proof.

Define Zn,i = Kmn
(x;Xi) , then by Markov’s, cr and Jensen inequalities,

E
[∣∣∣f̂n (x)−E

[
f̂n (x)

]∣∣∣
r]
≤ 2r−1

∑n
i=1E [|Zn,i −E [Zn,i]|

r]

nr
≤
2r
∑n
i=1E [|Zn,i|

r]

nr
→ 0.

The result is immediate.

The following examples illustrate the application of the previous result.

Example 4 Consider the kernel estimator (5), with K ∈ Lr
(
R
d,Bd, λ

)
for some r > 1. Then, for

all integrable density f,

n−(r−1)E [|Kmn
(x,X)|r] =

1

n(r−1) det (mn)
r

∫ ∣∣K
(
m−1
n (z − x)

)∣∣r f (z)λ (dz)

=
1

[n · det (mn)]
(r−1)

∫
|K (u)|r f (x+mnu) du = O

(
f (x)

∫
|K (u)|r du

[n · det (mn)]
(r−1)

)
,

for a.e. x ∈ Rd, by the dominated convergence Theorem. It tends to zero when n · det (mn)→∞.
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Example 5 Consider the Histogram in L1
(
R
d,Bd, λ

)
, for regular partitions. Notice that for any

partition m ∈ I0, it is satisfied that |Km (x, z)|
2
=
∑
A∈m |IA (x) IA (z) /λ (A)|

2
a.e., since the sets

in the partition m are disjoint. Define,

γ (m) = inf
A∈m

λ (A) > 0.

The condition n · γ (mn)→∞ implies that

n−1E
[
|Kmn

(x,X)|2
]
=
1

n
E

[
∑

A∈mn

∣∣∣∣
IA (x) IA (X)

λ (A)

∣∣∣∣
2
]

=
1

n

∑

A∈mn

P (A)

λ (A)
2 IA (x) ≤

1

n · γ (mn)

∑

A∈mn

P (A)

λ (A)
IA (x)

=
1

n · γ (mn)
E
[
f̂n (x)

]
→ 0,

a.e, as f̂n is pointwise universally unbiased.

Example 6 Consider the Dirichlet kernel in Lp ([−π, π]) , with real p > 1. Let

Kmn
(u) =

sin ((2mn + 1)u/2)

2π sin (u/2)
.

Observe that,

2πKm (u) = cot
(u
2

)
sin (mu) + cos (mu)

=
2

u
sin (mu) +

(
cot
(u
2

)
−
2

u

)
sin (mu) + cos (mu)

and cot (t)− t−1 is bounded on (−π/2, π/2) , hence

Km (u) =
1

π

sin (mu)

u
+O (1) .

Since |sin (mu)| ≤ |mu|,

n−1E
[
|Kmn

(x,X)|2
]
=

1

n

∫ π

−π

|Kmn
(u)|2 f (u− x) du

≤
1

n

∫ π

−π

∣∣∣∣
mn |u|

πu

∣∣∣∣
2

f (u− x) du+O

(
1

n

)

=
m2
n

π2n
+O

(
1

n

)

a.e., and weak universal consistency follows from condition m−1
n +m2

n/n→ 0.
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The next result establishes strong consistency using a logarithmic growth rate on the smoothing

numbers. We illustrate its application with some examples.

Theorem 4 Universal Pointwise Strong Consistency of Variation Term. Assume that for

any probability function P with f = dP /dµ ∈ L1 (µ) ,

∞∑

n=1

exp

{
−n

Mn (x)
2

}
<∞, a.e. [µ] , (8)

where Mn (x) = ess supz |Kmn
(x, z)| . Then, universal complete pointwise convergence is satisfied

a.e. [µ] , and

Pr
{
lim
n→∞

∣∣∣f̂mn
(x)−E

[
f̂mn

(x)
]∣∣∣ > ε

}
= 0, ∀ε > 0,

a.e. [µ] universally in P .

Proof.

The result is a consequence of Hoeffding’s inequality (see, e.g. Györfi et al 2002). Let consider

Zn,i = Kmn
(x, z) . By assumption, Zn,i ∈ [−Mn (x) ,Mn (x)] for i = 1, .., n with probability one.

Therefore,

Pr

[∣∣∣∣∣
1

n

n∑

i=1

(Zn,i −E [Zn,i])

∣∣∣∣∣ > λ

]
≤ exp

{
−2nλ2

1
n

∑n
i=1 (2Mn (x))

2

}
= exp

{
−nλ2

2Mn (x)
2

}
,

and the result follows from the Borel-Cantelli Lemma.

Example 7 Consider the kernel estimator. If K (u) has a global maximum at u = 0, then

Mn (x) = sup
z∈Rd

|Kmn
(z − x)| = Kmn

(0) =
K (0)

det (mn)
,

and the condition in expression (8) is satisfied if
∑∞
n=1 exp

{
−ndet (mn)

2
}
<∞, for which it suffices

that ndet (mn)
2 / logn→∞.

Example 8 The histogram satisfies,

Mn (x) = sup
z∈Rd

∣∣∣∣∣
∑

A∈mn

IA (x) IA (z)

λ (A)

∣∣∣∣∣ =
∑

A∈mn

IA (x)

λ (A)
≤

∑
A∈mn

IA (z)

γ (mn)
=

1

γ (mn)
,

and the condition in expression (8) is satisfied if
∑∞
n=1 exp

{
−nγ (mn)

2
}
<∞, for which it suffices

that nγ (mn)
2
/ logn→∞.
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Example 9 Consider the Dirichlet kernel in Lp ([−π, π]) , with real p > 1. Let

Mn (x) = sup
u∈[−π,π]

∣∣∣∣
sin ((2mn + 1)u/2)

2π sin (u/2)

∣∣∣∣ ≤
1

π
sup

u∈[−π,π]

∣∣∣∣
sin (mnu)

u

∣∣∣∣ ≤
mn

π
,

and the condition in expression (8) is satisfied if
∑∞
n=1 exp

{
−n/m2

n

}
<∞, for which it suffices that

m2
n (logn) /n→ 0.
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