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ASSESSING THE RELATIVE PERFORMANCE OF UNIVERSITY 
TECHNOLOGY TRANSFER OFFICES IN THE U.K.: 

 PARAMETRIC AND NON PARAMETRIC EVIDENCE 
 

 
ABSTRACT 

 We present evidence on the relative efficiency of U.K. university technology 
transfer offices (TTOs) using data envelopment analysis (DEA) and stochastic frontier 
estimation (SFE).  We find that U.K. TTOs exhibit low levels of absolute efficiency.  
Universities located in regions with higher levels of R&D and GDP appear to be more 
efficient in technology transfer, implying that there may be regional spillovers in 
technology transfer.  Our results suggest that TTOs may need to be reconfigured into 
smaller units, since there may be scope for the development of regionally-based, 
sector focused TTOs.  Consistent with qualitative evidence from U.S. TTOs (e.g., 
Siegel et al. (2003a, b, c)), we find that there may be a need to enhance the skills and 
capabilities of U.K. TTO managers and licensing professionals. 
 
 
JEL classification: D23; L31; O31; O32  
 
Keywords: Technology transfer, university/industry interaction; data envelopment 
analysis (DEA); stochastic frontier estimation (SFE) 
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I. INTRODUCTION 

 University administrators and policymakers in regional, state, and national 

governments increasingly view research universities as engines of economic growth, 

via the commercialization of intellectual property (IP).  As a result, the generation and 

exploitation of IP has become a central issue for institutions of higher learning.  The 

successful creation and commercialization of IP can lead to financial gains for the 

university and external benefits for surrounding communities.  

 Licensing has traditionally been the most popular mode of university 

technology transfer.  Field-based, qualitative research (e.g., Siegel et al., 2003b) 

appears to confirm this stylized fact.1  As a result, studies of the relative performance 

of U.S. university technology transfer offices (e.g. Thursby and Kemp, 2002 and 

Siegel et al., 2003a) use the number of licenses or licensing income as “outputs” of 

technology transfer.   This empirical work has been based on data provided by the 

Association of University Technology Managers (AUTM) and has employed non-

parametric (e.g. Thursby and Kemp, 2002) and parametric techniques (Siegel et al., 

2003a) to assess relative “productivity.”     

This paper makes two contributions to the literature.  First, we present the first 

empirical evidence on the relative efficiency of U.K. universities, based on a 

comprehensive dataset constructed by researchers at the University of Nottingham, 

with the support of the U.K.-based Universities Company Association (UNICO).  

Second, we compare parametric and non-parametric approaches to productivity 

measurement. 

The U.K. is an interesting country to examine because it is not as advanced as 

the U.S. in university technology transfer.  Therefore, we conjecture that U.K. 
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universities may exhibit higher levels of heterogeneity with respect to relative 

efficiency than their U.S. counterparts.  Such heterogeneity underscores the 

importance of contrasting parametric (SFE) and non-parametric (DEA) approaches to 

the measurement of relative technology transfer performance.   While DEA generates 

an efficiency frontier on the basis of individual universities, SFE yields an efficient 

frontier on the basis of average values.  DEA and SFE can generate quite different 

results, especially when high levels of heterogeneity and noise are present in the data. 

The remainder of this paper is organized as follows.  Section II describes 

techniques used to assess the relative efficiency of university technology transfer 

offices.  In the following section, we present our econometric models.  Section IV 

describes the data.  Section V presents empirical results.  The final section consists of 

conclusions and suggestions for additional research.   

 

II.   ASSESSING RELATIVE EFFICIENCY IN UNIVERSITY 
       TECHNOLOGY TRANSFER   
 
 Most studies of relative efficiency are based on a production function 

framework, in which a “best practice” frontier is constructed.  The distance from the 

frontier represents the level of “technical” inefficiency, or its inability to generate 

output from a given set of inputs.  Two methods are used to estimate these frontiers.  

One approach is to specify a functional form for the production function and then to 

estimate the production function parameters using regression methods.  The 

parametric approach is useful when there is more interest in estimating average 

relationships than in identifying outliers for diagnostic purposes.  That is, the 

relationship derived is an "average" production function, so an implicit assumption is 

                                                                                                                                       
1 In recent years, universities spin-outs (USOs) have become a much more popular mode of technology 
transfer.  The importance of licensing was reinforced, however, in the recent Lambert report on 
university technology transfer (Lambert, 2003). 
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that these parameters are the same for all firms.  If the right conditions hold, the 

parametric approach yields fairly precise estimates.  However, many factors can 

greatly diminish the precision of these parameter estimates, such as multicollinearity, 

model misspecification and measurement error, the use of multiple outputs, and 

omitted variables.  

 Production frontiers are also estimated using nonparametric models, which 

offer some advantages, relative to the parametric approach.   For instance, these 

methods obviate the need to specify a functional form for the production frontier and 

also enable us to identify “best practice” universities.  Nonparametric techniques can 

also handle multiple outputs.  

 Perhaps the most popular non-parametric estimation technique is data 

envelopment analysis (DEA).  The DEA method is essentially a linear-program, 

which can be expressed as follows:  

                              s              m 
(1) Max hk =  Σ  urkYrk / Σ  vikXik 
                            r=1           i=1 
 
subject to 
 
              s              m 
(2)         Σ  urkYrj / Σ  vikXij < 1; j=1,..., n 
            r=1          i=1 
                  
            All urk > 0; vik > 0 
 
where  
 
       Y = a vector of outputs 
       X = a vector of inputs  
        i  = inputs  (m inputs) 
        r  = outputs (s outputs) 
        n = # of decision-making units (DMUs), or the unit of observation in a DEA 
              study  
 
 The unit of observation in a DEA study is referred to as the decision-making 

unit (DMU).  A maintained assumption of this class of models is that DMUs attempt 
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to maximize efficiency.  Input-oriented DEA yields an efficiency “score,” bounded 

between 0 and 1, for each DMU by choosing weights (ur and vi) that maximize the 

ratio of a linear combination of the unit's outputs to a linear combination of its inputs 

(see equation (2)).  DEA fits a piecewise linear surface to rest on top of the 

observations.  This is referred to as the "efficient frontier."  The efficiency of each 

DMU is measured relative to all other DMUs, with the constraint that all DMU's lie 

on or below the efficient frontier.  The linear programming technique identifies best 

practice DMUs, or those that are on the frontier.  All other DMUs are viewed as being 

inefficient relative to the frontier DMUs.  

 Stochastic frontier estimation (SFE) is a parametric method developed by 

Aigner, Lovell and Schmidt (1977) and Meeusen and Van den Broeck (1977).  SFE 

generates a production (or cost) frontier with a stochastic error term that consists of 

two components: a conventional random error (“white noise”) and a term that 

represents deviations from the frontier, or relative inefficiency.  Following Battese  

And Coelli (1995), the stochastic frontier model in cross sectional form is: 

(3)  )exp(
iiii

UVxY !+= "          

where Yi represents the production of  the i-th observation (i=1,2,…N)., xi is a (1 x k) 

vector of values of known functions of inputs of production and other explanatory 

variables associated with the i-th firm. Β is a (k x 1) vector of unknown parameters to 

be estimated. The Vis are assumed to be iid N(0, 2

V
! ) random errors, independently 

distributed of the Uis . The Uis are the non-negative random variables associated with 

technical inefficiency of production, which are assumed to be independently 

distributed, such that Ui is obtained by truncation (at zero) of the normal distribution 

with a mean ziδ and a variance, σ2.  Zi is a (1 x m) vector of explanatory variables 
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associated with technical inefficiency of the production of observations and finally δ 

is an (1 x m) vector of unknown coefficients. 

 Equation (3) specifies the stochastic frontier production function in terms of 

the original production values. In order to explain technical efficiency, this model 

needs to be extended to make technical efficiency conditional on exogenous variables. 

Following Battese and Coelli (1995), we can model explanatory variables in a one 

stage SFE model.  That is, the technical inefficiency effects, the Uis, are assumed to 

be a function of a set of explanatory variables, the zis and the unknown vector of 

coefficients δ.  If all the elements of the δ vector are equal to 0, then the technical 

inefficiency effects are not related to the z variables, and so the half normal 

distribution specified in Aigner, Lovell and Schmidt (1977) is obtained.   

 The technical inefficiency effect, Uit, in the stochastic frontier model (3) can 

be specified as: 

(4) 
iii

WzU += !    

where the random variable, Wi  is defined by the truncation of the normal distribution 

with zero mean and variance, σ2. 

 The method of maximum likelihood is used for the simultaneous estimation of the 

parameters of the stochastic frontier model and the model for the technical inefficiency 

effects.  The likelihood function is expressed in terms of the variance parameters, 

222

UVS
!!! +"   and 22

SU
!!" # . Therefore γ is the ratio of the standard error of technical 

inefficiency to the standard error of statistical noise, and is bounded between 0 and 1. Note 

that γ = 0 under the null hypothesis of an absence of inefficiency, indicating that all of the 

variance can be attributed to statistical noise.  The technical efficiency of production for 

the i-th observation is defined by: 

(5) )exp()exp(
iiii

WzUTE !!=!= "         
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 Choosing between the parametric stochastic frontier estimation (SFE) and the 

non-parametric data envelopment analysis (DEA) is not without controversy (Gong 

and Sickles, 1993).  A main attraction of stochastic frontier analysis is that it allows 

hypothesis testing and the construction of confidence intervals.  A drawback of the 

approach, however, is the need to assume a functional form for the production 

function and for the distribution of the technical efficiency term.  The use of DEA 

obviates the need to make these assumptions and also allows for multiple output 

production functions.  A major weakness of DEA is that it is deterministic.  Hence, 

DEA does not distinguish between technical inefficiency and noise.   

 Thursby and Kemp (2002) and Siegel et al. (2003a) use DEA and SFE, 

respectively, to analyze the relative productivity of university technology transfer 

offices.  Unfortunately, there has not been any comparison of the two techniques 

using the same database.  We seek to fill this gap in this paper.  

  There are also issues in using these techniques to explain technical 

inefficiency.  Generally two-stage (i.e. calculation of efficiency scores and regression 

of these scores against exogenous variables) is problematic.  In the case of DEA, 

many authors have estimated OLS or TOBIT regressions on environmental variables 

in the second stage.  Problems arise with this approach, as there is no consideration of 

the data generating process, upon which the efficiency scores are conditioned. 

Another more serious problem arises in that DEA efficiency scores are serially 

correlated, and consequently the standard approaches to inference are invalid (Simar 

and Wilson 2004). 

Similarly, with SFE, where the first stage involves the specification and 

estimation of the stochastic production function and the prediction of technical 

inefficiency, the assumption is made that inefficiency effects are identically 
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distributed.  However, the second stage regression involves modelling a regression of 

predicted inefficiency effects on a number of independent explanatory variables. This 

contradicts the assumption of identically distributed inefficiency effects with respect 

to the frontier. There can also be endogeneity problems where there is a close 

relationship with the first stage “inputs” and the second stage independent variables. 

 It is for this reason that the chosen approach used to explain technical 

efficiency is the extension to the SFE framework introduced in Battese and Coelli 

(1995). This is a one stage combined estimation technique whereby the frontier is 

conditional upon explanatory variables. DEA equivalents are not yet available, 

although theoretical models are currently being developed (Simar and Wilson, 2004).  

 To assess and “explain” university licensing productivity, we must identify 

outputs, inputs, and the determinants of inefficiency. We follow Siegel et al. (2003a), 

who used field research to specify the production function with two outputs: (i) the 

number of licensing agreements consummated by the university during the reported 

fiscal year; and (ii) licensing income generated by a university’s portfolio of licenses.   

Siegel et al (2003a) identified three inputs: (i) the number of invention disclosures at a 

university; (ii) the number of full-time equivalent employees in the university’s 

technology transfer office; and (iii) external legal costs associated with IP. 

 For U.S. universities, invention disclosures are an excellent proxy for the pool 

of available technologies for licensing (or other commercial purposes).  In the U.K. 

context, however, it is more accurate to use total research income as a proxy for a 

university’s stock of technology.  This is because there is no U.K. counterpart to the 

Bayh-Dole Act, enacted in the U.S. in 1980.  As a result, there is no formal 

requirement for faculty members to disclose inventions. Furthermore, in the U.S. 

there is some debate as to how effective the Bayh-Dole Act is in terms of achieving 
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full invention disclosure.  Thursby and Kemp (2002) reported that less than half of 

faculty inventions with commercial potential are disclosed to the TTO.  Some faculty 

members fail to disclose their inventions because they do not realize the commercial 

potential of their ideas or because they do not want to deal with the university 

bureaucracy (see Siegel et al. (2003b)), but often it is because they do not want to 

delay publication until the technology is patented (or licensed).  It is for this reason 

that we estimate our models both employing invention disclosures and total research 

income as alternative measures.  The other two inputs are the same as those presented 

in Siegel et al. (2003a). 

 Consistent with Siegel et al. (2003a), we assume that internal (organizational) 

and external (environmental) factors can explain relative efficiency in university 

technology transfer.  These authors used the following organizational variables: (i) 

whether the university is private, (ii) whether it has a medical school, and (iii) the age 

of the technology transfer office.  We use (ii) and (iii), but not (i), since all but one 

U.K. research university is a public institution.  

 With respect to external factors, it is important to include environmental 

determinants at the regional level, since university research may generate local spill-

over effects. For example, Bania et al. (1993) find that there is a positive relationship 

between university R&D and the number of start-ups in the same region; and Jaffe et 

al. (1993) find that patents generated within a region are more likely to be cited by 

firms in the same region. Therefore, we follow Siegel et al. (2003a) and employ two 

measures at the regional level: regional GDP and the level of regional R&D intensity. 

The regional measure of GDP is an attempt to measure the overall wealth of the 

region, which will capture the overall level of economic activity. The regional 
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measure of R&D intensity is a measure of the level of spending by industry per capita 

on R&D, which captures the R&D intensity of local industry.2 

 

III.   EMPIRICAL MODELS 

 A summary of our empirical models is presented in Table 1.  We model the 

single output, three input production function using two techniques and two functional 

forms for the production function. The first model is DEA-based; the second is a log- 

linear Cobb Douglas stochastic production function; the third is a translog stochastic 

production function. 

------------- 

Insert Table 1 here 

------------- 

 DEA efficiency scores were computed individually for each of the licensing 

outputs. These scores were calculated by solving the following linear programme for 

each observation: 

(6) 
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2 GDP and R&D measures were provided by the U.K. Office for National Statistics. Regional 
GDP is reported as an index of GDP per capita. R&D expenditure is reported as business 
R&D expenditure per capita. 
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These efficiency scores show the maximum expansion of outputs (number of licenses 

[NOLIC] or license income [LICINC] ) to the best practice frontier, given the level of 

inputs (invention disclosure [INVDISC] or total research income [TRESINC], 

external legal intellectual property spending [LEGAL] and the number of technology 

transfer office staff [STAFF]).  When invention disclosures are included in the model, 

this is equivalent to model 1 in Table 1 as the DEA estimators are not based on 

environmental variables. Conversely, when total research income is included in the 

model, this is the equivalent to model 4 in Table 1. If the resultant score is equal to 

one, the observation is on the frontier and is efficient.  In output space, if θ is greater 

than one, then the observation is said to be inefficient. In this paper, the DEA results 

are reported as 1/θ, for ease of comparison with SFE results.  

 Our SFE model is described as follows.  The production function is modelled 

in four alternative ways utilizing the Cobb Douglas and translog functional form. 

Equations (7a) and (7b) represent the two alternative model Cobb-Douglas 

specifications, and equations (8a) and (8b) represent the two basic translog 

specifications: 

(7a) 
iiiii

UVSTAFFiLEGALINVDISClicense !++++= lnlnlnln
3210
""""            

(7b) 
iiiiii

UVSTAFFLEGALTRESINClicense !++++= lnlnlnln
3210
""""                        

(8a) 

 

iiii

iiii

iii

iiii

UVSTAFFLEGAL

STAFFINVDISCLEGALINVDISC

STAFFLEGALINVDISC

STAFFLEGALINVDISClicense

!++

++

+++

+++=
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)ln(ln)ln(ln

)(ln5.0)(ln5.0)(ln5.0
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1312
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(8b) 



 13 

iiii

iiii

iii

iiii

UVSTAFFLEGAL

STAFFTRESINCLEGALTRESINC

STAFFLEGALTRESINC

STAFFLEGALTRESINClicense

!++

++

+++

+++=

)ln(ln

)ln(ln)ln(ln

)(ln5.0)(ln5.0)(ln5.0

lnlnlnln

23

1312

2

33

2

22

2

11

3210

"

""

"""

""""

             

where license is either the annual licensing agreements or income, INVDISC is the 

average invention disclosures, LEGAL is expenditure on external legal IP protection, 

STAFF is the number of staff involved in licensing in the TTO office. In equations 7b 

and 8b, INVDISC is replaced by TRESINC or total research income. As the technical 

efficiency results and elasticities are very much dependent on the functional form, it is 

desirable to estimate both the simpler, but more restrictive Cobb Douglas frontier and 

the more complex flexible functional form of the translog. Equations (7a) and (8a) 

represent model 1-2 production technology in Cobb-Douglas and translog form, while 

equations (7b) and (8b) represent the basic production technology for models 3-4 in 

Cobb-Douglas and translog form (see Table 1). 

 Following Siegel et al. (2003a), we use a one-stage model to explain the 

technical efficiency term (Ui): 

(9) iijijii DRGDPAGEMEDSCHU µ!!!!! +++++= &
54210

   

where MEDSCH is a dummy denoting whether the university has a medical school, 

AGE is the number of years that the university has had a TT office, GDP is a regional 

index measure of GDP per head and R&D is the regional R&D intensity in 2001. 

Equation 9 represents the inefficiency effects in models 2 and 4 in table 1. 

 

IV. DATA 

 Our data are derived from a March 2002 mail survey, containing quantitative 

and qualitative questions, that was sent to the top 122 U.K. universities, as ranked by 

research income. These institutions were identified using the Higher Education 
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Statistics Agency (HESA) publication entitled Resources of Higher Education 

Institutions (2000/2001). The remaining 45 universities accounted for just 0.2% (or 

£3.9 million) of total research grants and contract expenditures by UK universities in 

financial year 2001. 

 We received information from 98 of these top 122 universities. This included 

many zero values, when the university was not active in the field of technology 

transfer and so only provided us with some basic information.  Our final sample 

includes only those institutions that provided complete information. In total, we 

obtained data on 50 universities for the different variables.  In addition, we were able 

to obtain partial data from the remaining universities in order to test the 

representativeness of our sample.  The results of this analysis are presented in Table 2.  

These figures reveal that our sample of universities is somewhat skewed towards 

those institutions that are more active in technology transfer.  The universities in our 

sample have significantly greater total research income (p<.01), are more likely to 

have a medical school (p<.01), and have greater experience, in terms of the number of 

years the university has been involved in technology transfer activities (p<.01). No 

differences were found with respect to the measures of regional GDP index and 

regional R&D intensity.  

------------- 

Insert Table 2 here 

------------- 

The descriptive statistics for the sample of universities is presented in Table 3. 

The descriptive statistics show that our sample of 50 universities generated a mean of 

11.72 licenses and £0.33m of revenues from licenses in the financial year 2001. There 

is, however, a high degree of heterogeneity between the different universities in terms 
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of license numbers and license income, as indicated by the high standard deviations. 

This pattern of high standards deviations is also present for the inputs and the 

technical inefficiency measures. 

------------- 

Insert Table 3 here 

------------- 

The correlation matrix of all the variables in the analysis, with the exception of 

the binary variable for the presence of a medical school, is presented in Table 4. Not 

surprisingly, we find some evidence of multi-collinearity, especially in relation to the 

relationships between INVDISC and TRESINC, (r = 0.79), which are alternative 

indicators of technological input, and between both of these measures and the other 

inputs LEGAL and STAFF.  

------------- 

Insert Table 4 here 

------------- 

V. EMPIRICAL RESULTS  

 DEA results for the full samples are reported in Table 5, where the inverse of 

the output oriented scores are shown for comparability with the SFE results.3  The 

DEA scores show the average efficiency scores for the whole sample. Technical 

efficiency, i.e. location on the frontier, is represented by a score of one. It can be seen 

that in all models, the level of average inefficiency is very high. For example, the 

interpretation of the average inefficiency score in the DEA number of licences (1)4, is 

                                                
3 The inverse of the radial output distance function, under the assumption of strong 
disposability in outputs and inputs, and under assumptions of constant returns to scale, are 
equivalent to the radial input distance function. 
 
4 Model 1 uses invention disclosure, staff and IP expenditure as inputs. 
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that on average, U.K. universities are operating at 18.7% efficiency. In other words, 

given inputs, U.K. universities could increase the number of licences five fold. 

Similarly when analyzing licensing income (1)5, on average, U.K. universities are 

operating at 13.9% efficiency, indicating in terms of licensing income, on average 

universities could increase licensing income seven fold. When invention expenditure 

is substituted for invention disclosure, even lower efficiency scores were calculated. 

Overall, it seems that efficiency in licensing activity is low, and on average, 

universities are less efficient in the generation of income, than license creation. 

------------- 

Insert Table 5 here 

------------- 

 The very high inefficiency scores, however, could be a function of both the 

DEA process and the structure of the data. An analysis of the standard deviation of the 

efficiency scores reveals substantial variance. Also, in constructing the efficiency 

scores, DEA constructs an estimated best practice frontier for each observation, rather 

than using an average frontier (as in SFE), hence the variation in efficiency scores is 

likely to be higher. Finally, DEA is deterministic in nature, and therefore, any noise in 

the data is treated as inefficiency. This makes the DEA results very sensitive to 

outliers. 

 To address this issue, we employed Cook’s distance test to identify 

“influential” outliers (see Lichtenberg and Siegel (1991)). The DEA models were then 

re-run with the outliers removed.6  These results are reported in Table 6. By removing 

the outliers, the level of efficiency increased substantially, the efficiency score when 

                                                
5 Model 2 uses invention expenditure, staff and IP expenditure as inputs. 
 
6 The outliers are all “redbrick” universities, or established eminent research institutions. 
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the number of licenses was is the output increased from 18.78% efficiency to 35.9% 

efficiency. There was, however, only a small increase in efficiency scores when 

licensing revenue is the output. This suggests that the outliers had a significant effect 

on the position of the number of licenses frontier, but not that much impact on the 

licensing income frontier.  However, by removing outliers we are also eliminating 

some of the leading research universities. This is not satisfactory, as by removing the 

leading research institutions, we will not get an accurate construction of the best 

practice frontier. Therefore, we will take the DEA scores from the whole sample for 

comparison. 

------------- 

Insert Table 6 here 

------------- 

 The various stochastic frontier models were estimated using two alternative 

functional forms, the Cobb Douglas and the Translog functional forms. The model 

specifications 1 – 4 (see Table 1) were run with alternative outputs: the number of 

licenses and licensing income.  Maximum likelihood estimates of these models are 

shown in the appendix, tables A1-A4.7 In total, sixteen models are estimated based on 

the four models shown in Table 1. Each model in Table 1 is estimated for the two 

outputs, number of licenses and licensing income, with two different functional forms, 

the simple but more restrictive Cobb-Douglas and the fully flexible translog. Hence, 

the first stage in the analysis is to assess the appropriate functional forms and 

specification of the models.  

                                                                                                                                       
 
7 The parameters were estimated using FRONTIER version 4.1 (Coelli, 1996). The log-
likelihood function for this model is presented in Battese and Coelli (1993), as the first partial 
derivatives of the log likelihood function with respect to the parameters of the model. 
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 Following Battese and Broca (1997), log-likelihood ratios were used to 

formally test the correct model specification and functional form. The log likelihood 

ratio models are used because of the nested nature of the models. These results are 

shown in table 7. The base models for hypothesis testing were models 2 and 4, i.e. 

those including technical inefficiency effects. 

------------- 

Insert Table 7 here 

------------- 

 The first null hypothesis, 3,....1,0:
0

=!= jiH ij" , is that the Cobb-Douglas 

is an adequate functional form for the data. For the number of licences model 2 (the 

full model with invention disclosure as an input), the null hypothesis was accepted, 

and hence the Cobb-Douglas functional form was found to be an adequate 

representation of the data. This was also the case when total research income was 

substituted for invention disclosure (model 4). Therefore in all number of licenses 

models, the Cobb-Douglas functional form was found to be an adequate 

representation of technology. 

 Note that when licensing income is used as an output, the null hypothesis was 

rejected for model 2, but accepted for model 4. Therefore, when invention disclosures 

are included as an input to licensing revenues, the Cobb- Douglas functional form is 

not an adequate representation of technology, and the Translog version of the model is 

preferable. This highlights the importance of testing the functional form where 

different variables are included, as the “one size fits all” approach may lead to an 

incorrect technology representation.   

 The second null hypothesis, 0:
0

=!H , specifies that the universities are fully 

efficient, i.e. that there is no technical efficiency.  If this were the case, it would be 
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appropriate to model the technology using the traditional mean response function. 

This hypothesis was strongly rejected in all cases, which supports the use of technical 

efficiency models 2 and 4. 

 The final stage of the model selection process involves the choice between 

invention disclosures or total research income as an input (models 2 and 4) for the two 

outputs. Because these models are not nested unlike the previous tests, the aikaike 

information criterion (AIC)8 is used to determine which input is appropriate for each 

output.  These results are shown in Table 8. The models with the lowest AIC scores 

were chosen, and hence, when output is the number of licences, model 2 was chosen, 

with invention disclosure as an input. For the model with total research income as an 

output, model 4, with invention expenditure was chosen. 

------------- 

Insert Table 8 here 

------------- 

 Therefore the two models that we will focus on in our discussion of results are 

model 2 with the Cobb-Douglas functional form for number of licences, and model 4 

with the Cobb-Douglas functional form for licensing income. 

 The elasticities of the different inputs are shown in Table 9.  In model 2, the 

coefficient on invention disclosures is positive and highly significant, as is the 

coefficient on total research income in model 4. Therefore, higher levels of invention 

disclosure or total research income lead to a higher number of licences or higher 

licensing income. Similarly, the significant positive elasticity for number of staff, 

                                                
8 The aikaike information criteria (AIC) can be estimated by -2*log Likelihood + 2*p, where 
p is the number of parameters estimated in the models. This way the AIC scores are adjusted 
for the number of parameters involved in the model, allowing the comparison between the 
Cobb-Douglas and Translog functional forms. The models with the lowest AIC score were 
chosen as the best fitting models. 
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suggests that hiring more staff, leads to both a higher number of licences and higher 

licensing revenues. It appears as though external legal IP expenditure has a negative, 

but not significant, influence on the number of licenses, but is positive and significant 

in determining licensing income in most models. The protection of licences, therefore, 

is important in gaining revenue from licenses, or inversely, universities with more 

lucrative inventions are more likely to use external IP protection. This finding is 

consistent with findings reported in Siegel et al. (2003a) for U.S. university 

technology transfer offices. 

------------- 

Insert Table 9 here 

------------- 

 A closer inspection of the elasticities indicates that in both models there are 

decreasing returns to scale. This could be an indicator of “x-inefficiency” in larger 

tech transfer offices in gaining new licenses and licensing income.  Alternatively, it 

could be that the strategies of the larger institutions are different, whereby the focus is 

on only licensing lucrative inventions, resulting in a lower number of licenses, and 

time delays in realising the licensing revenues from the aforementioned lucrative 

licenses, could result in lower licensing incomes.    

 Turning to technical efficiency estimates (Table 10), both model specifications 

provide low, but consistent average technical efficiency scores. For model 2, 

employing the number of licenses as the output, technical efficiency is reported at 

26%, whereas for licensing income, average technical efficiency is reported at 29%. 

These indicate the potential for universities to improve there output 3-4 fold, given 

their inputs.  

------------- 
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Insert Table 10 here 

------------- 

When compared to the estimated DEA scores, it can be seen that the SFE 

efficiency measures are much lower (18.8% and 13.3% verses 26% and 29%).  This, 

however, is a function of the deterministic nature of DEA, and the noise component.  

In SFE, the noise component is separated from the inefficiency term, whereas in DEA 

all noise is treated as inefficiency. In both of the SFE models, the estimate for the 

variance parameter, γ, is significant and close to 1. This indicates that technical 

inefficiency effects are likely to be highly significant in the analysis of output of 

universities. If γ had equalled 0, this would have indicated that the deviations from the 

frontier were entirely due to noise, and the model reduces to a traditional mean 

response model, where technical efficiency is assumed. Alternatively, if γ had 

equalled 1, this would have indicated that all deviations are due to economic 

inefficiency, and hence the stochastic frontier would not be statistically different from 

a deterministic frontier with no random error (equivalent to DEA). Therefore, the 

statistically significant γ of 0.999 calculated for all but one model, shows that we are 

justified in using full stochastic frontier model with inefficiency effects, as some 

(albeit a relatively small amounts) noise is present. DEA does not allow for this an 

hence will have a tendency to over estimate inefficiency levels. 

 The technical inefficiency model results for the parsimonious models are 

shown in Table 11. In model (2), using the number of licenses as the dependent 

variable, the coefficient on age of the TT office is positive and statistically significant 

(p<.10), suggest that older TT offices are less efficient.  This is contrary to findings 

presented in Mowery et al. (2001) and Siegel et al. (2003a). This, however, could 

reflect diseconomies of scale, as age is strongly correlated with the size (invention 
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disclosures and number of TT office staff), see Table 4. Alternatively older U.K. 

universities may have a different strategy in licensing, such as maximising returns to 

licensing, as opposed to newer institutions which might have a strategy of maximising 

the number of licenses. 

------------- 

Insert Table 11 here 

------------- 

 Note also that the coefficient on regional R&D intensity is negative and 

significant (p<.01), as reported in Siegel et al. (2003a). This suggests that universities 

in regions with a higher R&D intensity are more efficient in generating new licences. 

This could be due to spillover effects from private R&D, through collaboration and 

partnerships or due to R&D agglomeration effects.  

Turning to the licensing income model, the presence of a medical school is found to 

be positive and significant (p<.05).  This suggests that U.K. universities with medical 

schools have higher levels of technical inefficiency, a finding that is contrary to 

evidence on U.S. universities presented in Siegel et al. (2003a). This result, however, 

may be due to differences between end product markets (health care) in the U.K. and 

U.S. In the case of the U.S. the health care market is much larger than the U.K.  We 

also find that universities in areas with higher economic activity (regional GDP) are 

more effective. In sum, it appears as though there are strong regional effects, both in 

terms of economic (GDP) and R&D activity. This could be because of agglomeration 

effects (e.g. high tech industries being clustered in certain regions), which may have 

important implications for government policy on commercialisation of research.  

 

CONCLUSIONS 
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 This paper extends previous research on the relative performance of U.S. 

universities technology transfer offices by Thursby and Kemp (2002) and Siegel et al. 

(2003a).  We report the first analysis of the relative productivity of U.K. university 

technology transfer offices and also simultaneously present parametric and non-

parametric evidence, which was reported separately in the U.S.-based papers.   

One striking feature of the U.K. data is the substantial heterogeneity in relative 

performance.  This heterogeneity is present in both the non-parametric DEA and 

parametric SFE approaches.  We eschew the DEA findings because they are shown to 

be much more sensitive to the presence of outliers.  In general, the production 

function parameters have the expected signs and reasonable magnitude.  That is, the 

inputs have positive marginal products.   

However, in contrast to the U.S., we find decreasing returns to scale to 

licensing activity, using both output measures and alternative functional forms from 

the production frontier.  This could be a timing issue, since it is conceivable that more 

substantial payoffs to technology transfer by larger universities may be just a few 

years down the road.  It is important to note that many schools have just begun 

gearing up for this activity (Wright, Binks, Vohora, and Lockett, 2003).   

In each variant of the model, we also strongly reject the absence of 

inefficiency effects.  In fact, the SFE analysis reveals that average levels of technical 

efficiency for the SFE analysis are approximately 26-29%.  This indicates that 

substantial improvements can be made with respect to the efficiency of U.K. 

technology transfer offices.  

It might also be useful to analyze organizational and institutional practices in 

the U.S. that have been successful in enhancing UITT effectiveness.  For example, 

Link and Siegel (2004) find that universities having more attractive incentive 
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structures for technology transfer, i.e., those that allocate a higher percentage of 

royalty payments to faculty members, tend to be more efficient in technology transfer 

activities. This has resonance with survey evidence from the U.K. that identifies 

incentive problems as a barrier to the transfer of technology (Wright, Binks, Vohora 

and Lockett, 2003). Thursby and Thursby (2002) suggest, vis-à-vis licensing by 

universities in the U.S., the possibility of learning by doing effects on the ability of 

technology transfer officers to facilitate transactions. 

With respect to evidence on the determinants of relative inefficiency, we find 

that having a medical school has a negative effect on efficiency.  Older TTOs appear 

to be less efficient, suggesting an absence of learning effects.  Universities located in 

regions with higher levels of R&D and GDP appear to be efficient in technology 

transfer, implying that there may be regional spillovers in technology transfer. 

These findings may have a number of significant policy implications. First, the 

X-inefficiency in larger universities may be the result of the broad-based nature of 

their research, as opposed to smaller more specialized universities. That is, TTOs in 

larger universities have to provide commercialization services for a wide range of 

industries. Existing research has shown that different industry sectors require different 

types of knowledge and different business models (Druilhe and Garnsey, 2004).  

Owen Smith and Powell (2001) have shown that technology transfer in the life 

sciences is substantially different than technology transfer in the physical sciences.  

Larger offices may suffer from the problem of being generalists rather than 

specialists. Therefore, an improvement in performance of university TTOs may 

require the creation of smaller, more specialist TTOs at universities rather than just 

increasing the size of technology transfer offices per se. 



 25 

 It may be appropriate for generalist universities to adopt different approaches 

according to the type of technology being transferred (Clarysse, Wright, Lockette, van 

de Velde and Vohora, 2004). Bearing in mind that generalist universities may engage 

in a wide range of technology transfer activities, this may indicate a need to 

reconfigure the management of technology transfer into a differentiated approach 

whereby one or more divisions focus on particular high-tech sectors with high 

revenue generation prospects while others focus on activities designed to meet 

broader objectives.      

Second, the strong regional effects lead us to suggest that in some regions, due 

to lower levels of R&D and economic activity, universities will be less efficient in the 

commercialisation of technology.  In these instances, government might use such 

regional TTOs to offer additional assistance to both universities and business. A 

potential advantage to organizing TTOs on a regional basis is that it may facilitate the 

emergence of specialist teams for different industry sectors.  It might also enable the 

development of a critical mass of expertise and experience. Of course, such an 

approach may need to address potential differences in the relative strengths and 

objectives of the universities involved. 

Third, our findings have implications for notions that TTOs will become more 

efficient through learning by doing.  Our findings indicate that older TTOs are not 

necessarily more efficient. This may highlight the possibility that older TTOs are 

staffed by people with a university administration rather than a commercial 

background and may suggest a need to recruit expertise from the private commercial 

sector. Further more fine-grained research is required to examine the link between the 

particular skills of TTOs and their efficiency in order to be able to shed light on this 

issue.  
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Our findings also have implications for policy initiatives to redress the balance 

in university technology transfer between spin-outs and licensing (see e.g. Lambert, 

2003; HM Treasury, 2004). The magnitude of TTO inefficiency suggests that without 

emphasis on the development of skills of TTOs, a shift of emphasis towards licensing 

may not necessarily have the desired effects in respect of revenue creation for 

universities.   To date, the policy focus has been on start-up creation.  However, 

policymakers should also be mindful of the expertise required to ensure that 

licensable inventions are identified, a correct choice is made between licensing and 

spinning-out, and that optimal licensing arrangements are made, both in terms of  the 

legal delineation of IP, as well as building links with the most suitable industry 

partners. This again emphasizes the need to recruit and train TTOs with the 

appropriate capabilities.            
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Table 1: Model Specifications  
 1 2 3 4 
Production Frontier     
Output: Number of licences or licensing Income √ √ √ √ 
Invention disclosures √ √   
Total research income   √ √ 
Number of TT office staff √ √ √ √ 
External legal IP spend √ √ √ √ 
Inefficiency Model     
Medical school  √  √ 
Age of TT office  √  √ 
Regional GDP  √  √ 
Regional R&D intensity  √  √ 
 
 
Table 2: Sample response bias tests 
 
Basis for Comparison  N Mean S.D. Chi Sq a 

Respondent 50 31.86m 37972 29.32*** Total research income 

Non respondent 60 7.68m 12706  
Respondent 50 .46 .50 16.06*** Medical school 
Non respondent 60 .12 .32  
Respondent 50 9.32 6.71 16.61*** Age of TT office 
Non respondent 53 5.05 5.49  
Respondent 50 98.20 17.06 .54 Regional GDP 
Non respondent 60 100.93 18.73  
Respondent 50 .18 .16 .21 Regional R&D 

intensity Non respondent 60 .17 .15  
a Chi-Squared with ties 
Significance: * p<.1; ** p<.05; *** p<.01 
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Table 3: Summary Statistics for U.K. Universities in Our Sample  
 

Variable Variable 
name 

N Mean S.D. Min Max 

Number of Licences NOLIC 47 11.72 13.47 0 58 
License Income LICINC 48 0.33m 543802 0 2.97m 
Invention Disclosures INVDISC 47 28.02 30.62 0 152 
Total Research Income TRESINC 50 31.86m 37972 0.62m 146m 
Number of TT office staff  STAFF 50 6.84 7.33 0 35 
External Legal IP 
    Expenditure 

LEGAL 49 0.16m 265712 0 1.16m 

Medical School MEDSCH 50 .46 .50 0 1 
Age of TT office AGE 50 9.32 6.71 0 31 
Regional GDP GDP 50 98.2 17.06 76 128 
Regional R&D intensity R&D 50 .18 .15 .05 .54 
 
 
Table 4: Correlation Coefficients 
 
 NOLI

C 
LICINC INVDIS

C 
TRESIN

C 
STAFF LEGA

L 
AGE GDP R&D 

NOLIC 1         
LICINC 0.3930 1        
INVDISC 0.6946 0.5546 1       
TREINC 0.6875 0.4728 0.7909 1      
STAFF 0.3983 0.6428 0.6225 0.6158 1     
LEGAL  0.6078 0.3214 0.7265 0.6990 0.4808 1    
AGE 0.1748 0.2385 0.5291 0.4934 0.6248 0.3442 1   
GDP 0.2719 0.1870 0.1249 0.1413 -0.0140 0.1616 -0.2383 1  
R&D 0.5782 0.1107 0.2631 0.3278 0.2110 0.2901 -0.0291 0.3476 1 

 

Table 5: DEA Full Sample Results   
 
  Number of licences Licensing income 
Model INVDISC 

(Model 1) 
TRESINC 
(Model 3) 

INVDISC 
(Model 1) 

INVDISC 
(Model 3) 

DEA Efficiency 0.188 0.143 0.140 0.133 
SFE 
Efficiency  

0.26 0.23 0.41 0.29 

Note: technical efficiency=1. 
The inverse of the output efficiency scores are shown for comparability with the SFE scores. 
The parsimonious SFE efficiency scores from the various output /input combinations are 

reported. 
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Table 6: DEA Results with Outliers Omitted  
                                                   Dependent Variables: 
  Number of Licences Licensing income 
Model INVDISC 

(Model 1) 
TRESINC 
(Model 3) 

INVDISC 
(Model 1) 

TRESINC 
(Model 3) 

DEA Efficiency 0.350 0.266 0.158 0.138 
SFE Efficiency  0.260 0.230 0.410 0.290 
Note: technical efficiency=1. 
The inverse of the output efficiency scores are shown for comparability with the SFE scores 
The parsimonious SFE efficiency scores from the various output /input combinations are 

reported. 
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Table 7: Hypothesis Tests (Nested Models) 

 Null Hypothesis  -Ln[L(H0)] -Ln[L(H1)] λ Critical 
χ0.95

2 
value9 

Decision 

Output is number of licenses with invention disclosures as an input10  
Cobb Douglas Frontier is an 
adequate representation 

 
3,....1,0:

0
=!= jiH

ij
"

 

 
-34.76 

 
-37.77 

 
6.01 

 
14.07 

 
Accept Ho 

There is no technical 
inefficiency 

 
0:

0
=!H  

 
-37.77 

 
-42.67 

 
9.8 

 
7.05 

 
Reject H0 

Output is number of licenses with total research income as an input11    
Cobb Douglas Frontier is an 
adequate representation 

 
3,....1,0:

0
=!= jiH

ij
"  

 
-37.75 

 
-41.92 

 
8.34 

 
14.07 

 
Accept H0 

There is no technical 
inefficiency 

 
0:

0
=!H  

 
-41.92 

 
-47.20 

 
10.56 

 
7.05 

 
Reject H0 

Output is licensing income with invention disclosures as an input12 
Cobb Douglas Frontier is an 
adequate representation 

 
3,....1,0:

0
=!= jiH

ij
"

 

 
-64.76 

 
-75.98 

 
22.44 

 
14.07 

 
Reject H0 

There is no technical 
inefficiency 

 
0:

0
=!H  

 
-64.76 

 
-74.27 

 
19.02 

 
7.05 

 
Reject H0 

Output is licensing income with total research income as an input13 
Cobb Douglas Frontier is an 
adequate representation 

 
3,....1,0:

0
=!= jiH

ij
"  

 
-70.93 

 
-72.35 

 
2.84 

 
14.07 

 
Accept H0 

There is no technical 
inefficiency 

 
0:

0
=!H  

 
-72.35 

 
-79.21 

 
13.72 

 
7.05 

 
Reject H0 

 

                                                
9 The critical values for γ=0 are obtained from table 1 of Kodde and Palm (1986) due to the 
mixed χ2 distribution. All other test use regular χ2distributions. The degrees of freedom are q 
+1, where q is the number of parameters which are specified to be 0. 
 
10 The starting model for the hypothesis testing for the number of licenses model with 
invention disclosure is the full translog specification including inefficiency effects, model 2. 
 
11 The starting model for the hypothesis testing for the number of licenses model with total 
research income is the full translog specification including inefficiency effects, model 4. 
 
12 The starting model for the hypothesis testing for the licensing income model with invention 
disclosure as an input is the full translog specification including inefficiency effects, model 2. 
 
13 The starting model for the hypothesis testing for the licensing income model with total 
research income as an input is the full translog specification including inefficiency effects, 
model 4. 
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Table 8: AIC model selection (non-nested model section) 

 

Output Number of licenses Licensing income 
Preferred 
model 

INVDISC 
(Model 2)  

TRESINC 
(Model 4)  

INVDISC 
(Model 2)  

TRESINC 
(Model 4)  

Form Cobb-Douglas Cobb-Douglas Translog Cobb-Douglas 
Log likelihood -37.77 -41.92 -64.76 -72.35 
AIC 93.54 101.84 165.52 162.70 
 
 

Table 9: Elasticities of Mean Output Under Different Model Specification 

Inefficiency model Number of licences: Licensing income 
Model  Model 2 Model 4 
Form Cobb-Douglas Cobb-Douglas 
ε INVDISC (model 2) 
ε TRESINC (model 4) 

0.537*** 
(0.131) 

0.461*** 
(0.019) 

ε STAFF 0.136*** 
(0.077) 

0.367*** 
(0.0187) 

ε LEGAL -0.03 
(0.07) 

0.093*** 
(0.005) 

Returns to Scale 0.643 0.930 
Standard errors are in parentheses. 
Significance: * p<.1; ** p<.05; *** p<.01 
 
 
Table 10: Estimated Average Technical Efficiency: Parsimonious Model 

Output Number of licences Licensing income 
Model Model 2 Model 4 
Form Cobb-Douglas Cobb-Douglas 
Estimated technical efficiency 0.26 0.29 
 

Table 11: Technical Efficiency Effects: Parsimonious Model 

Inefficiency Model Number of licences Licensing income 
Model  Model 2 Model 4 
Form Cobb-Douglas Cobb-Douglas 
MEDSCH -0.077 

(0.267) 
3.127** 
(1.769) 

AGE 0.027* 
(0.019) 

0.12 
(0.127) 

GDP -0.03 
(0.009) 

-0.125*** 
(0.057) 

R&D -2.27** 
(1.217) 

0.433 
(1.072) 

Standard errors are in parentheses. 
Significance: * p<.1; ** p<.05; *** p<.01
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APPENDIX 

Table A1: Measure of Output: Number of Licenses, Cobb-Douglas  
Results: Unbalanced      Maximum Likelihood Estimates of the Stochastic Frontier and Inefficiency 
Dependent Variable Number of licensing agreements Cobb Douglas 
Model 1 2a 3 4b 

Stochastic Frontier     
Intercept 0.995* 2.217*** -3.861 -1.515 

 (0.612) (0.708) (4.368) (1.906) 
INVDISC 0.568*** 0.537***   

 (0.123) (0.131)   
TRESINC   3.41*** 0.338*** 

   (0.127) (0.128) 
STAFF 0.104* 0.136** 0.128* 0.18*** 

 (0.070) (0.077) (0.085) 0 
LEGAL -0.003 -0.03 0.015 -0.036 

 (0.060) (0.070) (0.313) (0.077) 
     
Inefficiency Model     
Intercept  1.965**  2.954*** 
  (0.998)  (0.986) 
MEDSCH  -0.077  0.0385 

  (0.267)  (0.344) 
AGE  0.027*  0.023 

  (0.019)  (0.022) 
GDP  -0.03  -0.012* 

  (0.009)  (0.008) 
R&D  -2.27**  -2.375*** 

  (1.217)  (0.749) 
     
Log likelihood -42.67 -37.77 -47.20 -41.92 
σ2 0.948 0.463 0.622 0.522 
γ  0.999***  0.999*** 
Avg technical  Efficiency  0.26  0.23 
N 40 40 40 40 
a  Preferred model for Number of Licenses frontier, with invention disclosure as an input. 
b Preferred model for Number of Licenses frontier, with total research income as an input.  
Standard errors are in parentheses 
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Table A2: Measure of Output-Number of Licenses-Translog  
Results: Unbalanced      Maximum Likelihood estimates of the stochastic frontier and inefficiency 
Dependent Variable Number of Licensing agreements: Translog Production Function 
Model 1 2 3 4 

Stochastic Frontier     
Intercept 2.51 2.227 2.200 7.138 

 (3.331) (2.648) (2.231) (35.14) 
INVDISC -0.118 1.636   

 (1.918) (1.813)   
TRESINC   -0.982 -2.375 

   (3.020) (2.727) 
STAFF -1.015 -1.818 0.038 1.976 

 (1.661) (1.583) (2.746) (2.489) 
LEGAL -0.036 -0.045 0.851 2.363* 

 (0.190) (0.187) (2.165) (1.947) 
INVDISC*INVDISC 0.000 0.427   
 (0.332) (0.330)   
TRESINC*TRESINC   0.142 0.338* 
   (2.278) (0.256) 
STAFF*STAFF 0.029 0.145** 0.069 0.174* 
 (0.069) (0.071) (0.119) (0.108) 
LEGAL*LEGAL -0.032 0.008 0.063 0.137* 
 (0.063) (0.065) (0.105) (0.094) 
INVDISC*STAFF 0.110 -0.275*   
 (0.219) (0.210)   
TRESINC*STAFF   -0.038 -0.175 
   (0.213) (0.189) 
INVDISC*LEGAL 0.059 -0.17   
 (0.228) (0.218)   
TRESINC*LEGAL   -0.093 -0.236* 
   (0.197) (0.178) 
STAFF*LEGAL 0.103 0.255* 0.071 0.105 
 (0.180) (0.175) (0.176) (0.163) 
Inefficiency Model     
Intercept  1.394  3.927 
  (1.113)  (18.126) 
MEDSCH  -0.261  0.116 

  (0.304)  (0.311) 
AGE  0.0573***  0.0461*** 

  (0.023)  (0.020) 
GDP  0.004  0.001 

  (0.008)  (0.008) 
R&D  -1.75**  -2.144*** 

  (0.889)  (0.832) 
     
Log likelihood -41.475 -34.764 -44.897 -37.749 
σ2 0.465 0.336 0.552 0.386 
γ  0.999***  0.986 
Avg technical  Efficiency  0.17  0.20 
N 40 40 40 40 

Standard errors are in parentheses  
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Table A3: Measure of Output: Licensing Revenue-Cobb-Douglas  
Results: Unbalanced Licensing Revenue Cobb Douglas 
Dependant Variable 1 2 3 4a 

Model     
Stochastic Frontier     
Intercept 10.149*** 9.776*** 7.190 4.357*** 
  (0.102) (0.753) (0.293) 
INVDISC 0.735*** 0.772***   
  (0.247)   
TRESINC   0.314 0.461*** 
   (0.085) (0.019) 
STAFF 0.257** 0.234*** 0.461 0.367*** 
  (0.092) (0.142) (0.0187) 
LEGAL 0.081* 0.107*** 0.0611 0.093*** 
  (0.033) (0.123) (0.005) 
     
Inefficiency Model     
Intercept  0.726  4.305** 
  (0.780)  (2.582) 
MEDSCH  0.219  3.127** 
  (0.978)  (1.769) 
AGE  0.124  0.12 
  (0.115)  (0.127) 
GDP  -0.041***  -0.125*** 
  (0.020)  (0.057) 
R&D  0.21  0.433 
  (0.978)  (1.072) 
     
Log likelihood 78.63 -75.98 -79.21 -72.35 
σ2 0.845 10.53 11.2 15.45 
γ  0.999***  0.999*** 
Avg technical  Efficiency  0.28  0.29 
N 43 43 43 43 
a Preferred model for licensing income frontier, with total research income as an input. 
Standard errors are in parentheses
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Table A4: Measure of Output: Licensing Revenue-Translog  
Results: Unbalanced Licensing Revenue Translog 
Dependent Variable 1 2a 3 4 
Model     
Stochastic Frontier     
Intercept 4.447*** 2.818 2.253*** 1.884** 
 (1.698) (7.66) (0.996) (1.002) 
INVDISC 5.266*** 3.81***   
 (1.688) (1.26)   
TRESINC   -1.247*** -3.718*** 
   (0.517) (1.111) 
STAFF -1.32*** -1.477 -4.930*** 1.847 
 (0.386) (2.12) (1.081) (2.740) 
LEGAL 0.220 0.724*** 4.343*** 6.181*** 
 (0.417) (0.32) (0.833) (1.260) 
INVDISC*INVDISC -2.124*** -1.14   
 (0.732) (1.23)   
TRESINC*TRESINC   0.325*** 0.657*** 
   (0.097) (0.176) 
STAFF*STAFF -0.230*** -0.210 -0.266*** 0.081 
 (0.102) (0.248) (0.056) (0.084) 
LEGAL*LEGAL -0.017 -0.537** 0.304** 0.403*** 
 (0.100) (0.031) (0.148) (0.128) 
INVDISC*STAFF 0.807*** 0.527   
 (0.347) (0.716)   
TRESINC*STAFF   0.369*** -0.023 
   (0.065) (0.148) 
INVDISC*LEGAL 0.037 -0.016***   
 (0.239) (0.621)   
TRESINC*LEGAL   -0.437*** -0.610*** 
   (0.123) (0.147) 
STAFF*LEGAL -0.046 0.0277 -0.038 -0.078** 
 (0.070) (0.112) (0.059) (0.048) 
Inefficiency Model     
Intercept  2.78  7.478** 
  (8.34)  (4.158) 
MEDSCH  3.72***  10.125*** 
  (11.6)  (4.297) 
AGE  0.031  0.364*** 
  (0.71)  (0.114) 
GDP  -0.110***  -0.321*** 
   (0.055)  (0.126) 
R&D  -0.698  -1.846 
  (2.36)  (1.451) 
     
Log likelihood -74.27 -64.76 -77.356 -70.93 
σ2 7.922 11.959 7.47 17.62 
γ          0.999***        0.964*** 
Avg technical  Efficiency  0.41  0.49 
N 43 43 43 43 
a Preferred model for licensing income frontier, with invention disclosure as an input. 
Standard errors are in parentheses  


