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AIDS versus Rotterdam: A Cox Nonnested

Test with Parametric Bootstrap

Abstract

A Cox nonnested test with parametric bootstrap is developed to select between the

linearized version of the First Difference Almost Ideal Demand System

(FDAIDS) and the Rotterdam model. The Cox test with parametric bootstrap is

expected to be more powerful than the various orthodox tests used in past

research. The new approach is then used for U. S. meat demand (beef, pork, and

chicken) and compared to results obtained with an orthodox test. The orthodox

test gives inconsistent results depending on the inclusion or exclusion of fish and

the time period covered. In contrast, under the same varied conditions, the Cox

test with parametric bootstrap consistently indicates that the Rotterdam model is

preferred to the FDAIDS.

Keywords: First Difference Almost Ideal Demand System, meat demand,

nonnested hypotheses, parametric bootstrap, Rotterdam model.
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AIDS versus Rotterdam: A Cox  Nonnested  Test

with  Parametric  Bootstrap

Introduction

Functional form is an important issue in empirical production and consumption studies.

Different functional forms often result in very different elasticity estimates. The two most

commonly used models in demand analysis are the Almost Ideal Demand System (AIDS)

and the Rotterdam model. Most researchers arbitrarily pick one model or the other. The

two models are nonnested and recent interest has focused on developing proper

nonnested tests of the two demand systems.

     Two prominent studies have presented techniques to select between the AIDS and the

Rotterdam demand systems (Alston and Chalfant; LaFrance). Alston and Chalfant used a

compound-model approach to select between the First Difference AIDS (FDAIDS) and

the Rotterdam models, using U.S. meat demand data (beef, pork, chicken, and fish). They

found support for the Rotterdam model. However, LaFrance pointed out that Alston and

Chalfant�s least squares approach is biased and inconsistent because of endogeneity.

Using the same data, he conducted both a Lagrange multiplier test and a likelihood ratio

test and failed to reject either demand system. Compound model approaches typically

have correct asymptotic size, but low power (Pesaran). Thus, the failure to reject either

null hypothesis may simply be the result of using a test with low power1. Most of the

previous nonnested tests have been developed for models that have the same dependent
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variables (e.g. Pesaran). Coulibaly and Brorsen show that a Cox�s nonnested test based

on the parametric bootstrap has high power, is relatively easy to use, and is applicable to

any model that can be simulated. The approach appears promising as a method for

selecting among functional forms in demand systems.

In this paper, a Cox nonnested test with parametric bootstrap is developed to test

FDAIDS vs. Rotterdam demand systems.  The test is then used to determine whether the

Rotterdam or the FDAIDS is preferred for U.S. meat demand.  A difficulty in using the

parametric bootstrap is in simulating quantities from the Rotterdam model. The approach

eventually adopted is based on a Taylor�s series expansion similar to Kastens� and

Brester�s approach.

Tomek�s suggestions on how to make research more cumulative are followed.

Tomek suggests using both the data and methods from past research.  That way it can be

determined whether differences in results are due to different data or different methods.

LaFrance�s 1967-1988 data2 set on U. S. meat demand includes four commodities beef,

pork, chicken, and fish.  The updated data have a 1970-1997 time span, come from a

different source and do not include fish3.  For the purpose of better comparison, the

analysis in this study is applied to LaFrance�s data set with and without fish, as well as to

the updated data set.

                                                                                                                                                                            
1  Note that the papers by LaFrance and by Alston and Chalfant are misnamed. The lambdas in Alston and
Chalfant are not silent and the lambdas in Lafrance do not bleat.
2 In fact, the data used by LaFrance are the same as Alston and Chalfant
3 According to Nick Piggott and Derrell S. Peel, the fish data are not reliable (personal communication).
Piggot is a professor at North Carolina State University.  Peel is a professor from the Agricultural
Extension Service at Oklahoma State University and provides the updated data set.
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Nonnested Hypothesis Tests

 Nonnested hypothesis tests select between two regression models where one model

cannot be written as a special case of the other. In such a case, the models themselves are

said to be nonnested. Suppose we have two nonnested models A and B with the same set

of explanatory variables to choose from using the same set of data. To test that model A

is the true model, the nonnested hypotheses for the two models can be written in the

following general form:

(1) 0H   : itititit uXyf 00
')( += β model A

(2) 1H  : itittiit uXyg 11
')( += β  model B

where i = 1, �, n  meaning there are n goods and thus, n equations. Observations are

indexed with t = 1, �, T .  The variable ity  is quantity of the ith good for period t, '
tX  is a

vector of explanatory variables, i0β  and i1β  are  parameter vectors under the null and

alternative hypotheses, and itu0  and itu1  are vectors of error terms under the null and

alternative hypotheses. The two approaches considered to select between nonnested

hypotheses are the orthodox test and the Cox test.

Orthodox Test

The orthodox test is based on a supermodel obtained by forming a linear

combination of the two models in the null and alternative hypotheses. For models A and

B in equations (1) and (2), the supermodel can be written in the following way:

(3) itititititit uXygyf +=+− βλλ ')()()1(
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iii 10)1( λββλβ +−=

itoitit uuu 1)1( λλ +−=

where i = 1, �, n and t = 1, �, T. The parameter λ  linearly combines the two models.

All other elements are as defined above.

Testing that model A is the true model is equivalent to testing that the parameter

λ  is equal to zero. On the other hand, testing that model B is the true model corresponds

to a test of λ equal to 1. Since the model is nonlinear in the parameters, a likelihood ratio

test is used to test the null hypotheses. Greene argues that the orthodox test does not

really distinguish between the null and the alternative hypotheses, but rather distinguishes

between the alternative and a hybrid model. This is because the supermodel uses a

combination of the parameters from the two models that is not captured in the F test.

Cox Test and Parametric Bootstrap

   The Cox test in its generic version proposed by D. R. Cox is based on the log-

likelihood ratio of two models under consideration.  In our example of the two models A

and B, the log-likelihood ratio statistic under the null hypothesis can be computed as the

difference between the log likelihood values of models A and B. In general, the Cox test

statistic has the following representation in testing the null hypothesis 0H  against 1H .

(4) )( 010010 LELT −= ,

where 
^

11

^

0001 )()( θθ LLL −=  is the difference in estimated maximum log-likelihoods

under 0H  and 1H . )( 010 LE  is the expected value of 01L  under 0H ,  and 
^

0θ  and 
^

1θ are

the maximum likelihood parameter estimates of the null and the alternative models,
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respectively. 0T  is asymptotically distributed with mean zero and variance 2
0v  under 0H

(Cox, 1962). Similarly, the test statistic for testing 1H  against 0H  would be

)( 101101 LELT −= .

      The difficulty in implementing the Cox test resides in obtaining analytical formulas

for )( 010 LE  and 2
0v . Pesaran derived analytical results for the linear regression models

with the same dependent variable. Both Pesaran and Deaton and Pesaran and Pesaran

have developed a version of the Cox test with transformed dependent variables such as

needed for testing linear versus log-linear models. However, their test statistics have

incorrect size in small samples.

Coulibaly and Brorsen (1999) have shown that a Cox test associated with a

parametric bootstrap approach gives a test statistic with correct size and high power, even

in small samples. The test statistic is the likelihood ratio of the two models and the

parametric bootstrap is used to estimate its distribution under the null. With the

parametric bootstrap, Monte Carlo samples are generated using the parameters estimated

under the null hypothesis. Samples are generated with the same number of observations

as the original data. The hypothesis test is performed by computing a p-value, which is

the percentage of simulated likelihood ratio statistics that are less than the likelihood ratio

computed from the actual data. This p-value is calculated using the actual and the

generated data and in the following way  (Coulibaly and Brorsen, 1999):

(5)
1

1),�(),�(

valuep
011100

+

�
�

�

�

�
�

�

�
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where numb[ ] stands for the number realizations for which the specified relationship is

true, N is the number of realizations, 01L  is the actual value of the likelihood function

under the null and alternative hypotheses, 0L (.) and 1L  (.) are the values of the log-

likelihood function with the generated data under the null  and the alternative hypotheses,

respectively. The one is added to the numerator and denominator as a small sample

correction. This p-value estimates the area to the left of the Cox test statistic L01.  A small

area indicates that the statistic is far from the mean according to H0, so we can reject the

null hypothesis. In other words, a small p-value indicates rejection of the null hypothesis.

 Selecting between the AIDS and the Rotterdam Models for U. S. Meat Demand

 The Selected Models

Previous studies by AC and LaFrance used orthodox tests to select between the AIDS and

the Rotterdam models for U. S. meat demand. For the Rotterdam, AC present two

alternative models with seasonal dummy variables. One uses the Divisia volume index as

real income, and the other uses deflated expenditures (with the Stone index). They show

that these two specifications give nearly the same parameter estimates. For the AIDS

model, AC use four alternative specifications of the first-difference model (this model

can also be in non-difference form) with seasonal dummy variables. Parameter estimates

for these four specifications are the same. For the purpose of this study, and following

AC, the standard specifications for each model are models II and VI for the Rotterdam
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and AIDS respectively. These two models are also considered in LaFrance�s paper.4 The

first-difference linearized version of the AIDS model with quarterly seasonal dummies

and real expenditure variables (using the Stone index) presented as AC�s model VI is:

(6) niPxpDs ij

n

j
ij

k
kikii ,,1],lnln[ln

1

4

1

�=∆−∆+∆++=∆ ��
==

βγθτ

In this model, s denotes budget share, kD �s are quarterly seasonal dummy variables, jp

is price of good j, x is the total expenditure on the n goods, βγθτ ,,,  are parameters, ∆

is a first-difference operator, and P is the Stone index.

The Rotterdam model II with real expenditure variable computed with the average

budget share between two time periods in the index has the following specification in

AC�s paper:

(7) �
�

�
�
�

�
∆−∆+∆++=∆ ���

===

4

1

4

1

4

1
lnlnlnln

j
jjij

j
ijk

k
ikiii psxpDys βγθτ ,

where js−  is the average budget share of good j (four goods are considered),  y denotes

quantity, and all the other variables are defined as above. The term in brackets is real

expenditure.

Orthodox Tests and Selection between the AIDS and Rotterdam

The two major studies by AC and LaFrance are based on orthodox tests, with a

difference in estimation methods and in the representation of the compound model

equation. While AC adopt a least squares approach that does not account for endogeneity,

LaFrance uses full information maximum likelihood to address the bias and inconsistency

                                                          
4 LaFrance�s paper is a comment on AC�s paper. These two papers use the same data and the same AIDS
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associated with AC�s least squares test.  AC present two compound models; one to test

the Rotterdam model in equation (7) against an approximate FDAIDS while the other is

used to test the linearized version of the first differences AIDS (FDAIDS) in equation (6)

against an approximate Rotterdam,. AC�s compound models are:

(8)
�
�
	



�
�

∆−∆+∆++=∆+∆− ���
===

j
j

jij
j

ij
k

kikiiii psxpDsys lnlnlnln)1(
4

1

4

1

4

1
βγθτλλ

(9) { }PxpDyss ij
j

ij
k

kikiiii lnlnlnln)1(
4

1

3

1

∆−∆+∆++=∆′+∆′− ��
==

βγθτλλ ,

where  P is the Stone index, and all other elements are defined as previously. Equation

(8) compounds AC�s Rotterdam II with their FDAIDS IV, which is an approximation to

the FDAIDS. This approximation leads to both models having a common right hand side,

and thus, the convex combination is only applied to the left had side or dependent

variables.  In this compound model, testing λ = 0 is equivalent to testing that the

Rotterdam model is the true model. Equation (9) compounds AC�s FDAIDS VI with their

approximate Rotterdam; again, this allows combining only the left hand side of both

models. Testing λ′ = 0 corresponds to testing that FDAIDS is the true model.

LaFrance conducted an orthodox test based on a likelihood ratio for selecting

between the AIDS and the Rotterdam, based on a compound model like the one presented

in equation (3); i.e., one that combines all aspects of the two models. This compound

model is presented below:

(10)
)ln()lnln()1(

lnln)1(

1

4

1
0

4

1

4

1
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jji
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ijiiii
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��

=

==

λββλ

γθτλλ

                                                                                                                                                                            
and Rotterdam models.
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where all the elements are defined as previously.

Using a likelihood ratio test on LaFrance�s compound model (with restrictions imposed)

to select between the two models in equations (6) and (7) is a better approach than

performing the same likelihood ratio test with AC�s adjusted compound model in

equations (8) and (9). This is because the compound model by LaFrance takes into

account both, the AIDS and Rotterdam model�s expenditure terms, whereas AC�s models

approximate these variables.

The estimable version of equation (10) for meat demand is:

(11)
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for i = 1, 2, 3 meat commodities and t = 1, �, T observations. Here iu  is assumed to be

i.i.d. N (0, � ), and so that symmetry holds, we take jiij γγ =  for all ji ≠ . Homogeneity

and adding-up are embedded in the system of equations. All other elements are defined in

previous sections. The parameters in this equation can be determined by maximum

likelihood estimation. From AC�s perspective, a test of one model against the other could

be conducted, based on the value of the parameter λ . In LaFrance�s view, �a likelihood
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ratio test should be used to discriminate between the two competing models, rather than

simply examining the t-ratio for the estimated lambda�.

 Using a t-test or a likelihood ratio test on a compound model to select between the two

models does not eliminate the fact that the test performed is an orthodox test. Orthodox

tests have correct size when the number of non-overlapping variables is greater than one

but low power. Such a drawback can be resolved by using a Cox test with parametric

bootstrap to choose between the two models.

Cox Test and Parametric Bootstrap with AIDS and Rotterdam

Using the Cox nonnested test with the parametric bootstrap for selecting between the

AIDS and the Rotterdam models requires the following steps: 1) Estimate the two models

under consideration using the actual data set. 2) Based on the likelihood values of the two

estimated models, compute the actual likelihood ratio of the two models. 3) Assuming the

null hypothesis model, estimate a distribution function for the original data and, based on

it, generate a large number of data sets of the same size. 4) Re-estimate the two models

for each of the generated samples. 5) Compute the simulated log-likelihood ratio for each

simulated data set, and 6) compare the true and simulated log-likelihood ratios to

compute the p-value presented in equation (5). The calculation of the p-value is done first

by letting one of the two models (say FDAIDS) represent the null hypothesis, and second

under the assumption that the other model (say the Rotterdam) represents the null

hypothesis.
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Parametric Bootstrap and Difficulties in Data Generation

The data that must be generated in the context of the FDAIDS and Rotterdam

models are quantity data. However, as seen above, quantity is not explicit in the left-hand

side of both the AIDS and the Rotterdam when the two models are estimated.

The approach used requires predicted quantities. However, it is difficult to

simulate data from the Rotterdam model. �Since the Rotterdam involves a nonlinear

transformation of quantity on the left-hand side, predicted or expected quantities are not

immediately derived by taking the inverse functional transformation of the model-

predicted left-hand side �(Kastens and Brester p. 303, 1996). Kastens and Brester

proposed a method for obtaining the expected quantities from the Rotterdam model using

the predicted left-hand side (predLHS) and a second-order Taylor series expansion of the

dependent variable. We start with the predicted equation of the Rotterdam model:

(12) ( ) predLHSXyyssE ttt ==−+ −− 1
'

112
1 �)ln)(ln( β ,

where the variables s and y without subscript are current budget shares and current

quantities. The dependent variable or term within the expectation operator can be

approximated by a second-order Taylor series expansion around 0y , the expected value

of  y. Then, the expected value of this approximation can be used to approximate (12) as

follows:

)ln)(ln()( 112
1

−− −+= ttx
p yysyyf

2
00000 ))((*5.0))(()()( yyyfyyyfyfyf −′′+−′+≈

(13) 2
000 )()()())(( yyEyfyfyfEpredLHS −′′+≈= ,
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where sample variance of  y is used to estimate E( y - y0 )2.  Thus, we can solve for y in

equation 13 and have an approximation for the predicted quantity. Predicted quantities

for the AIDS model as proposed by Kastens and Brester are obtained as follows:

(14)
[ ] x

P
yedLHSy t

o
1Pr −+

=

  In the current study, we use these approximation methods to simulate quantity for the

Rotterdam and the FDAIDS models, respectively.

AIDS and Rotterdam Likelihood Functions

To use the Cox statistics the likelihood functions of both the AIDS and the Rotterdam

models must be converted to the same units. The dependent variables in the FDAIDS

model are budget share differences or budget shares, depending on whether the model is

presented in difference form or not. In the Rotterdam model the dependent variables are

log�quantity-differences multiplied by average expenditure shares. The log-likelihood

functions for the dependent variables in both models are transformed to log likelihoods of

quantity by adding a Jacobian term. Then, the transformed values are compared.

 Meat Demand Data

AC and LaFrance used data on U. S. demand and prices of beef, pork, chicken, and fish

to select between the AIDS and the Rotterdam. The data used in their studies are

quarterly per capita consumption and retail prices of beef, chicken, pork, and fish in the

United States, for the years 1967-1988.

We use the same data used by AC and LaFrance, and a different set of updated

quarterly data on beef, pork and chicken. Since the latter data does not include fish
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(because of the poor quality of the U. S. fish data), for comparison purposes, we also run

both the orthodox and the Cox tests with parametric bootstrap on AC and LaFrance�s data

set without fish. Such an approach allows identifying the effect on the model choice

results of difference in method, difference in data, and difference in both data and

method, as recommended by Tomek. Conducting the orthodox test or the parametric

bootstrap requires parameters estimation.

Estimation Methods

The Model Procedure (PROC MODEL) in SAS with the option full information

maximum likelihood (FIML) and iterated seemingly unrelated regressions (ITSUR) are

used to conduct the orthodox test on the data. The Interactive Matrix Language Procedure

(PROC IML) in SAS with the Seemingly Unrelated Regression (SUR) estimation method

is used to implement the Cox test with parametric bootstrap. The estimation methods

incorporate the homogeneity, symmetry, and adding-up restrictions.

Results

Different results are obtained when the orthodox test is performed on different

data sets with both estimation methods. With the 1967-1988 data including fish we are

able to replicate AC�s results using ITSUR instead of SUR. Using AC�s compound model

to test AIDS VI versus the (almost) Rotterdam II, we obtain 0.3579 as an estimate for λ,

as compared to LaFrance�s 0.36 (with SUR) and AC�s 0.35997. However FIML yields an

estimate of  �0.034. We also estimated λ using the compound model by LaFrance. We

obtained 0.059 as compared to his 0.0558 when prices were means scaled, but the value
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of the log-likelihood function was estimated at 116.29 as compared to his 68.6028. Not

mean scaling prices for the full model introduced convergence problems in the

estimation. However, when no mean scaling was performed on prices and λ was set to

one (in order to estimate the Rotterdam II), we could almost match the value for the log-

likelihood function (we obtained 68.544 as compared to LaFrance�s 68.5439). Thus, the

orthodox test gives inconsistent results.

The Cox test with parametric bootstrap selects the Rotterdam model (regardless of

prices being mean scaled) for all data sets  (Table 1).  In all the cases, a small p-value

indicates a rejection of the null and a large p-value indicates a failure to reject the null.

This study gives additional evidence of the high power of the Cox test, as

compared to an orthodox test. An orthodox test on the compound model, as

recommended by LaFrance for U. S. meat demand, is likely to generate unreliable test

results, given that it introduces nuisance parameters under the null hypotheses. Indeed,

under each null hypothesis corresponding to an appropriate restriction on the parameter

lambda ( i.e. lambda = 0, or 1), the real expenditures parameters of the alternative model

become nuisance parameters that cannot be estimated when in compound model. In the

presence of nuisance parameters, the distribution of the likelihood ratio test statistics is

unknown. It is no longer chi-square under the null.

 Conclusions

This study develops a Cox  nonnested test with parametric bootstrap and uses it to

select between the FDAIDS and the Rotterdam models for U. S. meat demand. Unlike the
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orthodox test, the Cox test with parametric bootstrap yields results that do not vary with

differences in data sets.

There is a disadvantage in using a convex combination in the orthodox test to

select between the two competing FDAIDS and Rotterdam models. Under the null

hypothesis, the convex combination introduces nuisance parameters corresponding to the

real expenditure parameters of the alternative model. In the presence of nuisance

parameters, the distribution of the likelihood ratio test statistics is no longer chi-square

under the null. It is unknown and can be estimated using Monte Carlo methods.

The Cox test with parametric bootstrap approach developed in this study does not

suffer from any lack of generality. It can easily be used to test any functional form, for

instance, a double-log demand model, the Almost Ideal Demand System in levels, the

Rotterdam and the AIDS with different expenditure deflators.
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Table 1 Cox Test with Parametric Bootstrap Using Seemingly Unrelated Regression

( SUR) as Estimation Method.

LaFrance�s 1967-88 Data
    with fish        w/o fish

Updated Data
w/o fish,
1970-97

FDAIDS 1136.994 713.763 845.597

Rotterdam 1126.368 701.777 826.576

Log-likelihood

values  (LLV)

for true data difference -10.626 11.986 19.021

FDAIDS 987.751 605.660 714.671

H0: FDAIDS Rotterdam 988.087 610.344 707.582

difference -0.336 -4.684 7.088

FDAIDS 993.513 612.674 718.748

Average LLV

for randomly

generated data

H0: Rotterdam Rotterdam 1000.185 621.831 725.795

difference -6.672 -9.158 -7.047

Test for: FDAIDS 0.002 0.004 0.001

Rotterdam 0.938 0.875 0.998

Estimated

p-values

Conclude:

Reject

FDAIDS

Reject

FDAIDS

Reject

FDAIDS


