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WIC participation and the Nutrient Intake of Preschoolers

As the Special Supplemental Nutrition Program for Women, Infants, and Children (WIC) has

grown rapidly in the 1990's, so have questions about its effectiveness (Besharov and Germanis).

Several recent studies have evaluated the impact of WIC, particularly on the nutrient intake of

children (Fraker, Long, and Post; Oliveira and Gundersen; Rose, Habicht, and Devaney).  These

studies show that WIC participants have significantly higher intakes of several nutrients targeted

by WIC compared to WIC-eligible nonparticipants.  The WIC effects reported in these studies

are "average" differences between WIC-participants and eligible nonparticipants, after

controlling for the differences in sociodemographic characteristics.1  However, these conditional

mean differences provide only a very limited characterization of distributional differences among

population sub-groups such as WIC participants and nonparticipants.  They do not account for

the possibility that the nutrient intake distributions of WIC participants and eligible

nonparticipants may differ in shape and variance.  If this is the case, then the estimated WIC-

effect at the conditional mean may not be representative of the WIC-effect at other parts of the

intake distribution.  Since the risk of dietary inadequacy of the nutrient targeted by WIC is

greater toward the bottom part of the intake distribution, judging intake difference between

participants and nonparticipants by looking at their difference at the conditional mean only, and

not the differences at other parts of the intake distribution could lead to incomplete or potentially

misleading conclusions.

The purpose of  this study is to better evaluate the intake difference between WIC benefit

recipients and WIC-eligible nonrecipients among U.S. preschool children. This is achieved by

employing the method of quantile regression proposed by Koenker and Bassett (1978).  While
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the classical least squares regression estimates the conditional mean of a dependent variable as a

linear function of explanatory variables, the quantile regression enables the estimation of any

conditional quantile of the dependent variable as a linear function of explanatory variables.

Therefore, using quantile regression allows us to go beyond the conditional mean and evaluate

the intake differences between WIC participants and nonparticipants at different parts along the

entire conditional distribution of nutrient intakes.

Data

The nutrient intakes of preschoolers for this study were obtained from USDA’s 1994-96 CSFII

(Tippett and Cypel) and the 1998 Supplemental Children's Survey (U.S. Department of

Agriculture).  Each year of the 1994-96 CSFII comprised a nationally representative sample of

noninstitutionalized persons residing in the United States.  Food intake records for selected

sample persons from a screened sample of 9,664 households were collected on two

nonconsecutive days through in-person interview using 24-hour recalls.  For sample persons who

were children under six years of age, intake data was collected through proxy interviews with the

household members responsible for preparing the children's meals.  15,303 sample persons

provided information on food intakes for both days giving a two-day response rate of 76.1%.  By

combining the food records with a nutrient database, CSFII provides information on the intakes

of a variety of macronutrients, vitamins, and minerals of the sample persons.

The Supplemental Children's Survey was conducted to obtain intake data on a larger sample of

children than that was available with the 1994-96 CSFII.  The design and data collection

procedures of the1998 survey were consistent with the 1994-96 survey design so that the two
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surveys could be combined for analysis.  Together, these surveys are referred to as CSFII 1994-

96, 1998.  The 1998 survey added intake data from 5,559 children from birth to 9 years of age to

the intake data collected from 4,253 children of the same age group that participated in the 1994-

96 CSFII.

There are five WIC-eligible groups--pregnant women and up to six weeks after delivery,

breastfeeding women up to a year after giving birth, postpartum women who are not

breastfeeding for up to six month after delivery, infants from birth to a year, and children from 1

up to the age of 5.  Among these WIC-eligible groups, children 1 to 4 years of age comprise the

majority of WIC participants (51% of all WIC participants as of April 1998).  However,

relatively little research has been done on the nutritional impact of WIC on children, in

comparison to the WIC effect on other eligible groups such as pregnant or breastfeeding women.

Therefore, we focused our analysis on the nutrient intakes of 1 to 4 year old preschoolers in

CSFII who were determined to be eligible for WIC participation.  Since the CSFII did not gather

information on the nutrient contribution of breast milk to the nutrient intakes of breastfed

children, we excluded such children from the analysis.  Further, we based our analysis on

children who provided 2 days of intake data.

For WIC participation, those among the eligible groups have to meet  income and nutritional risk

criteria.  An applicant's family income has to be at or below 185 percent of the federal poverty

guideline.  Those who participate in income-based assistance programs such as Medicaid, TANF

(formerly AFDC), and the Food Stamp Program are automatically eligible for WIC participation.
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The applicant must also be determined by a health professional to be at nutrition risk, based on

guidelines developed by state agencies.

To determine the sample of WIC-eligible preschoolers from CSFII 1994-96, 1998, we followed

the guidelines used by Oliveira and Gundersen (who used the 1994-96 CSFII for their analysis).

Because WIC income eligibility based on annual income may underestimate actual income

eligibility, the  required cutoff of an annual household income above 185 percent of the poverty

threshold was liberalized to 200 percent to choose the sample of income eligible children for this

study.  Children from households that received AFDC payments or those who were authorized to

receive food stamps were also chosen to be in the WIC-eligible sample.  Since information on

Medicaid participation was not collected in CSFII, eligibility based on this criterion could not

determined.  However, children who were not income eligible but who reported participating in

the WIC program were included.  Based on these criteria, intakes of 2,900 preschoolers were

available for analysis from the 1994-96, 1998 CSFII.  Of these 1,108 were WIC participants and

1,792 were WIC-eligible nonparticipants.

WIC participants receive supplemental food vouchers that can be redeemed for specific foods

that are rich in nutrients considered to be low in the diets of WIC-eligible groups.  Food available

to children include milk, cheese, eggs, dried beans and peas, peanut butter, breakfast cereal, and

fruit or vegetable juice.  Nutrients targeted by these foods are protein, iron, calcium, and

vitamins A and C.  After a 1991 review of the supplemental food packages, WIC program has

also been targeting folate, vitamin B6 and zinc.
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Previous research has shown that nutritional risk among WIC eligible children is negligible for

some of the WIC-targeted nutrients.  For example, less than 2% of WIC recipient children failed

to meet 100 percent of the Recommended Daily Allowance (RDA) for protein and folate

(Oliveira and Gundersen).  Since the objective of this study was to take a more detailed look at

the entire distribution of intakes, we focused our analysis on three nutrients with the highest

percentage of WIC-eligible children failing to meet the RDA.  These were iron, zinc, and

calcium.

Some Descriptive Results

Table 1 reports the mean and selected percentiles of the iron, zinc, and calcium intakes of

preschoolers by WIC participation status.  These univariate statistics were estimated using

sampling weights.  Since the RDA's are higher for 4 year olds compared to 1-3 year olds, the

statistics are reported separately for these two age groups (RDA hasn't been established for

calcium; therefore, the recommended adequate intakes (AI) are used).  Among 4 year old WIC

eligibles, participants have significantly higher mean intakes of iron, zinc, and calcium than

nonparticipants (p<.01).  Among 1-3 year olds, only the mean iron intake is significantly higher

for WIC participants compared to nonparticipants.  For iron and zinc, most of the distribution of

intakes lies above the RDA level.  A relatively larger proportion of preschoolers has calcium

intakes below the AI level.  But this is does not signify greater prevalence of calcium inadequacy

because the AI levels are, by definition, higher than RDA level (although it is not known by how

much).
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The statistics in Table 1 illustrate two reasons why it is important to focus on the entire

distribution of intakes, rather than only on the mean, to compare intake levels of two population

subgroups.  First, the mean may be influenced by outlying values at the extremes of the

distribution.  Estimating the median and other percentiles of intakes gives a more complete

picture of the intake distribution than would be provided by the mean alone.

Second, in some cases the intake difference between WIC participants and nonparticipants

detected at the mean is not representative of the intake difference at other parts of the

distribution.  For example, for iron intake among 1-3 year olds, the participant-nonparticipant

difference is lower at the 10th and 25th percentiles and higher at the 75th and 90th percentiles

compared to the difference at the mean.  Therefore, it may be misleading to focus only on the

difference at the mean.  This is especially so because the risk of inadequacy for these nutrients is

greater at the lower end of the distribution.  The situation is better depicted in figure 1 where the

10th to the 90th percentiles of intakes at intervals of 5 for 1-3 year olds are graphed.  For iron,

the distributions for participants and nonparticipants are narrower at the bottom percentiles, with

the gap widening toward the upper percentiles.  For zinc, the distributions overlap at the bottom

percentiles with a slight divergence at the upper end.  For calcium, the percentile differences are

greater at the bottom than at the top.

The distributional differences between participant and nonparticipant intakes revealed in table 1

and figure 1 are supported by the Kolmogorov-Smirnov tests of the equality of distributions.  For

both 1-3 year olds and 4 year olds, the distribution of iron intakes for WIC participants and

nonparticipants are significantly different from each other (p<.01).  For zinc, the equality of



7

distributions by WIC status is not rejected for both age groups.  For calcium, the equality of

intake distributions of WIC and nonWIC 1-3 year olds is rejected at p<.02 and for 4 year olds at

p<.01.

Modeling Approach

The above discussed intake estimates for WIC participant and nonparticipant preschoolers are

unconditional estimates that do not take into account various other observable factors that may

have influenced the intakes.  To estimate the WIC effect on intakes after controlling for such

factors, we employed multivariate regression.  The WIC effect at the conditional mean was

estimated by the traditional ordinary least squares (OLS) regression.  The effect of WIC

participation at other parts of the conditional distribution of intakes was estimated by using

quantile regression.  Following the precedence set in earlier studies, we estimated quantile

regressions at 0.1, 0.25, 0.5, 0.75, and 0.9 quantiles of intakes to get a good representation of the

WIC effects across the distribution.  The details of the quantile regression method including

estimation and testing procedures are presented in the appendix.

A major statistical issue in estimating the effects of program participation on behavioral

outcomes is selection bias and WIC is no exception.  As Oliveira and Gundersen note, although

multivariate regression controls for the possible confounding effects of other observed variables,

unobservable differences between WIC participants and nonparticipants may exist which may

influence intakes.  Unless the influences of these unobservables are taken into account, the

estimated WIC effect may be biased.  While this self-selection bias problem is well-known, a

satisfactory solution is notoriously difficult due the inability to control for the factors that are, by
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definition, unobservable.  The ideal solution is a randomized experiment in which WIC eligibles

are randomly allocated to WIC participation on nonparticipation.  Such experiments are,

however, difficult due to impracticality of denying benefits to eligibles.  Statistical solutions

employing instrumental variable methods are potentially useful, provided proper instruments or

identifying variables are available in the data being analyzed.  However, in most data sets used

for WIC evaluation, including the CSFII data used in our analysis, such instruments are not

available.  This is because most measurable factors that affect the probability of WIC

participation by an individual can also arguably influence the nutrient intake of that individual.

Due to the paucity of identifying variables, most studies of WIC participation effect that have

experimented with statistical selection-bias correction methods have obtained unstable and

implausible results which are sensitive to minor changes in the model specification.

Oliveira and Gundersen used an innovative approach to account for selection bias in their study

by first identifying the possible sources of bias and then choosing a CSFII subsample that

eliminates these sources.  However, this approach severely reduced their sample size of eligibles

from 1,135 to 180.  The proportion of participants increased from 35 percent in the original

sample to 61 percent in the reduced sample.  It is not clear how this reversal in the relative

proportions of participants and eligible nonparticipants may have affected the results.

Nevertheless, the results were largely supportive of estimates from the original sample.

Since quantile regression requires at least a few hundred observations for the extreme quantiles

to obtain stable results, we did not adopt the Oliveira and Gundersen approach of limiting the
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sample.  Instead, we used an expanded list of variables to account for as much of the observable

difference between WIC participants and nonparticipants as possible.

Table 2 lists the explanatory variables used in the regressions, along with their definition and

sample means.  We included all the explanatory variables used by Oliveira and Gundersen and

several additional variables as well.  The variables fall into four groups: preschooler

characteristics, household characteristics, head of the household characteristics, and a fourth

group of fourteen survey-related variables that are listed in the footnote to table 2.  After

dropping WIC eligible preschoolers who had missing values for these explanatory variables, a

sample of 2,509 observations was available for regression analysis.

Thirty eight percent of the WIC eligible preschoolers in the available sample participated in the

WIC program.  Among other preschooler characteristics, besides sex, age, and race/ethnicity, we

included dummy variables to indicate whether a child had food allergies and whether a child

went to a child care facility that provided meals or snacks.  Household variables included

controls for geographic location, income and assets, size, head of the household status, and

participation in food stamp program.  Besides the education of the head of the household, we

controlled for the age of head of the household as well.  To account for variations in intake that

may be attributable to purely survey-related factors, we included dummy variable for survey

year, season, whether the intake was recorded for a weekend day, whether in the respondent's

opinion the recorded intake was more than usual or less than usual, and finally whether either the

interviewer or the respondent had difficulty with the interview.
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Regression Results

The objective of using quantile regressions is to estimate the marginal effects (or the slope

coefficients) of explanatory variables at various points along the conditional distribution of the

dependent variable.  However, if the distribution of the dependent variable is homoskedastic

(that is, the conditional variance of dependent variable's distribution is constant by the level of

independent variables), the estimated marginal effects will be identical between quantiles as well

as with the marginal effects at the conditional mean estimated by OLS.  In this case, the quantile

slope coefficient estimates do not provide any additional information about the behavior of the

dependent variable with respect to the explanatory variables beyond the information conveyed by

the OLS slope estimates.  Therefore, the first step after estimating quantile regressions is to test

whether the estimated slope coefficients are equal across the quantiles.  As shown by Koenker

and Bassett (1982), such a test for the equality of slope coefficients across quantiles is a robust

test for heteroskedasticity.

Estimating regression equations at the five quantiles simultaneously and obtaining the joint

variance-covariance matrix allows us to carry out several types of tests of equality of slope

coefficients.  Table 3 reports the results of these tests.  First, we tested for the presence of

heteroskedasticity in the data by testing for the equality of slope coefficients at the .1q against

the slope coefficients at .9q using the minimum distance chi-square test discussed in the

appendix.  The resulting chi-square statistics for iron, zinc, and calcium are reported in the last

row of table 3.  The null hypothesis of homoskedasticity is rejected decisively in all cases.  This

implies that the intake data for preschoolers is heteroskedastic and that the quantile slope
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estimates are likely to provide additional information about the behavior of intakes beyond that

conveyed by the OLS estimates alone.

The rejection of the joint equality of all coefficients at two quantiles does not imply that the

coefficients of individual explanatory variables are not equal across the quantiles.  Therefore,

next we tested for the equality of the slope coefficients of selected variables across quantiles.

While any combination of quantiles could be tested, in table 3 we present test statistics (F-

values) for slope equality at symmetrical quantiles (.1q=.9q and .25q=.75q) as well as across all

five quantiles.  The p-values of the test statistics are reported in parenthesis.

The null hypotheses that the WIC participation coefficients for iron intake are equal across the

symmetrical quantiles and across all five quantiles are strongly rejected.  For zinc, there is some

evidence of discrepancy in quantile effects; slope equality across five quantiles could not be

rejected at the 10 percent significance level.  However, for calcium, the test results show that the

WIC coefficients are statistically equal across the five quantiles.  Table 3 also reports test

statistics for the equality of sex and age coefficients.  While the effect of sex appears to vary by

quantiles, the variation in age effects across quantiles seems to diminish by the age level.

Tables 4 to 6 report the estimated regression coefficients of selected explanatory variables at the

five quantiles for iron, zinc, and calcium.  For comparison with the quantile estimates, the second

column in each table presents the OLS estimates.  The last column of each table presents

restricted coefficient estimates.  These are coefficient estimates obtained as a linear combination

of the five quantiles coefficients imposing the equality restriction using an optimal minimum
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distance estimator.  When the distribution of the dependent variable is nonnormal or fat-tailed,

these estimates have superior statistical properties compared to the OLS estimates.  The

restricted estimates are especially useful for those variables whose slope coefficients are found to

be equal across quantiles by the F-test.

After controlling for other explanatory variables, WIC participants have significantly higher iron

intake compared to nonparticipants at all five quantiles (p<.05).  The effect of WIC participation,

however, varies considerably across quantiles from a low of .5mg at .1q to a high of 3.1mg at the

.9q.  The OLS estimate of a 1.8mg difference is, therefore, not representative of the WIC effect

at other parts of the iron intake distribution among WIC eligible preschoolers.

For zinc, the OLS estimate shows a significant WIC effect of .4 mg.  However, relying on this

estimate alone could be misleading, as shown by the quantile estimates.  Notably, there is

negligible participant-nonparticipant difference at the bottom quantiles. The only statistically

significant effect of WIC participation is at the .75q.

For calcium, the quantile estimates for WIC participation are statistically significant at all

quantiles except at .9q.  However, recall that the equality of the WIC coefficient across the five

quantiles was not rejected for calcium.  Notably, there is also no monotonic pattern for the

quantile estimates as was evident for iron.  Therefore, the restricted coefficient estimate, which is

an optimal linear combination of the five quantile coefficients, may be a better estimate of the

WIC effect than any individual quantile estimate or the OLS estimate.  This is, in fact, borne out

by the t-value, which is highest for the restricted estimate.
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Among WIC-eligible preschoolers, boys had higher intakes of iron, zinc, and calcium compared

to girls, after holding other characteristics similar between them.  The difference tend to be larger

at the upper quantiles.  For both zinc and calcium, the difference in intakes between boys and

girls were relatively small and insignificant at the 10th and 25th quantiles.   Intakes generally

tend to be lower for 1-3 year olds compared to the 4 year olds (the omitted reference group).

However, calcium intake is an exception.  Children 1 year of age have higher calcium intake than

children 2-4 years of age, although as the quantile estimates show, this higher intake is confined

to those children with calcium intake at or above the conditional median.  The OLS estimate of

102 mg difference (between age 1 and age 4) at the conditional mean is, therefore, misleading.

To get a better view of the change in WIC participation effects across quantiles, we estimated

quantiles regressions at all quantiles between .1q and .9q at .05q intervals.  The conditional

quantiles based on WIC participation status were then predicted at each of these quantiles,

holding other explanatory variables, except age and sex, constant at their sample means.

Predictions were obtained separately by age and sex.  For example, to obtain the predicted intake

at the .25q for male, WIC participant preschoolers 4 years of age, we the used the .25q quantile

regression coefficient estimates to predict the .25q by setting the dummy variables WIC

recipient=1, male=1, age1=0, age2=0, and age3=0, and all other explanatory variables at their

sample mean.  To obtain the predicted .25 conditional quantile for WIC nonparticipants of the

same sex/age combination, we changed WIC recipient=0, and so on.  The resulting predicted

conditional quantiles for iron, zinc, and calcium are graphed in figures 2 to 4.  The predicted

values for the five representative quantiles, along with the predicted intake at the conditional

mean obtained using the estimated OLS regression for 1-3 year olds are presented in table 7.
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WIC participant boys have highest intake levels across all parts of the conditional distribution of

intakes.  While the largest differences, in general, are between WIC nonparticipant girls and

WIC participant boys, the pattern of difference between participants and nonparticipants tend to

be specific to each nutrient.  For iron and zinc, the difference tend to widen from the bottom

quantiles to the top quantiles.  However, for zinc there is negligible difference between groups at

the very lowest quantiles.  Iron intake of participating girls starts to exceed that of

nonparticipating boys after .3q.  But the zinc intake of participating girls is consistently below

that of nonparticipating boys at all quantiles.  The difference in calcium intake by WIC status is

largely stable across the conditional distribution for both boys and girls.  Interestingly, up to

about the conditional median, the WIC participant girls have higher calcium intakes than

nonparticipant boys.  Beyond the median, however, the effect of sex is stronger so that the

conditional intake of participating girls and nonparticipating boys tend to converge.  Due to the

nonconstancy of the effects of the participation, sex, or age variables across parts of the

conditional distribution of intakes, these estimates, therefore, convey far more information about

the relative intake levels than was evident from the OLS estimate alone.

Among other results based on our sample of WIC-eligible preschoolers, household income does

not have influence on zinc and calcium intakes once other characteristics are take into account.

Income has a small but significant effect on iron intake at the 10th percentile.  This effect needs

to be investigated further because of its implications for the potential use of income

supplementation programs to combat iron inadequacy.  Among the race/ethnicity variables, the

most notable effect is the lower intake of calcium by nonhispanic black and nonhispanic other
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race preschoolers compared to nonhispanic white preschoolers.  The effect is relatively stable

across quantiles, especially for black, and the restricted estimates have high t-values.

Conclusion

The results of this study suggests that a far more clearer picture of the effect of WIC

participation on the nutrient intakes of WIC eligible preschoolers emerges when other parts of

the conditional distribution of intakes, in addition to the conditional mean, are studied.  This is

exemplified by the contrasting results for iron, zinc, and calcium.  For iron, the participant-

nonparticipant difference at the conditional mean estimated by OLS is 1.8 mg.  However,

although statistically significant, the difference at the .1q estimated by quantile regression is .5

mg.  The estimates at other quantiles show a monotonic pattern with the difference getting larger

at the upper quantiles.  For zinc, although the OLS estimate shows a significant WIC effect at the

conditional mean, the quantile estimates show that the effects are negligible at the first quartile

and below.

In contrast, the participant-nonparticipant difference in calcium intake is relatively stable across

quantiles.  An optimally combined quantile estimates shows that WIC participants have about 54

mg of higher calcium intake compared to WIC nonparticipants.  But even for calcium where the

OLS estimate of 47 mg is close to the quantile estimates, there is variation in the effects across

quantiles of other important demographic variables such as age and sex.  When the effects of

these variables are taken into account to obtain predicted intakes, the resulting conditional

quantile graphs provide a more informative picture of the effects of WIC participation on intakes

across age-sex groups.
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These results suggest that to fully uncover the extent and nature of the behavioral impact of

programs such as WIC, it is essential to look beyond the conditional mean to other parts of the

dietary intake distributions.  However, as noted earlier, these results have been obtained without

applying any methodological corrections for self-selection bias.  Therefore, the policy

implications of the results should be interpreted and generalized with considerable caution.
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Footnotes

1.  The recent study of WIC effectiveness by Kramer-LeBlanc et al. is an exception.  This study

compares the intake of WIC participants and nonparticipants at the median intake as well as at

the10th percentile.  However, their estimates are unconditional, or estimates that do not adjust

for the sociodemographic differences between the two groups.
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Appendix

Quantile Regression

Koenker and Bassett (1978) introduced quantile regression as a generalization of the sample

quantiles to conditional quantiles expressed as linear functions of explanatory variables.  This is

analogous to the OLS regression model that expresses the conditional mean in a linear form.

However, by permitting conditional functions to be specified at any quantile, quantile regression

enables one to describe the entire conditional distribution of the dependent variable given a set of

regressors.  The familiar Least Absolute Deviation (LAD) estimator is a special case of quantile

regression that expresses the conditional median as linear function of covariates.  Quantile

regression's ability to characterize the whole conditional distribution is most potent when there is

heteroskedasticity in the data (Deaton).  When the data are homoskedastic, the set of slope

parameters of conditional quantile functions at each point of the dependent variable's distribution

will be identical with each other and with the slope parameters of the conditional mean function.

In this case, the quantile regression at any point along the distribution of the dependent variable

reproduces the OLS slope coefficients, and only the intercepts will differ.

However, when the data are heteroskedastic (that is, the conditional variance of dependent

variable's distribution is not constant but differs by the level of independent variables), the set of

slope parameters of the conditional quantile functions will differ from each other as well as from

the OLS slope parameters. Therefore, estimating conditional quantiles at various points of the

distribution of the dependent variable will allow us to trace out different marginal responses of

the dependent variable to changes in the explanatory variables at these points.
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Two additional features of the quantile regression model are noteworthy (Buchinsky, 1998).

First, the classical properties of efficiency and minimum variance of the least squares estimator

are obtained under the restrictive assumption of independently, identically and normally

distributed (i.i.d.) errors.  When the distribution of errors is non-normal, the quantile regression

estimator may be more efficient than the least squares estimator.  Second, since the objective

function for the quantile regression estimator is a weighted sum of absolute deviations, the

parameter estimates are robust to outliers.

Estimation

Let yi denote intake of a nutrient of the ith sample person, i = 1, ..., N.  We assume that the ?th

quantile (0 < ? < 1) of the conditional distribution of yi is linear in a K×1 vector of explanatory

variables, xi:

,)(yQ ?iii? ßxx ′=

where Q?(yixi) is the conditional quantile function and ß? is the unknown vector of parameters.

The quantile regression estimator of ß? is obtained by solving

.y)?(1y?
N
1min

?ii ?iiy:i y:i
?ii?ii

? 







′−−+′−∑ ∑
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This minimization problem has a linear programming representation, which is guaranteed to

have a solution in a finite number of simplex iterations (Buchinsky 1998).  Several estimators for

the asymptotic covariance matrix for ß? are available, but for obvious reasons, those that rely on

the assumption of i.i.d. errors are of limited value (Deaton).  Buchinsky (1995) has shown that

the design matrix bootstrap estimator provides a consistent estimator for the covariance matrix

under very general conditions.  Additional details regarding the estimation of the quantile
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regression model and the estimation of the asymptotic covariance matrix of the parameters are

discussed in Buchinsky's (1998) methodological survey.

Testing

The minimum distance method can be used to test for the equality of slope coefficients of a

given dependent variable across any set of estimated quantiles (Buchinsky, 1998).  Let

)ˆ.,..,ˆ(ˆ
P1 ??P ′′′= ßßß be a KP × 1 stacked vector of unrestricted parameter estimates from quantile

regression at P quantiles.  Let )ß.,..,ß,ß.,..,(ß K21?1?
R

P1
′=ß  be a (K+P−1) × 1 vector comprising P

unrestricted intercepts and K−1 restricted slope parameters.  The restricted parameter vector β R is

obtained by minimizing

),ˆ()ˆ()Q( R
P

1R
P

R RßßARßßß −′−= −

where A is a positive definite matrix and R is the appropriate restriction matrix.  Under the null

hypothesis of equality of slope coefficients, NQ(β R) is distributed χ2 with (PK−P−K+1) degrees

of freedom.  Since the equality of slope parameters will hold if the i.i.d. assumption is valid, this

is a general test for heteroskedasticity.  The optimal choice for A is the variance-covariance

matrix of Pß̂ , denoted by ΛP.  Given ΛP, the usual F-statistic for testing liner restrictions can be

used to test for the equality of the slope parameters for a specific explanatory variable at

symmetrical quantiles such as 0.1q and 0.9q.  If the null hypothesis of homoskedasticity or the

equality of the slope coefficients is not rejected, the restricted slope estimates β R give an optimal

combination of the quantile slope estimates.  Also, given ΛP, the variance-covariance matrix of

the restricted parameter vector can be obtained as .)( 11
P

R −−′= R?R?
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Table 1.  Distribution of Iron, Zinc, and Calcium intakes among WIC and nonWIC Preschoolers

Nutrient Mean Percentile

10 25 50 75 90

Milligrams/day
Age 1-3

Iron (RDA=7mg/day)
WIC 12.4 5.9 8.0 11.3 15.6 20.1

Non WIC 11.0 5.5 7.3 9.9 13.5 17.7

Zinc (RDA=3mg/day)
WIC 8.0 4.4 5.5 7.4 9.7 12.4

Non WIC 7.8 4.4 5.6 7.1 9.3 11.7

Calcium (AI=500mg/day)
WIC 823.2 399.0 553.1 776.8 1014.2 1337.2

Non WIC 796.0 353.5 521.2 724.0 1001.8 1302.2

Age 4

Iron (RDA=10mg/day)
WIC 14.9 8.5 10.5 13.2 18.3 22.5

Non WIC 12.6 7.1 8.9 11.6 15.4 19.6

Zinc (RDA=5mg/day)
WIC 10.0 5.3 6.9 8.9 12.1 15.7

Non WIC 9.0 4.9 6.6 8.3 10.9 13.6

Calcium (AI=800mg/day)
WIC 876.2 456.2 636.0 861.1 1054.3 1291.5

Non WIC 803.5 412.8 577.3 764.5 993.0 1220.6
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Table 2. Explanatory variables and sample means

Variable Definition Mean

Preschooler characteristics

WIC status WIC recipient=1; 0 otherwise .38

Sex Male=1; 0 otherwise .50

Age (Age=4 omitted)
Age 1 Age=1 year; 0 otherwise .17
Age 2 Age=2 years; 0 otherwise .19
Age 3 Age=3 years; 0 otherwise .30

Race/Ethnicity (Nonhispanic white omitted)
Nonhispanic black Nonhispanic black=1; 0 otherwise .21
Nonhispanic other Nonhispanic other racial groups1=1; 0 otherwise .06
Hispanic Hispanic national origin=1; 0 otherwise .25

Food allergy Child has food allergies=1; 0 otherwise .05

Child care Attended child care which gives meals/snacks=1; 0 otherwise .28

Household characteristics

Income Gross household income in previous year ($ '000) 19.3

Size Count of household members 4.8

Own home Dwelling owned by household member=1; 0 otherwise .36

Cash assets Members have > $5,000 in cash assets=1; 0 otherwise .09

Food stamp Any member authorized to receive food stamps=1; 0 otherwise .36

Dual head Household has a male and a female head=1; 0 otherwise .70

Region (Northeast omitted)
Midwest Household in the midwest=1; 0 otherwise .21
South Household in the south=1; 0 otherwise .34
West Household in the west=1; 0 otherwise .29
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Table 2. Explanatory variables and sample means

Variable Definition Mean

Urbanization (Central city omitted)
Suburb MSA, outside central city=1; 0 otherwise .40
Nonmetro Non-MSA .24

Head of household characteristics2

Education Years of schooling completed by head of household. 11.6

Age Age of the head of the household in years 31.2

Note:  Sample size = 2509.  Fourteen additional dummy variable were used as explanatory
variables: three dummy variables representing survey year (1995, 1996, 1998; 1994 omitted),
three representing survey season (spring, summer, fall; winter omitted), two indicating whether
each of the two-day intake was recorded on a weekend day (day-1 intake on Friday, Saturday, or
Sunday; day-2 intake on Friday, Saturday, or Sunday), four indicating the respondent’s opinion
whether each of the recorded two-day intake was less than or more than the usual intake (day-1
intake less than usual; day-1 intake more than usual; day-2 intake less than usual; day-2 intake
more than usual), and two indicating whether the interviewer or the respondent had difficulty
with each day's intake interview (day-1 interview difficult; day-2 interview difficult).
1Asian, Pacific Islander, American Indian, Alaskan native, or other race.
2In the case of dual headed households, values for the female head were used.
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Table 3.  Tests for Equality of Slope Parameters Across Quantiles

Variable Iron Zinc Calcium
q10=q90 q25=q75 All 5 q10=q90 q25=q75 All 5 q10=q90 q25=q75 All 5

WIC recipient 12.27 14.25 5.37 2.33 6.84 2.07 .03 .14 .11
(.00) (.00) (.00) (.13) (.01) (.08) (.87) (.71) (.98)

Male 2.11 3.49 2.72 3.80 6.05 2.25 9.00 1.00 2.91
(.15) (.07) (.03) (.05) (.01) (.06) (.00) (.32) (.02)

Age 1 .01 1.01 1.93 3.73 3.62 2.53 23.96 4.64 6.64
(.92) (.32) (.10) (.05) (.06) (.04) (.00) (.03) (.00)

Age 2 1.72 .71 .74 7.83 5.16 3.05 2.92 .00 1.02
(.19) (.40) (.56) (.01) (.02) (.02) (.09) (.99) (.39)

Age 3 .15 .07 .23 .64 2.77 .92 .17 .04 .51
(.70) (.79) (.92) (.42) (.10) (.45) (.68) (.85) (.73)

?2(37) 86.3 107.91 92.08
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Table 4.  Quantile Regression Estimates: Iron Intake of Preschoolers

                                 Quantile                               
Variable OLS .10 .25 .50 .75 .90 ßR

WIC recipient 1.75 .50 .93 1.51 2.46 3.07 1.01
(7.14) (1.99) (4.18) (5.80) (5.98) (4.33) (7.16)

Male 1.02 .27 .78 1.02 1.40 1.11 .75
(4.62) (1.28) (3.84) (4.17) (4.10) (1.99) (6.20)

Age 1 -2.61 -2.31 -2.94 -3.24 -2.31 -2.42 -2.74
(6.41) (7.23) (9.44) (7.82) (3.58) (2.30) (13.21)

Age 2 -1.95 -1.26 -1.62 -1.87 -2.04 -2.54 -1.37
(6.04) (3.57) (5.51) (4.76) (4.06) (2.61) (6.96)

Age 3 -.83 -.67 -.84 -.88 -.72 -.37 -.86
(2.90) (2.23) (3.25) (2.70) (1.65) (.50) (5.23)

Income -.00 .02 .01 -.00 -.00 -.06 .02
(.09) (2.02) (1.16) (.25) (.05) (1.72) (2.61)

Black .08 -.17 -.30 .11 .63 .16 -.08
(.23) (.57) (.92) (.29) (1.25) (.20) (.40)

Other race -1.19 -1.42 -.82 -.99 -.78 -1.31 -.65
(2.87) (2.47) (1.82) (2.11) (1.12) (1.31) (2.27)

Hispanic .23 -.43 -.17 .05 1.00 .32 -.13
(.72) (1.44) (.64) (.15) (2.12) (.38) (.75)

R2 .12 .08 .08 .07 .08 .10 --

Note: Absolute t-values in parenthesis.
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Table 5.  Quantile Regression Estimates: Zinc Intake of Preschoolers

                                 Quantile                               
Variable OLS .10 .25 .50 .75 .90 ßR

WIC recipient .42 .05 -.01 .33 .63 .62 .09
(2.56) (.39) (.07) (1.82) (2.54) (1.76) (1.04)

Male .56 .15 .19 .51 .75 .87 .30
(3.60) (1.07) (1.48) (3.18) (1.35) (2.41) (3.73)

Age 1 -1.70 -.91 -1.35 -1.55 -2.20 -1.93 -1.17
(7.58) (4.37) (7.32) (5.98) (4.77) (3.74) (9.12)

Age 2 -1.30 -.48 -.86 -1.08 -1.62 -2.07 -.70
(6.43) (2.24) (4.98) (4.14) (4.76) (3.81) (5.74)

Age 3 -.74 -.51 -.54 -.54 -1.06 -.87 -.47
(3.73) (2.63) (3.34) (2.30) (3.26) (1.93) (4.61)

Income -.01 .01 .01 -.00 -.01 -.02 -.01
(.75) (.66) (.72) (.28) (.73) (1.46) (1.11)

Black -.04 -.29 -.31 -.15 -.33 .31 -.24
(.17) (1.18) (1.80) (.52) (.96) (.60) (2.01)

Other race -.32 -1.02 -.67 -.15 -.05 -.44 -.80
(1.03) (3.15) (1.84) (.40) (.09) (.57) (4.00)

Hispanic .11 -.17 -.12 .07 -.43 .14 -.14
(.52) (.88) (.57) (.30) (1.35) (.30) (1.16)

R2 .11 .06 .06 .06 .06 .10 --

Note: Absolute t-values in parenthesis.
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Table 6.  Quantile Regression Estimates: Calcium Intake of Preschoolers

                                 Quantile                               
Variable OLS .10 .25 .50 .75 .90 ßR

WIC recipient 47.36 52.59 57.38 59.28 48.10 58.65 53.55
(3.01) (2.79) (3.38) (3.28) (1.98) (1.79) (5.54)

Male 44.27 -2.91 20.29 47.17 43.65 104.14 12.48
(3.05) (.17) (1.21) (2.71) (1.97) (3.16) (1.34)

Age 1 102.36 -29.96 2.57 69.27 111.29 283.06 37.68
(3.76) (1.08) (.07) (2.36) (2.37) (4.55) (2.34)

Age 2 -56.24 -90.82 -62.82 -56.73 -62.70 -10.76 -59.52
(2.65) (3.50) (2.62) (2.36) (1.81) (.26) (4.41)

Age 3 -52.27 -37.86 -62.23 -65.95 -67.00 -54.62 -39.23
(2.96) (1.81) (3.34) (3.30) (2.70) (1.46) (3.31)

Income .31 .05 .75 -.76 -.45 1.09 .40
(.42) (.05) (1.02) (.94) (.40) (.64) (.92)

Black -111.50 -116.18 -116.59 -134.16 -111.35 -85.49 -120.00
(5.68) (4.48) (5.44) (5.44) (3.22) (1.80) (9.41)

Other race -81.15 -87.87 -115.64 -96.15 -54.06 -64.66 -112.02
(2.72) (2.53) (3.57) (2.22) (1.27) (.85) (5.92)

Hispanic 12.83 -10.58 -15.68 6.29 30.60 54.69 -16.60
(.65) (.45) (.74) (.25) (.88) (1.03) (1.27)

R2 .08 .06 .05 .06 .05 .08 --

Note: Absolute t-values in parenthesis.
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Table 7.  Predicted Conditional Quantiles by WIC participation Status for 1-3
year Olds

Conditional Mean Conditional Quantile

Variable .10 .25 .50 .75 .90

Milligrams/day
Iron

Female, nonWIC 11.2 6.4 7.8 10.1 13.5 17.7

Female, WIC 12.9 6.9 8.7 11.6 16.0 20.8

Male, nonWIC 12.2 6.7 8.6 11.1 14.9 18.9

Male, WIC 14.0 7.2 9.5 12.7 17.4 21.9

Zinc
Female, nonWIC 8.1 4.8 6.0 7.6 9.7 12.3

Female, WIC 8.5 4.9 6.0 7.9 10.3 12.9

Male, nonWIC 8.7 4.9 6.2 8.1 10.4 13.2

Male, WIC 9.1 5.0 6.2 8.4 11.0 13.8

Calcium

Female, nonWIC 780.5 414.5 547.0 725.8 973.4 1192.8

Female, WIC 827.9 467.1 604.5 785.1 1021.6 1251.5

Male, nonWIC 824.8 411.6 567.3 772.9 1017.1 1297.0

Male, WIC 872.2 464.2 624.8 832.2 1064.2 1355.6
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