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Measuring Production Efficiency Using Aggregate Data

Abstract

This paper develops a measure of efficiency when data have been aggregated. Unlike the most

commonly used efficiency measures, our estimator handles the heteroskedasticity created by

aggregation appropriately. Our estimator is compared to estimators currently used to measure

school efficiency. Theoretical results are supported by a Monte Carlo experiment. Results show

that for samples containing small schools (sample average may be about 100 students per school

but sample includes several schools with about 30 students), the proposed aggregate data

estimator performs better than the commonly used OLS and only slightly worse than the

multilevel estimator. Thus, when school officials are unable to gather multilevel or disaggregate

data, the aggregate data estimator proposed here should be used. When disaggregate data is

available, standardizing the value-added estimator should be considered.
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Measuring Production Efficiency Using Aggregate Data

1. Introduction

Over the last three decades, resources devoted to education have continuously increased

while student performance has barely changed (Odden and Clune 1995). In response to this fact,

several states now reward and provide incentives for public schools that perform better than

others, based on their own measures of school quality (Ladd 1996). Test scores are used not only

by policymakers in reward programs but are also presented in state report cards issued to each

school. Already more than 35 states have comprehensive report cards reporting on a variety of

issues including test scores and a comparison of school variables with district and state averages.

But often the information presented is misleading or difficult to interpret. Accurate information

on school performance is needed if report cards and reform programs are to succeed in

improving the public school system.

Hierarchical linear modeling (HLM), a type of multilevel modeling, has been recognized

by most researchers as the appropriate technique to use when ranking schools by effectiveness.

As Webster argues, HLM recognizes the nested structure of students within classrooms and

classrooms within schools, producing a different variance at each level for factors measured at

that level. Multilevel data, also called disaggregate data is needed to implement HLM. For

example, two-level data could consist of variables for students within schools. The value-added

framework within the HLM methodology has become popular among researchers (Hanushek,

Rivkin, and Taylor 1996; Goldstein 1997; Woodhouse and Goldstein 1998). Value-added

regressions are able to isolate school�s effect on test scores during a given time period, by using

regressors such as previous test scores, and student and school characteristics. But as of 1996,

among the 46 out of 50 states that have accountability systems with some type of assessment,
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only 2 had used value-added statistical methodology in implementing such systems (Webster et

al. 1996). Multilevel analysis has been said to involve complicated statistical analyses that school

officials are unable to understand (Ladd 1996).

A common approach is to use aggregate data. As opposed to having data for each student

within each school, aggregate data refers to having only averages of these data over all students,

within a school. School administrators may be able to obtain records of each student�s individual

test score but may not be able to match them with their parents� income, for example. Therefore,

average test scores in a school are matched to the average income in the respective school

district.

To obtain a measure of school quality with aggregate data, it is common to regress school

mean outcome measures on the means of several demographic and school variables The

residuals from this regression are totally attributed to the school effect, and thus, are used to rank

schools. Although the use of aggregate data has been widely criticized in the literature (Webster

et al. 1996; Woodhouse and Goldstein 1998), many states use aggregate data. This paper purpose

proposes a new and more efficient estimator of quality based on aggregate data, and then it

compares it with the commonly used OLS estimator as well as with the value-added-

disaggregate estimator. Evidently, estimators based on disaggregate data will perform better than

any estimator based on aggregate data. The questions that arise are: by how much will their

performances differ?  Should schools be using OLS, when they can use a more efficient

aggregate estimate at no extra cost?

One of Goldstein�s main oppositions to aggregate data models is that they say nothing

about the effects upon individual students. Also, aggregate data does not allow studying

differential effectiveness, which distinguishes between schools that are effective for low
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achieving students and schools that are effective for high achieving students. The inability to

handle differential effectiveness is a clear disadvantage of aggregate as compared to disaggregate

data. However, when aggregate data are all that schools have, is it still possible to detect the

extreme over and under performing schools?  When using OLS on aggregate data, it has been

observed that small schools are disproportionately rewarded (Clotfelter and Ladd 1996). The

estimator proposed here eliminates that bias.

Woodhouse and Goldstein (1998) argue that residuals from aggregate level regression

analysis are highly unstable and therefore, unreliable measures of school efficiency. Woodhouse

and Goldstein analyze an aggregate model used in a previous study and show how small changes

in the independent variables as well as the inclusion of non-linear terms will change the rank

ordering of regression residuals. However, their data set is small and they do not examine

whether disaggregate data would have also lead to fragile conclusions.

As of today, most of the research has focused on criticizing the commonly used aggregate

data model, which uses OLS residuals to estimate school quality. Goldstein (1995), for example,

illustrates the instability of aggregate data models with an example in which he compares

estimates coming from an aggregate model versus estimates from several multilevel models

showing they are different. The aggregate model, however, does not provide an estimate of the

between-student variance, which suggests that the author does not use MLE residuals to estimate

school effects. Maximum likelihood estimation is possible since the form of heteroskedasticity

for the aggregate model is known (Dickens 1990).

While it is expected that aggregation will attenuate the bias due to measurement error,

few researchers have compared aggregate data models versus multilevel models while

considering measurement error. Hanushek, Rivkin, and Taylor (1996) analyze the impact of
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aggregation on specified models aimed at measuring school resource effects on student learning,

and find that aggregation produces an ambiguous bias on the estimated regression parameters.

Thus they suggest an empirical examination of the effects of aggregation in the presence of

measurement error.

Although it has become conventional wisdom that aggregate data should not be used to

measure school quality, the literature on which this argument is based on, is insufficient to

support the claim. Research comparing aggregate with disaggregate models have used ordinary

least squares rather than maximum likelihood estimators so the validity of their criticism is

unclear. Standardized efficient estimators of school quality based on aggregate data, as well as

their confidence intervals will be developed here and compared to multilevel estimators with and

without measurement error. In the process, a standardized version of the value-added multilevel

estimator is also proposed and compared. Since many states either continue to use aggregate data

or use other less accurate measures to rank and reward schools, the relevance of this issue cannot

be denied.

2. Theory

Estimators for the effect of schools on student achievement based on disaggregate data

have been developed and reviewed extensively in the education literature, and will be presented

only briefly here. However, since aggregate data have been disregarded due to the loss of

information that aggregation implies, little effort has been devoted to develop appropriate

estimators for aggregate data.

This section consists of three parts. The first part will show how aggregation of a 2-level

error components model, with heterogeneous number of first-level units within second-level
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units, leads to a model with heteroskedastic error terms. Therefore, for estimators of the

parameters of the model to be efficient, ML or GLS estimation is required. The aggregate data

estimator is presented as well as its standardized version.

The second part derives confidence intervals for the aggregate data estimator and presents

the confidence intervals commonly used for disaggregate data. The third part introduces

measurement error in the model and derives the bias when estimating the parameters of the

explanatory variables in both the disaggregate and aggregate models.

2.1. Aggregation of a Simple 2-Level Error Components Model

Consider the following model:

ijjijij euY ++= )( βX ,  Jjni j �� ,1,,1 == , (1)

where ijY  is the test score of the ith student in the jth school, ij)( ββββX is the fixed part of the model,

likely to be a linear combination of student and school characteristics, such as previous test score

(for a value added measure), parents� education, and average parents� income for each school,

ju  is the random effect for school, that we are trying to estimate, and ije  is the unexplained

portion of the test score, with distributions given by

0),cov(),,0(~),,0(~ 22 =ijjeijuj euNiideNiidu σσ .

In matrix notation the model is:

euXY ++= ΖΖΖΖβ , (1.a)

where
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The random effect ju represents the departure from the overall mean effect of schools on

students� scores. While the intercept contains the overall mean effect of schools, ju  measures by

how much school j deviates from this mean.

The shrinkage estimator of ju  is (Goldstein 1995):

j
n

i ijjeuuj nynu j /)�))(//((�
1

222
� =

+= σσσ (2)

ijijij Yy )�(� βX−= ,

where the ijy� �s are called raw residuals and ββββ�  is the MLE of ββββ . So the school effect for school j

is estimated by the raw residuals, averaged over all students, and �shrunken� by a factor that is a

function of the variance components and the number of students in the school. The larger the

number of students in a school, the closer this factor is to one. But if school size is small, there

will be less information to estimate the school effect. Thus, the shrinkage factor becomes

smaller, making the estimate of the school effect deviate less from the overall mean.

Now let us see how the model changes with aggregation. Adding over all students within

each school,

��� ===
++= jjj n

i ijjj
n

i ij
n

i ij eunY
111

)( βX
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and dividing by the number of students in each school, leads to the following model:

jjjj euY ... )( ++= βX ,  Jj ,,1 �= (3)

0),cov(),/,0(~),,0(~ .
2

.
2 =jjjejuj eunNeNiidu σσ ,

where the dot is the common notation to denote that the variable has been averaged over the

corresponding index; students in this case. The error term for the aggregated model will be

)/,0(~ 22
jeuj nv σσ + .

Again, in matrix notation the model is:

aaa euXY ++= β , (3.a)
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We are interested in estimating the random effects ju �s. For this, we estimate the MLE

residuals of the error term vj. We define our estimator as the conditional mean of ju  given vj, i.e.,

)/(�~
jjj vuEu = , This value can be shown to be (see appendix):

))�((
)/(

~
..22

2

jj
jeu

u
j Y

n
u β

σσ
σ

X−
+

= , (4)

 where ββββ�  is the MLE of ββββ  for the aggregate model. Notice that this estimator has the same

shrinkage factor as the disaggregate estimator.



9

However, the school effects in (4) are heteroskedastic, while the true school effects are

not. Thus, to correct for heteroskedasticity, we divide the estimator by its standard deviation

obtaining the standardized estimator of school effect:

))�((
/

1
..22 jj

jeu

j Y
n

u β
σσ

X−
+

=� (5)

Thus, the set of ju� �s may also be used to rank schools. Similarly, the multilevel estimator in (2)

can also be standardized to obtain:

j
n

i ijjeuj nynu j /)�))(//(( � =
+=

1
221 σσ� (2.a)

2.2. Confidence Intervals for the Estimates of School Quality

A confidence interval for school effects is: uuj tu �|2/1� σα−± . Thus, it is necessary to obtain

the conditional variance of the random effect given its estimator; that is, )�|( uuCov .

For both, disaggregate and aggregate estimators, the covariance matrix is derived

similarly. First it is necessary to obtain the joint distribution of the vector of school effects u and

its estimator. For this, notice that in both cases, the estimator is a linear combination of the vector

of dependent variables, test scores in our case. Thus the joint distribution can be derived from the

joint of u and Y.  Then, using a theorem from Moser (theorem. 2.2.1, page 29), the conditional

covariance matrix of school effects is obtained. A derivation of this covariance matrix is given in

the appendix.

The conditional covariance matrix based on the disaggregate estimator is:

( )( ) ΖΖΖΖΖΖΖΖ 1111 VX'XVX'XVV'Iuu −−−− −−= 42)�|( uuCov σσ , (6)

The conditional covariance matrix based on the aggregate estimator is:
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aaa

1
a VX)XV(XXVVIu|u −−− −−= 42)~( uuCov σσ . (7)

2.3. Bias in Estimation Introduced by Measurement Error

Let us consider a two-level model with measurement error. The model is:

ijjijij euy ++= )( ββββx ,      Jjni j ,,1,,1 �� == (8)

ijijij qyY +=

HhmxX hijhijhij ,,1, �=+=

0),cov(),cov( '' == jhihijjiij mmqq

0)()( == hijij mEqE

mhhijhijh mm ),( 2121
),cov( σ=

where ijy is the real test score for the ith student in the jth school, ijq is the measurement error for

ijy , ),0(~ 2
qij Nq σ , ijY is the observed test score, hijx is the true measure of the hth student or

school characteristic corresponding to the ith student in the jth school, hijm is the measurement

error for hijx , ju is the random component for school j, ije is the residual, and mhh ),( 21
σ is the

covariance of measurement errors from two explanatory variables, h1 and h2, for the same

student. The covariance of measurement errors from any two variables is assumed to be equal for

all students regardless of the school they attend.

Following Goldstein (1995), it can be seen that without measurement error, ββββ  could be

estimated by the FGLS estimator )�()�(� 1 yVxxVx 11 −−− ′′=β . But measurement error as defined

by model (8) implies that )()()( 1 mVmXVXxVx 111 −−−− ′−′=′ EE ; so an unbiased estimator for

ββββ  in the presence of measurement error is proposed by Goldstein (1995) to be:
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)�()]�(�[ 1 YVXmVmXVX 111 −−−− ′′−′= Eβ
�

. (9)

When measurement error is not taken into account, the matrix )( mVm 1−′E  is omitted.

Using Goldstein�s derivation of )( mVm 1−′E  and realizing that the inverse of V is also a block

diagonal with elements 
)(

)1(
222

22

euje

euj

n
n

σσσ
σσ

+
+−

 in the diagonal, each element ),( 21 hh  of the HH ×

matrix )( mVm 1−′E  can be expressed as

� = +�
�
�

�
�
�

+−J

j
euj

mhh

e

u
jj n

nn
1 22

),(
2

2
211)1(
σσ

σ
σ
σ

. (10)

Now let us see how does this omitted matrix, )( mVm 1−′E , compares with the one to be obtained

when aggregating the model. Aggregating the true disaggregate model, we obtain:

Jjeuy jjjj ,,1,)( ... �=++= ββββx (11)

jjj qyY ... +=

jhjhjh mxX ... +=

0),cov( '.. =jj qq

0)()( .. == jhj mEqE

jmhhijhijh nmm /),cov( ),( 2121
σ=

where notation is as in model (8).

 Notice how the covariance of measurement error between any two fixed explanatory

variables is reduced in the aggregate model. Now the covariance matrix of the true model is a

diagonal matrix with elements defined in the first part of this section; and which will be denoted
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by aV . Following a procedure analogous to Goldstein�s derivation for the disaggregate model,

one can obtain the following unbiased estimator of ββββ for the aggregate model:

)�()]�(�[� 1
aaaaaaaaaa E YVXmVmXVX 111 −−−− ′′−′=β , (12)

where the subscript a denotes aggregate data. As can be seen, the bias now will depend on

)( aaaE mVm 1−′ , an HH ×  matrix whose ),( 21 hh element is

�
= +

J

j euj

mhh

n1
22

),( 21

σσ
σ

. (13)

As can be seen by comparing values in (10) and (13), the bias in ββββ  due to measurement

error is attenuated in the aggregate model. Bias in the estimation of ββββ  without accounting for

measurement error, is likely to affect the estimators of school effects, as suggested in (2) and (4).

This result is worth considering since adjustments for measurement error are seldom made and,

as Woodhouse et. al. (1996) argue, different assumptions about variances and covariances of

measurement error may lead to totally different conclusions (when ranking schools, for

example). Therefore, when not correcting for measurement error, gains from aggregation may

somewhat offset the negative consequences of aggregation. Then, at least asymptotically,

aggregate estimates of school effects may be less inaccurate than what researchers have claimed.

However, to examine the properties of our aggregate and disaggregate estimators of

school effects in small samples, a Monte Carlo study will be necessary. Also, from the study we

will be able to compare the estimators� asymptotic and small sample behavior.
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3. Data and Procedures

A Monte Carlo study was used to compare aggregate and disaggregate estimates of

school effects with their true values. These values were also compared to OLS estimates with

aggregate data since this is what is most often done. The model on which the data generating

process was based, was taken from Goldstein�s 1997 paper, table 3, page 387, since it was

simple, and provided estimates of the random components for school and student, based on real

data.

This model regresses test scores of each student against a previous test score, a dummy

variable for gender, and a dummy for type of school (boys�, girls�, or mixed school). Test scores

were transformed from ranks to standard normal deviates. The random part consists of the school

effect and the student effect.

According to Goldstein, multilevel analysis provides the following estimated model:

jjijijij BoysSchGirlsSchGirlPscorescoreT 090100140520-0.09 ....� ++++= ,

Jjni j �� ,1,,1 == . (14)

The estimated variance of school effects, also called between-school variance, is

07.0� 2 =uσ , and the variance of student effects, also called within-school variance, is 56.0� 2 =eσ .

These values and the estimates of the fixed part of the model were used to generate the

disaggregate data using SAS. At each replication a number of jn observations were generated for

each school, where jn  was a random realization of a lognormal distribution with mean equal to

100 and variance equal to 50000. Lagged test scores were generated from a standard normal.

Dummy variables were generated from binomial distributions. The random components of the

model for school and student were generated using a normal with zero mean and variance
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07.0� 2 =uσ  and 56.0� 2 =eσ  respectively, and the actual test score was obtained as in equation (2).

Then measurement error was introduced to the previous and actual test scores. Measurement

error was assumed to be a normal random variable with a zero mean and a standard deviation of

0.2. All dummy variables are assumed measured without error.

Once a disaggregate data set is generated, estimates for school effects and variance

components are obtained using multilevel analysis as provided by the Mixed procedure in SAS.

Then, the disaggregate data set is aggregated by schools. Residuals as well as the two

components of the variance of the error term are estimated using NLMIXED in SAS. At this

point, we will have a set of 100 true school effects (since the number of schools in the sample is

100), and two sets of estimated school effects using aggregate and disaggregate data. Each of

these sets generates a ranking of the schools in the sample. The greater the school effect, the

better the school�s performance, and therefore, the higher its position will be in the ranking. We

will also have standardized rankings for each estimate and the OLS estimate of school effects to

see how this set compares to the alternative estimators and to the true ranking. Finally, we

compute the estimated variance components under both approaches and compare them with the

true values.

A comparison of the school effect estimators is done in several different ways.

Spearman�s correlation coefficient is calculated for all estimators in order to measure the degree

of correlation of each ranking with the true schools ranking. Another measure used for

comparison is the root mean squared error of the estimates, and finally we compare the top-ten

set of schools obtained with each estimator, with the true top-ten set. The whole process

described above constitutes a single iteration of the Monte Carlo study. As many as 1000

iterations were conducted.
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As many iterations as needed can be performed for each set of parameter values of

interest. In particular, outcomes with and without measurement error are compared in order to

see if the aggregate estimator is in fact more robust to errors in measurement than the

disaggregate estimator. The parameters used to randomly generate the number of students in

each school are also changed, to corroborate the theory�s suggestion that as schools in the sample

grow larger, the difference in the estimators� performance will narrow1.

4. Results

Table 1 shows the first set of results for 1000 samples, each of 100 schools whose size is

distributed lognormal with mean 100 and variance 50000. As expected, the disaggregate

estimator performs best on almost all measures. The aggregate estimator�s performance,

however, is surprisingly good, and clearly above the OLS estimator�s performance. OLS in fact

tends to reward small schools. The average school size for the top ten schools as estimated by

OLS is about 76, while the true average for this group is about 99. However, table 1 also shows

that both the aggregate and disaggregate estimators tend to reward large schools. This can be

explained as follows: OLS estimators are based on residuals whose variance is neu /22 σσ + . So,

small schools will have a larger variance and will be more likely to be either at the bottom or top

of the rankings.

The aggregate and disaggregate estimators have a shrinkage factor that compensates for

these large residuals by reducing the residuals of small schools. Recall the shrinkage factor is

neu

u

/22

2

σσ
σ
+

. This factor is always less than one, but decreases with school size, bringing down the

                                                          
1 This is because the shrinkage factor tends to one and also because the larger the sample, the closer averages are to
their true means.
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absolute value of small school residuals. Results in table 1 suggest that the shrinkage factor may

over-compensate for the residuals effect, and thus, leave only large schools in the extremes.

Estimators with a smaller shrinkage factor (the factor is 
neu /

1
22 σσ +

) such as the standardized

aggregate (equation 5) and standardized disaggregate estimators seem to alleviate this problem.

Table 1 shows how the average size for the top ten schools according to the standardized

estimators only differs by two or three students from the true top-ten group size average. These

standardized estimators also seem to give a somewhat better match than their non-standardized

versions when determining how many of the real top ten schools are selected by the estimators.

When measuring the root mean squared error (RMSE) of the estimators with the true

ranking we find again that the disaggregate estimator performs only slightly better than the

aggregate estimator. For the standardized estimators, the RMSE�s were calculated using the

standardized true rankings, and thus, cannot be compared to the non-standardized versions. Since

we are measuring the performance of the estimators by their ability to match the true ranking and

not the true values of the school effects, the RMSE might not be as good of a measure as all the

others presented in the table.

The between- and within-school variance estimates are presented in Table 1. Although

the aggregate point estimates are very close to the true variances, by looking at the standard

deviations of these estimates, it is clear that aggregation will always reduce the ability to estimate

the within schools variance as compared to the disaggregate estimator.

Table 2 introduces measurement error as 20% of the highest possible test score. We had

hypothesized that measurement error would have less effect on the aggregate estimators. This is

true but almost unperceivable, considering that a 20% measurement error is high. Thus,

measurement error is relatively unimportant in this case.
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Finally, table 3 shows the results for ranking estimates when schools have on average 350

students. As school size increases, the variation in averaged residuals due to students ( ne /2σ )

becomes insignificant. This implies that aggregation becomes less of a concern for estimating

school effects (thus, the aggregate and disaggregate estimators should perform more alike now),

and heteroskedasticity is almost insignificant (thus OLS is not as bad of a choice as before). In

fact, table 3 shows differences among ranking measures have narrowed for all estimators, and

that the problem with small or large schools being consistently rewarded, has almost

disappeared. However, aggregate data will no longer be able to estimate the variance

components of the model with any accuracy.

5. Conclusions

Researchers argue that value-added multilevel models provide the most accurate

measures of school quality. But most states continue to use aggregate data (usually not in a value

added framework) to rank and reward schools.  Research criticizing aggregate models, by

comparing them with disaggregate models, have used ordinary least squares rather than

maximum likelihood estimators so part of their criticism is uncertain. States need to know the

correct way to handle aggregate data and how much accuracy is lost by using aggregate data.

Efficient estimators of school quality based on aggregate data and confidence intervals are

derived here and compared to multilevel and OLS estimators with and without measurement

error. A Monte Carlo study is used in order to perform this comparison that includes measuring

the correlation of aggregate versus disaggregate estimates with the true values of school effects.

Results show that when many small schools are present in the data, the proposed

aggregate data estimator performs better than OLS on aggregate data, and only slightly worse
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than the disaggregate data estimator. However, as school size increases, the three estimates

perform more alike.

Even though the aggregate data estimator is only slightly worse than the disaggregate

data estimator for ranking schools based on efficiency, we still want to encourage the collection

of disaggregate data because of their many uses in understanding school quality and student

learning.

Also, OLS estimators do tend to reward small schools over bigger ones, as the empirical

literature has shown, while the shrinkage disaggregate estimator unexpectedly rewards large

schools. A standardized version of this estimate is presented that eliminates this problem.

Thus, when school officials are able to collect multilevel data, this study suggests they

consider standardizing the estimates of school quality before ranking schools. However, when

disaggregate data are not available, and small schools are present in the sample the standardized

aggregate estimator proposed here should be used over the OLS approach.

The methods proposed and evaluated here provide a one-dimensional measure that can be

used to understand school quality. However, an efficiency measure based on standardized test

scores is not the only measure that should be considered when evaluating schools. This study

provides new information about the strengths and weaknesses of alternative methods and data.

Our application is to schools, but these results are applicable to measuring efficiency in any

industry where aggregate data may be the only data available.
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Table 1. Comparison of estimates of school quality using aggregate vs. disaggregate data with no
measurement error.

Measure Type of estimator Mean Std.Dev.
Spearman Disaggregate 0.8527 0.0341

Std. disaggregate 0.8444 0.0375
Aggregate 0.8431 0.0367
Std. aggregate 0.8373 0.0399
OLS 0.8167 0.0451

RMSE Disaggregate 0.1332 0.0136
Std. disaggregate 0.5378 0.0573
Aggregate 0.1416 0.0164
Std. aggregate 0.0591 0.0592
OLS 0.1873 0.0284

Top Ten Disaggregate 6.50 1.203
Std. disaggregate 6.53 1.178
Aggregate 6.33 1.284
Std. aggregate 6.42 1.207
OLS 6.01 1.258

School Size Avg. Real Group 98.96 69.27
In Top Ten Group Disaggregate 126.13 85.78

Std. disaggregate 101.60 73.26
Aggregate 126.93 82.45
Std. aggregate 102.14 73.58
OLS 76.34 60.19

Variance Estimates Dis. Within Sch. 0.560 0.008
Dis. Between Sch. 0.070 0.013
Agg.Within Sch. 0.572 0.342
Agg Between Sch. 0.067 0.016

Note: Results are for 1000 simulations, each including 100 schools. The number of students per school is
a lognormal random variable with mean 100 and variance 50000. Mean is the average over all
simulations, RMSE is root mean squared error, Top Ten is the average number of schools ranked in the
top ten with the estimator, that belong to the true top ten set. Estimators compared are the disaggregate
estimator, its standardized version, the aggregate estimator, its standardized version, and the OLS
estimator of school effects. Variance estimates are also presented for the disaggregate and aggregate
methods.
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Table 2. Comparison of estimates of school quality using aggregate vs. disaggregate data with
measurement error.

Measure Type of estimator Mean Std.Dev.
Spearman Disaggregate 0.8445 0.0346

Std. disaggregate 0.8362 0.0381
Aggregate 0.8391 0.0363
Std. aggregate 0.8330 0.0394
OLS 0.8119 0.0455

RMSE Disaggregate 0.1364 0.0135
Std. disaggregate 0.5513 0.0575
Aggregate 0.1433 0.0165
Std. aggregate 0.0561 0.0590
OLS 0.1925 0.0302

Top Ten Disaggregate 6.43 1.236
Std. disaggregate 6.42 1.192
Aggregate 6.30 1.260
Std. aggregate 6.35 1.205
OLS 5.94 1.244

School Size Avg. Real Group 103.40 86.84
In Top Ten Group Disaggregate 131.58 96.26

Std. disaggregate 104.83 89.76
Aggregate 132.50 96.79
Std. aggregate 107.39 90.93
OLS 78.79 75.18

Variance Estimates Dis. Within Sch. 0.610 0.009
Dis. Between Sch. 0.071 0.013
Agg.Within Sch. 0.611 0.361
Agg Between Sch. 0.067 0.016

Note: Results are for 1000 simulations, each including 100 schools. The number of students per school is
a lognormal random variable with mean 100 and variance 50000. Measurement error is 20% in actual and
previous scores. Mean is the average over all simulations, RMSE is root mean squared error, Top Ten is
the average number of schools ranked top ten with the estimator, that belong to the true top ten set.
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Table 3. Comparison of estimates of school quality using aggregate vs. disaggregate
data for large schools.

Measure Type of estimator Mean Std.Dev.
Spearman Disaggregate 0.9620 0.0140

Std. disaggregate 0.9620 0.0140
Aggregate 0.9588 0.0178
Std. aggregate 0.9606 0.0168
OLS 0.9558 0.0185

RMSE Disaggregate 0.0693 0.0114
Std. disaggregate 0.2718 0.0440
Aggregate 0.0854 0.0330
Std. aggregate 0.2794 0.0521
OLS 0.0746 0.0140

Top Ten Disaggregate 8.17 0.967
Std. disaggregate 8.16 0.974
Aggregate 7.94 1.139
Std. aggregate 8.09 1.029
OLS 8.05 1.043

School Size Avg. Real Group 348.73 73.10
In Top Ten Group Disaggregate 351.07 71.59

Std. disaggregate 347.13 70.57
Aggregate 375.02 71.02
Std. aggregate 359.47 67.65
OLS 345.76 70.64

Variance Estimates Dis. Within Sch. 0.610 0.005
Dis. Between Sch. 0.071 0.011
Agg.Within Sch. 2.344 3.447
Agg Between Sch. 0.060 0.016

Note: Results are for 100 simulations, each including 100 schools. The number of students per school is a
lognormal random variable with mean 350 and variance 50000. Measurement error is 20% in actual and
previous scores. Mean is the average over all simulations, RMSE is root mean squared error, Top Ten is
the average number of schools ranked top ten with the estimator, that belong to the true top ten set.
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Appendix

Derivation of the aggregate estimators of school effects

Recall equation (3.a) which shows the aggregate model:

aaa euXY ++= β

However, the aggregate model has no way of differentiating among its random terms, thus we

rewrite the model as:

wXY += βaa .

We are to obtain the conditional mean of u given the total residual aeuw +=  based on the

distributions of u and e.

Since u and e are independent normal random vectors, its distribution is given by:
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Having the joint distribution of u and aeuw += , our estimator is easily derived (Moser, theorem

2.2.1) as:
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Derivation of the conditional covariance matrix )�/( uuCov

Disaggregate data: Recall equation (1.a):

euXY ++= ΖΖΖΖβ
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The shrinkage estimator of school effects (equation 2) in matrix notation is:

)X(YVZ'u 1 βσ �� 2 −= −
u  or ( ) )YVX'XVX'X(IVZ'u 1111 −−−− −= 2� uσ (*)

This shows clearly that the shrinkage estimator is a linear combination of the independent

variable vector.

Thus, we can derive the joint distribution of )'�( uu,  by knowing the distribution of )'( Yu, .

The distribution of )'( Yu,  is: 
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In general, u and any linear combination of Y of the form AYu =� , will be jointly distributed as

follows:
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Then, by Moser�s theorem 2.2.1, the conditional covariance is:

AZ)(AVA'A'Z'Iu|u 1−−= 42)�( uuCov σσ .

Equation (6) is obtained by replacing A with ( ) )VX'XVX'X(IVZ' 1111 −−−− −2
uσ , from (*), in

the expression above.

Aggregate data: Again, we will use the same argument. First, re-express the aggregate

estimators of school quality in matrix notation:

)X(YVu 1 βσ �~ 2
aaau −= − , or  ( ) aaaaaaaau )YV'XXV'XX(IVu 1111 −−−− −= 2~ σ (**)

The distribution of )'( aYu,  is:
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So, the distribution of u and AYa, a linear combination of Ya is:
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and the conditional covariance matrix is:

A)(AVA'A'Iu|u 1−−= 42)~( uuCov σσ .

When ( ) )V'XXV'XX(IVA 1111 −−−− −= aaaaaaau
2σ , we obtain equation (7).


