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Introduction 
 
In rainfed agricultural production systems, up to 90% of the variability in the yield can be 
attributed to weather differences.  Fruit crops such as blueberries and peaches are particularly 
susceptible to low air temperatures. Temperatures near but above freezing might slow plant 
growth and development but such conditions do not typically cause significant damage if the 
plants are exposed for a short duration. However, once the temperature drops below freezing, 
the plants are easily damaged, with the severity of damage being determined by the duration of 
low temperature as well as the temperature itself.  
 
As an example, during the Spring of 2002, a large area in blueberry and peach production in 
South Georgia was damaged due to an unusually severe and unexpected late frost.  Irrigation is 
the most widely practiced frost protection measure for southeastern U.S. crops including 
peaches and blueberries. Irrigation results in the formation of a layer of ice that keeps the 
temperature of the flower near freezing, preventing it from dropping to below freezing 
temperatures. Farmers need information about when to start irrigation, as the process has to be 
started before the temperature drops to freezing. In addition to the expected low temperatures, 
farmers also need information about local wind speed, dew point or vapor pressure deficit to 
determine the point to initiate the freeze protection measures. Thus there is a need for accurate 
local weather information and short-term weather forecasts.  
 
The goal of frost/freeze protection is to prevent plant parts (particularly flower and fruit) from 
being damaged by temperatures that drop below a critical level.  This critical temperature is a 
function of crop variety and growth stage.  There are several factors that can affect the degree of 
injury due to low temperature including the following: 1) type of plant, 2) stage of development 
of the crop, 3) the amount of leaf cover over the blossoms and fruit, 4) severity and duration of 
the freeze, and 5) wind speed.  The primary prevention mechanism used by horticultural growers 
is irrigation.   However, there are some problems associated with irrigating to prevent frost and 
freeze damage.  If the humidity is low and the wind speed is high during a freeze, insufficient 
irrigation may cause evaporative cooling, which may damage crops more than non-irrigated 
fields.  There are a number of recommendations that have been published by the extension 
service regarding frost/freeze damage:  

1) If relative humidity is greater than 90%, there is little likelihood of worsening freeze 
damage with irrigation. 

2) Open blueberry flowers cannot survive temperature less than 28ºF.  At the petal fall, the 
developing berry can be damaged by temperatures less than 30ºF. 
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3) Overhead irrigation can be effective in preventing damage to blueberries if there is very 
little wind when the temperature drops below freezing. 

4) If the humidity is low, irrigation should begin when temperature drops to 37ºF. 
5) If the temperature drops to the low 20s or below, or if wind is higher than 5 miles an 

hour, irrigation can cause increased damage. 
6) If wind rises to 5 miles an hour, an application rate of 0.5 inches per hour will be needed 

to give some protection from frost or freeze damage. 
7) At wind speeds above 5 miles an hour, more damage may be done by irrigating than by 

non-irrigating. 
 
The dewpoint temperature is an important factor in decision making related to frost/freeze 
protection.  Producers need an accurate estimate of temperature, wind speed, relative humidity 
or dew point temperature during critical times of the freeze.  The dewpoint temperature is useful 
for estimating moisture content of air during freezes.  With little wind, the dewpoint temperature 
changes only slightly between noon and the following sunrise, which makes it a good indicator 
of humidity.  Relative humidity, however, may have large fluctuations during such periods. 
 
Traditionally the role of providing weather forecasts has been the responsibility of the National 
Weather Service (NWS). However, due to changes in the laws, the NWS no longer provides 
data for agricultural applications. The NWS collects data from urban centers, thus the data are 
less useful for rural areas where farming is mostly done. In response to this need, the University 
of Georgia initiated the Georgia Automated Environmental Monitoring Network (AEMN) 
(Hoogenboom, 1996; 2000a; 2000b; Hoogenboom et al., 2000). This is a network of automated 
weather stations that are mainly located in the rural areas of Georgia 
(www.Georgiaweather.net). These weather stations collect data every second on the following 
variables: air temperature, relative humidity, soil temperature at 5 cm, 10 cm and 20 cm depths, 
wind speed, wind direction, solar radiation, vapor pressure deficit and soil moisture. The 
averages, or totals depending on the variable, are calculated every fifteen minutes and stored in 
the data logger. In addition, daily summaries are also calculated. The 15-minute and daily 
summary data are downloaded automatically to a central computer located in Griffin. The 
website disseminates this information as well as simple calculators that can dynamically provide 
degree days, chilling hours or water balance for management of irrigation (Georgiev and 
Hoogenboom, 1998; 1999; Hoogenboom et al., 1998).  
 
An Artificial Neural Network (ANN) is a computational intelligence technique that mimics the 
behavior of neurons in the brain. The basic components of an ANN are its nodes or neurons and 
the connections between the nodes. A node is primarily a computational unit. It receives inputs, 
calculates a weighted sum and presents the sum to an activation function. The nodes are 
generally arranged in layers. In the back propagation ANN architecture, the input layer nodes 
receive the inputs and pass the results of their computations to the nodes in the hidden layer by 
means of the connections. The hidden nodes sum these weighted values as inputs, calculate an 
activation level and pass the results to the output nodes.  
 
For an ANN to be useful it should be able to learn or capture the complex relationships between 
inputs and outputs. This is done by searching for an optimal set of the weights of the 
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connections between the nodes. It is achieved by first sending one set of inputs in the feed 
forward mode through the ANN. The error between the ANN output and the expected output is 
calculated. The error is then used to adjust the weights of the connections by using the method 
of gradient descent. The data that are used for this process are called the training data. The 
process is repeated until the error on another set of data called the testing data reaches a 
minimum. The testing data set is used in the feed forward mode only and are not used to adjust 
the weights. The training data and testing data comprise the model development data set. Once 
the training is complete, the ANN is then used with a separate model evaluation data set to 
determine its accuracy. 
 
The overall goal of the research reported herein is to develop an ANN based Decision Support 
System (DSS) for predicting the occurrence of frost by predicting hourly temperatures during 
the subsequent twelve hour period. The most important inputs needed for the temperature 
predictions will be determined.   
 
Methodology 
 
Weather data for this study were obtained from the Georgia AEMN for the fruit producing areas 
of Georgia, including sites in peach producing areas (Fort Valley and Blairsville) as well as a 
blueberry producing area (Alma). The data from each location were divided into a model 
development set and model evaluation set. Data prior to 2001 were used for model development 
and data from years 2001 and 2002 were used for model evaluation. A final evaluation of the 
models was performed with data for 2003 since the 2001 and 2002 data, while not directly used 
for model development, were used to select the best configuration of hidden nodes. Only data 
from the months of January through April were used in the study. It is during this period that air 
temperatures vary between freezing and non-freezing and the crops are susceptible to freeze 
conditions.  
 
The weather data consisted of observations of temperature, relative humidity, wind speed, solar 
radiation and rainfall. The current values of these variables were used as inputs along with 
corresponding prior values of these variables. The change in value of the weather variables from 
the prior values to current value (∆) were calculated and also used as inputs.  
 
To identify which weather variables are important, experiments were conducted with the hourly 
data from Fort Valley. The duration of prior data was held constant at four hours and the period 
of prediction was kept constant at four hours. The first set of experiments was performed to 
determine the best architecture when only temperature and its related inputs i.e. four hours of 
prior temperatures as well as their respective ∆ values were used along with time of day. This set 
of inputs was called the core set of input variables. It was assumed that the current and prior air 
temperatures as well as time of day were important input variables. Subsequently, experiments 
were conducted for determining the best architecture when two weather variables are used as 
inputs. For this set of experiments the core set of inputs was used in conjunction with each of the 
other weather variables (relative humidity, solar radiation, rainfall and wind speed) one at a time 
to serve as the inputs. These experiments were then ranked based on the accuracy of their best 
architectures. The combination ranked first then became the new core set of inputs and 
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subsequent experiments were conducted by adding a third weather variable. This process was 
carried out until the most important input variables were determined in order of importance.  
 
Results 
 
A study was performed to determine the most important input variables.  When using only 
temperature and its associated ∆ values as the only inputs, it was found that the lowest MAE 
was 1.41oC when predicting four hours in the future.  Each of the remaining weather variables 
and associated ∆ values were included one at a time to determine the next most important input 
variables.  Using this approach it was thus determined that the order of importance of the 
weather variable inputs considered was temperature, relative humidity, wind speed and solar 
radiation. The addition of rainfall slightly reduced the accuracy of the ANNs and it was thus 
excluded from all subsequent model development.  
 
As expected, the accuracy of the ANNs decreased as the prediction period increased. Using the 
hourly format the MAE for predicting the temperature one hour in the future was 0.56oC and 
was 2.36oC for predicting temperature twelve hours in the future. A plot of predicted 
temperatures for a one hour period of prediction vs. the observed temperatures using the hourly 
data format for Fort Valley, GA, is shown. A linear regression line fit to this data gives an R2 of 
0.989. A similar plot of predicted temperatures for a twelve hour period is shown. As expected, 
the scatter is greater for the 12 hour period of prediction and the R2 is 0.818.  
 
The overall goal of this project was to develop ANN models for predicting temperatures which 
could be incorporated into a real time frost warning system. As such, all twelve ANNs 
predicting hourly temperatures for a given location were used to generate a simulated 
temperature forecast for the subsequent twelve hours. The outputs from the twelve networks that 
were developed were combined into a Decision Support System for frost prediction. Sample 
periods of data were selected for the simulation which included a freeze event. A Decision Point 
(DP) is defined as that point in time ‘t’ when all networks are presented with the latest  values of 
the input variables. For the simulation, the first decision point (DP1) was selected to be 
approximately ten hours prior to a freeze event. The subsequent decision points follow on an 
hourly basis.  
 
Five day plots of predicted temperature and observed temperature versus time are shown using 
the eight hour prediction model.  The data are for Ft. Valley, GA for February 24-March 1, 2002 
and March 2-March 7, 2002.  The model predicted the occurrences and durations of freezing 
conditions with reasonable accuracy.  An animation of an actual twelve hour temperature 
prediction for Alma, GA in Bacon county is shown for the period January 5 through January 7, 
2004.  For this plot the prediction is updated every 45 minutes, although it could be performed 
every 15 minutes. 
 
As an indication of the value of this frost/freeze decision support system, a quote from a UGA 
College of Agricultural and Environmental Sciences (CAES) county agent is included as an 
appendix.  Robert T. Boland, Jr., county agent of Brantley County, Georgia, included this 
impact statement on the CAES website regarding the value of the AEMN weather network. 
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Appendix 
 

Freeze Protection for Southern Highbush Blueberries 
Robert T. Boland Jr. 

Brantley County 
 

Situation 
 

Brantley County’s growth in Southern Highbush Blueberries acreage is on the increase.  
Southern Highbush Blueberries are harvested around April 15th in Brantley County.  This is a time when 
Florida is finishing their blueberry harvest, and the price for early Georgia Southern Highbush 
Blueberries start around $36.00 a flat ($10.00/lb). 

 
 However, producing the early maturing Southern Highbush Blueberry is not without risk.  Late 
winter freezes can wipe out an entire crop.  To reduce this risk of late winter freezes growers must use 
irrigation to protect the fruit and blooms.  This method of irrigation involves a process of water melting 
and freezing, which keeps the fruit and blooms at a temperature around 32°.  The key variable with 
freeze protection is knowing when to start irrigating.  This requires knowing temperature, relative 
humidity, and dew points.  Brantley County Blueberry growers were getting their weather information 
from the Weather Channel web site and from NOAA Weather Station in Jacksonville, Florida.  
However, this data is not generated in Brantley County.  Due to the lack of good weather information 
ZBLU Farms experience a loss of about 80% of the crop, which includes the early Southern Highbush 
Blueberry. 
 

Response 
 
 To address this problem for future Blueberry crops, the Brantley County Extension Coordinator 
contacted Dr. Gerrit Hoogenboom, Coordinator of the UGA’s College of Agriculture and Environmental 
Sciences/Georgia Automated Environmental Monitoring Network about locating a weather station in 
Brantley County.  This weather station would give growers in Brantley County local weather 
information.  The request was granted and a weather station was located in Brantley County at ZBLU 
Farms on March 22, 2002.  ZBLU Farms provide the local phone line allowing Dr. Hoogenboom to 
collect weather data and post it on the web.  
 

Results 
 
 Brantley County Southern Highbush Blueberry growers have an early market window during 
which they can receive higher prices , around $10.00 a pound.  However, with early maturing varieties 
they face the risk of late freezes.  Losses from the February 28, 2002 freeze were a whopping 80%, an 
estimated $115,000.00 loss to the Brantley County Blueberry crop to the early maturing varieties. The 
Georgia Automated Environmental Monitoring Network is, and will continue to be a management  tool 
which Brantley County Southern Highbush Blueberry growers are using to monitor weather condition in 
the county.  This weather station will allow growers to use current and local weather data to guide them 
on when to start freeze protection for their blueberries. 
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Discussion

1) Frost/Freeze Problem

2) Recommendations

3) Weather Monitoring Systems



1) Frost / Freeze Problem



Goal

• Goal of Frost/Freeze Protection is to 
prevent plant parts (particularly flower and 
fruit) from being damaged by temperatures 
that drop below a critical level.

• Critical temperature is a function of crop, 
variety and growth stage.



Factors in degree of injury due to 
low temperature 

1) Type of plant
2) Stage of development of the crop
3) Amount of leaf cover over the blossoms 

and fruit
4) Severity and duration of freeze
5) Wind speed



Problem associated 
with irrigation

If humidity is low and wind speed is high 
during freeze, insufficient irrigation may 
cause evaporative cooling which may 
damage crops more than non-irrigated 
fields.



2) Recommendations



Recommendations
• If RH > 90%, little likelihood of worsening 

freeze damage with irrigation

• Open blueberry flowers cannot survive 
T < 28 ºF.  After petal fall, the developing 
berry can be damaged by T < 30 ºF.

• Overhead irrigation can be very effective in 
preventing damage to blueberries if there is 
little wind when temp drops below freezing.



Recommendations 

• If humidity is low, start irrigation at 37 ºF.

• If temp. drops to low 20’s or below or if 
wind is higher than 5 mph, sprinkling can 
cause increased damage.



Recommendations

• If wind rises to 5 mph, an application rate 
of 0.5 in. / hr. will be needed to give some 
protection.

• At wind speeds above 5 mph, more 
damage may be done by irrigating than 
not irrigating



Dew point temperature (TDP)

• Producers need estimates of temperature, 
wind speed, relative humidity (or TDP) 
during critical times of the freeze.

• TDP is useful for estimating moisture 
content of air during freezes.  

• With little wind, the TDP changes little 
between noon and the following sunrise.



3) Weather Monitoring Systems



AEMN

The University of Georgia’s
Automated
Environmental 
Monitoring 
Network

• Dr. Gerrit Hoogenboom
• 58 automated weather stations in rural areas of 

Georgia
• http://www.griffin.peachnet.edu/bae/



AEMN Stations



Equipment

• Campbell Scientific
– CR10/CR10X Measurement and Control 

Module



CR10 Power 
Supply

Air Temperature &
Relative Humidity

Rainfall



Soil 
TemperatureWind Direction

Wind SpeedSolar 
Radiation



Communications

Telephone
• Modem
• Voice modem

• Dedicated land lines
• Cellular 

phone/modem 
combination



Data Recording

• Collect data every second on:
– Air temperature
– Relative humidity
– Soil temperature (4 depths)
– Wind speed
– Wind direction
– Solar radiation
– Vapor pressure deficit
– Soil moisture



Data Recording

• Sensors are scanned at a one-second
frequency

• Data are stored at 15-minute intervals
– 15-Minute Average
– 15-Minute Total
– Maximum wind speed 
– Time of maximum wind speed
– First rainfall occurrence



Automated Processing

Communications
• Call all stations,

at least, every hour
• Call local stations at 

15 minute intervals
• Loggernet (Campbell 

Scientific) software for 
data downloading





Simple Applications & Calculators

• Heat Index/Wind Chill (humans & livestock)
• WBGT – Wet Bulb Globe Temperature = Heat 

stress index (humans & livestock)
• Degree Days
• Chilling Hours
• Water Balance Calculator
• Heating Degree Days
• Cooling Degree Days
• Rainfall Calculator
• Average Temperature Calculator
• Soil Temperature Calculator







FAWN 









Approach

• Develop web-based, frost-warning 
Decision Support System (DSS) which 
utilizes current and prior weather data

• Use Artificial Neural Networks (ANNs) to 
develop the algorithms used in the DSS



Standard Three-Layer Back-Propagation Artificial 
Neural Network

Input Layer Hidden Layer Output Layer

Input 1

Input 2

Input 3

Input n

Output

Pattern    Input 1    Input 2    Input 3 … Input n    Output

1 - - - … - -

2              - - - … - -



1.16XXXX
1.14XXXXX

1.12XXXX
1.21XXX
1.17XXX
1.15XXX
1.44XX
1.35XX
1.34XX
1.19XX
1.41X

Rel.
 

Humidity

Wind Solar
 

Rad
iat

ion

Rain
fal

l
MAE

o C *
Temperature

* Ft. Valley evaluation data set, Four-hour temperature prediction



ANN architecture for 
12-hour predictionT(T(tt))

T(T(tt--11))

T(T(tt--22))

T(T(tt--xx))

SR(SR(tt))

SR(SR(tt--11))

SR(SR(tt--22))

SR(SR(tt--yy))

Var(Var(tt--zz))

T(T(t+12t+12))

Hidden NodesHidden Nodes



Two General Categories of ANNs

1) Estimation of a numerical value

2) Classification

We have pursued both types of ANNs
in our research project.



A. Jain, M.S. Artificial Intelligence, UGA

• Developed estimation ANNs to predict air 
temperature in hourly increments from one 
to twelve hours in the future based on 
current and prior weather data.



R. Ramyaa, M.S. Artificial Intelligence, UGA

• Developed classification ANNs to predict if 
frost occurs in a subsequent four, eight, or 
twelve-hour period.



B.A. Smith, M.S. Artificial Intelligence, UGA 
(expected 2005)

• Developed software to allow the automatic 
training of large numbers of temperature-
predicting ANNs using larger data sets.



Initial Study Locations
• Blairsville – North Georgia Mountains
• Fort Valley – Central Georgia
• Alma – South Georgia 

Weather Data
• Model Development: 1993-2000
• Model Evaluation: 2001-2003



Predicted and observed one-hour temperature predictions 
for Fort Valley, 2001 and 2002 data.



Predicted and observed twelve-hour temperature 
predictions for Fort Valley, 2001 and 2002 data.



A Predicted Freeze Event

March 4, 2002 
1200 hrs to 2200hrs
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Predictions made from the Decision Points (DP),
March 4, 2002, 1200hrs to 2200hrs 
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A Predicted Freeze Event

January 8, 2001 
1200 hrs to 2400hrs
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Fort Valley-8 hour prediction
February 24-March 1, 2002
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Fort Valley-8 hour prediction
March 2-7, 2002
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Implementation

During Spring 2004, the temperature 
prediction ANN was implemented on the 
website.





Robert T. Boland Jr., Brantley County Agent

“Brantley County Southern Highbush Blueberry growers 
have an early market window during which they can 
receive higher prices, around $10 per pound.  However, 
with early maturing varieties they face the risk of late 
freezes.  Losses from the Feb. 28, 2002 freeze were a 
whopping 80%, an estimated $115,000 loss to the Brantley 
County Blueberry crop’s early maturing varieties. The 
Georgia [AEMN] is, and will continue to be, a management 
tool which Brantley County Southern Highbush Blueberry 
growers are using to monitor weather conditions...  [It] will 
allow growers to use current and local weather data to 
guide them on when to start freeze protection for their 
blueberries.”
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