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Abstract

The small sample performance of Granger causality tests under different model dimensions,

degree of cointegration, direction of causality, and system stability are presented.   Two tests

based on maximum likelihood estimation of error-correction models  (LR and WALD) are

compared to a Wald test based on multivariate least squares estimation of a modified VAR

(MWALD).  In large samples all test statistics perform well in terms of size and power.  For

smaller samples, the LR and WALD tests perform better than the MWALD test.  Overall, the LR

test outperforms the other two in terms of size and power in small  samples.
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Monte Carlo Evidence on Cointegration and Causation

1. INTRODUCTION

Testing Granger non-causality in cointegrated time series has been the subject of

considerable recent research.  The first result that naturally emerged on this subject was the

existence of "long-run" causality in at least one direction (Granger, 1988) where cointegration

was represented by a bivariate error-correction model.  The extension of this result to more than

two variables was fairly straightforward under the existence of one cointegrating relation.  In

fact, the two-step procedure introduced by Engle and Granger (1987) was all that was needed to

test non-causality hypotheses.  As the literature presented below illustrates, the dimension of the

cointegration space complicates this testing problem considerably.  But recent developments in

cointegration theory have solved important questions in what still is a somewhat controversial

issue.  

In the empirical literature the Wald test computed from an unrestricted  vector

autoregressive (VAR) model appears frequently.  Toda and Phillips (1993) show that the

asymptotic distribution of the test in the unrestricted case involves nuisance parameters and

nonstandard distributions.  An alternative procedure to the estimation of an unrestricted VAR

consists of transforming an estimated error correction model (ECM) to its levels VAR form and

then applying  the Wald type test for linear restrictions to the resulting VAR model.   Lütkepohl

and Reimers (1992a)  present the distribution of the Wald statistic for the bivariate case based on

Johansen and Juselius' (1990) maximum likelihood estimator of ECMs.  The limiting distribution

of the statistic for the p-variates model is discussed in Toda and Phillips (1993).  Toda and

Yamamoto (1995) propose an interesting yet simple procedure requiring the estimation of an

"augmented" VAR, even when there is cointegration, which guarantees the asymptotic

distribution of the Wald statistic.  An analysis and Monte Carlo results for cointegrated data is

presented in Dolado and Lütkepohl (forthcoming).

Mosconi and Giannini (1992) suggest that it is possible to achieve an efficiency gain by

imposing the cointegrating constraints under both the null and alternative hypotheses while

testing for non-causality in cointegrated systems.  The test statistic proposed by Mosconi and

Giannini is a likelihood ratio (LR).   The limited Monte Carlo evidence provided in their study

lends support for this approach.  However, in practice the computation of the LR test is
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considerably more cumbersome than any of the Wald versions of the test (detailed discussion in

Section 3).  

The paper presents results of a Monte Carlo experiment designed to study the

performance of two Wald and a likelihood ratio tests for Granger non-causality in bivariate and

trivariate cointegrated systems.  Estimation and testing for two of the tests follows the maximum

likelihood approach of Johansen (1988) and Johansen and Juselius (1990).  The third test, which

serves as a benchmark  for comparing test performance,   is computed from the multivariate least

squares estimates of a VAR (Toda and Yamamoto (1995) and Dolado and Lütkepohl (1994)).

Section two introduces the model and establishes the notation.  The alternative tests for

Granger non-causality in cointegrated systems are the subject of Section three.  Section four

explains the experiment and presents the results.  Section five contains the conclusions. 

2. MODEL AND NOTATION

       The basic VAR model for p variables and k lags with Gaussian errors is given by

                     t=1,...,T (1)

where e , ...., e  are i.i.d. N ~ (0,E), and the maximum lag in M(L) is k, y  consists of p  variables1 T t 1

and x  of p  variables.  We omit deterministic components for simplicity.  In error-correction formt 2

this model can be expressed as

(2)

where 

'  =  -(I  - M  - ... - M ),    i = 1,...., k-1,i p 1 i

and

A =  I  - M  - ... - M ,p 1 K

 which using compact matrix notation reduces to

(3)

where Z  is a p x T matrix of observations on first differences of Z , Z  contains the laggedo t 1
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differences, Z  is the kth lag of Z , '' is a (p x (k-1)*p) matrix of the stacked 's, and E is the p xK t i

T  matrix of disturbances for the p equations in the system.

The case of interest in this experiment is when there is cointegration, that is, when the

rank of A equals r < p.  This hypothesis is formulated as 

H (r): A = "$N (4)1

where " and $ are p x r matrices, and r is the number of cointegrating relations $NZ .  Thist

restriction also provides some insight into the causality implications of  cointegration whereby

causality can come about through the cointegrating relations $NZ  or by conditioning on " sucht

that a row of " equating to zero essentially excludes "long- run causality" in the corresponding

equation.

The maximum likelihood estimation of this multivariate cointegration model follows a

reduced rank regression (RRR) due to Johansen (1988) and Johansen and Juselius (1990, 1992), 

which for the concentrated (with respect to the parameters ' , i=1, .., k-1) likelihood function cani

be expressed as

R  = "$NR  + e (5)o K t

where R  are the residuals from the regression of Z  on Z , and R  are the residuals from theo o 1 K

regression of Z  on Z (refer to equation (3)). K 1 

In this paper we investigate Granger non-causality in bivariate and trivariate Z ,  i.e.,  Z  =t t

[y  x ]' and Z  = [y  x  x ]'  (refer to eq. (1)).  In the trivariate case, the Z  are cointegrated if r = 1t 1t t t 1t 2t t

or r = 2.  We concentrate on  r = 2, and more specifically, on the case when the cointegration

space is made of two types of cointegrating vectors: those involving all variables, and those

involving the x's only. This setting has specific implications for the estimation of the model and

the testing for Granger non-causality because of the presence of joint restrictions on " and $. 

Specific discussion is presented in Section 3.  Following Mosconi and Giannini (1992), we define

p  as the number of variables in y  (p  = 1 in this study), and p  as the number of variables in x .  1 t 1 2 t

3. TESTING GRANGER NON-CAUSALITY

This study explores three alternative tests for non-causality.  Two of them are computed

from the estimated parameters of the ECM representation (eq. (2)), while the third is computed

using the estimated parameters from a VAR representation (eq.(1)).  The latter is used as a
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Note that in practice this requires pre-testing of the ranks of and . The implementation1

of this test for cointegrated systems consists of:  (a)Estimating ", $, '  ( i=1, .., k-1), and E  byi e

Johansen' s MLE, where r is taken to be the value determined by pre-testing for the rank of A; 
(b)Transforming the ECM estimates to corresponding VAR in levels estimates.  That is, 
reversing the transformation from equation  (2) to equation (1). Lütkepohl and Reimers (1992b
pp. 62-63) propose a one step formula to achieve this transformation;(c)Estimating EN
consistently (see Lütkepohl and Reimers (1992b) pp. 63); (d) Computing W to accept or reject
the null hypothesis of non-causality. 

benchmark for comparing test performance because of its simplicity. 

3.1 NON-CAUSALITY TESTS USING AN ECM

3.1.1 Wald test

       The first step towards testing causality in ECMs is to estimate the parameters in equation (2)

by Johansen's maximum-likelihood.  Using the parameterization in equation (1), x  does nott

Granger-cause y  if and only if the hypothesis (Lütkepohl (1993), p. 378):t

H : M  = 0 for i=1,2,...,k (6) o 12,i

is true, where M  is the coefficient matrix on x  in the y  equations.  In a bivariate system, for12 t t

instance, M  is the 1x1 coefficient on x  in the y  variable.  Similarly, y  does not Granger-cause12,i t t t

x  if and only if the corresponding M  coefficients equal zero.  Let N = vec[M ,..., M ] be thet 21,i 1 k

vector of all VAR coefficients.  Then, the test for the linear restrictions in eq. (6) is given by

testing H : RN = 0 against H : RN � 0 for suitable chosen R.  The Wald statistics for testing H  is o 1 o

(7)  

where R is N x p k,  N is the rank of R and  is the variance-covariance of N.  W has a Chi-2

squared distribution with N degrees of freedom under H  if some conditions hold  (refer to Todao

and Phillips (1993), Section 4, Theorem 3).   Suppose that we are interested in whether the p2

elements of x  are "not causing" the p  elements of y  Then, for W to converge in distribution to at 1 t.

Chi-squared, it must be that rank( ) = p  or rank( ) = p , where " and $ have been2 1

partitioned accordingly . 1
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3.1.2 Likelihood ratio tests

       A variety of tests of hypotheses on the parameters " and $ were introduced by Johansen and

Juselius (1990,1992). Mosconi and Giannini (1992) proposed that there may be efficiency gains

by applying the cointegration restrictions under both the null and the alternative hypotheses in

testing for non-causality.  The alternative hypothesis is that of cointegration  H (r) in equation1

(4).  Under the null of non-causality (y  does not Granger cause x ), we must consider not onlyt t

H (r) but also constraints on the parameter space defined by '' and A.  The linear restrictions for1

non-causality are expressed as

H (r): BN'' V = 0, BNA A = 0 (8) G

where '' and A are the parameters of model (3), B=[0N I ]N is p x p , A=[I  0N]N is p x p , V =p2 2 p1 1

(I q A) is p(k-1) x p (k-1), I  is an identity matrix of order p , and B'A = 0.  The subscript G on(k-1) 1 pi i

H is used to indicate Granger causality.  Note that the restrictions in (8) are equivalent to those in

(6) except that the former are now expressed in terms of the ECM formulation.  We define the

known matrices as A and B to facilitate reference to Johansen and Juselius' notation (1990,

1992).  The linear restrictions in (8) include both long- and short-run non-causality.  Testing for

long-run non-causality only  (that is, causality through the error correction term only)  could be

expressed as:

H (r): BNA A = 0 (9) GL

where the constraints are imposed on the parameter space defined by A, and the subscript GL

represents Granger non-causality in the long-run.  Some of the specific implications for

estimation and testing in this case are discussed below.

       The hypothesis of Granger non-causality (G) conditional on cointegration (C) can be

formulated as

H (r): BN'' V = 0, BNA A = 0, A = "$N, (10) GC

and the likelihood ratio (LR) test for this hypothesis is 

LR = -2ln{L [H (r)]/L [H (r)]} (11) max GC max 1

based on Johansen's  results,  Mosconi and Giannini (1992) indicate that (11) is asymptotically

distributed as a Chi-squared and they compute the degrees of freedom to be: pr - p r - p r - r r1 1 2 2 1 2

when k = 1 and pr - p r  - p r  - r r  + p p (k - 1) when k > 1, where r  and r  are defined shortly.  1 1 2 2 1 2 1 2 1 2
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We would like to thank an anonymous reviewer for pointing this out.2

Estimation of the ECM under H (r,r ,r ) follows classical restricted MLE estimation. GC 1 2

This can be carried out using a switching algorithm proposed by Johansen and Juselius (1992) 

and Mosconi and Giannini (1992), whereby all restrictions are imposed.  This estimation problem

can be formulated by making use of Theorem 1 in Mosconi and Giannini (1992) which states that

the hypothesis BNA A = 0 holds true if and only if 

(12).

The explicit partitioning of " and $ under the restriction  B'AA = 0 and A = "$' is obtained by

noting that  B'A = 0 implies2

B'AA = B'"$' A = B'A" A + B'" B'A = 011 2

and " = 0 implies2

" =  = [A "  | " ]11 2

 $ =  = [$  | B$ ]1 22 

where, 

"  is p  x r , "  is p x r , $  is p x r , $ is p  x r , and r = r  + r .  In this partition, r  = rank(A ),11 1 1 2 2 1 1 22 2 2 1 2 1 11

and r  = rank(A ).   Using this partition and the compact notation from eq. (3), the model to be2 22

estimated under the null hypothesis of H (r), or more specifically H (r,r ,r ), is:GC GC 1 2

. (13)

If there were no restrictions on '', " and $ may be estimated using RRR as shown in equation (5). 

That is, if the hypothesis of interest were H (r,r ,r ): B'AA = 0, A = "$',  we can write the RRRGLC 1 2

(concentrating on '') as
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An illustration of the estimation steps for the case in eq. (14) can be found in Zapata and3

Rambaldi (1995).

Adopting a modification of a switching algorithm proposed by Johansen and Juselius(1992),4

the estimation problem reduces to: (a)Initialization:  Set "  and $  and '' equal to zero in :11 1

;  (b) Solve for "  and $ .  This requires solving the2 22

usual eigenvalue problem .  Calculate   and  the usual way

(refer to Johansen and Juselius (1990), p. 193);  (c) Fix and  at the values in (b),

condition on to obtain  and solve the

eigenvalue problem:

;  The cross-product moment matrices conditioned on   are:  

S  = B'S B,  S  = A'S B, S  = S B, S  = (ANR  - G x )( ANR  - G x )N/(T-k), S  = ((ANR  -bb 00 ab 00 kb k0 aa.b 0 1 1 0 1 1 ak.b 0

G x )(R  - G x )N/ (T-k), S  = (R  - G x )(ANR  - G x ) N/(T-k),  S  = (R  - G x )(R  - G x )N/ (T-k),1 1 k 2 1 ka.b k 2 2 0 1 1 kk.b k 2 1 k 2 1

where, x  = B'R  G  = (A'R ) (x ) , G  = R (x ) .  The solution to this eigenvalue1 0, 1 0 1 2 k 1
-1 -1

problem generates  and .  Note that  S  may be singular, hence Lemma 1 (Johansen andkk.b

Juselius, 1992) shows how to solve the problem by first diagonalizing S ;   (d) Finally, given estimateskk.b

of  , ,  and , the estimator for '' is given by:

, with definitions of and  as in Mosconi and

Giannini (1992, pp. 407).  This estimator is derived following Spanos (1986) pp.583.  We note that the 

formula for  shown in Mosconi and Giannini (1992) contains several typographical errors;   (e)  Iterate
until convergence by repeating steps (b)-(d),  where the convergence criterion is defined in terms of 
increments in the likelihood function.
Finally, note that in systems with cointegration rank r =1, the model in equation (13) reduces to 

and the restrictions enter only through ".  The estimation of "  and $  in this case follows Johansen and11 1

Juselius (1990) pp. 199 - 200 since no conditioning on $ is necessary, and the estimator of '' is defined as
before.  In our experiment this is the case for the bivariate models. 

         

(14).

The experiment presented in this paper refers to the case in eq. (13) .  3

Estimation of eq. (13) includes restrictions on " (A" ) and restrictions on $ (B$ ) and11 22

the problem does not easily reduce to the usual eigenvalue problem .  4

3.2  NON-CAUSALITY TESTS USING A VAR

3.2.1 Wald test

Toda and Yamamoto (1995) prove that the Wald test for restrictions on the parameters of

a VAR(k) has an asymptotic P  distribution when a VAR(k + d ) is estimated, where d  is the2
max max
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5

The computation of this Wald test is very simple:  (a) Estimate a VAR(k+d ) process  bymax

multivariate least squares, where k is the known or pre-determined optimum lag of the system. 

Denote , the least squares estimator  of the parameters in equation (1) with only the

coefficients of the first k lags considered;   (b)  Let  be a consistent estimator of the

variance-covariance of . Then,  has

an asymptotic distribution, with N being equal to the rows of the restriction matrix R. 

maximal order of integration suspected to occur in the process.  Dolado and Lütkepohl

(forthcoming) using a different approach, prove the same result and analyze the power properties

of this test.  The Wald statistic is computed using only the first k coefficient matrices.  This

procedure does not require knowledge of either the cointegration properties of the system or the

order of integration of the variables.  Thus, if there is uncertainty as to whether the variables are

I(1) or I(0), the adding of an extra lag insures that the test is being performed on the safe side . 5

4. THE EXPERIMENT AND THE RESULTS 

  The criteria used in designing the DGPs were: model dimension, degree of cointegration,

direction of causality, and stability.  Six data generation processes (DGPs) were included in the

experiment; four bivariate (DGP(1) to DGP(4)) and two trivariate (DGP(5) and DGP(6)). 

Bivariate models were included because their simplicity facilitates the study of test performance. 

They also appear frequently in applied work related to purchasing power parity,  threshold

cointegration, market efficiency, and other studies of economic dynamics with pairs of variables. 

Higher dimensional models have been used to study, for instance, exchange rate behavior and to

test structural hypotheses of economic dynamics.  In Monte Carlo work, however, higher

dimensionality creates problems of experiment management and interpretation.  Because of this

we simulate trivariate models only.  All six models meet the conditions of Theorem 3 from Toda

and Phillips (1993) relative to the "degree of cointegration." The direction of causation is

controlled through either the long-run or the short-run parameters, or both.   In all models there is

causality  from x to y,  and at the same time relative "power of the test" comparisons are

permitted.   For instance, models DGP(1) and DGP(2) are the same except that in model DGP(2)

the speed of adjustment coefficient on y  in the x  equation is changed from 0 to 0.4. Table 1t t

presents the six models (data generation processes) used in this study.
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These results appear in Zapata and Rambaldi (1995).6

In all cases 1000 samples of size T + 50 were generated with the first 50 observations

discarded.  For each DGP, five sample sizes were included; T=25, 50, 100, 200, and 400.  

The tabulated results of the experiment are presented in Tables 2 and 3.  Table 2  contains

the outcome for the bivariate models, while Table 3 presents the results for the trivariate

models.  In all cases the numbers in the body of the tables are the percentage of rejections at the

5% level, and the headings WALD, LR, and MWALD stand for Wald test computed from the

estimated ECM, likelihood ratio computed from the estimated ECM, and Wald test computed

from the estimated "augmented" VAR, respectively.  The lag length for the estimated models is

"T" for the true lag, "O" for overfitting by one lag, and  "U" for underfitting by one lag,

respectively.

The results for both hypotheses,  y -/-> x and x -/-> y for the bivariate models are

tabulated in the Tables.   The results correspond to the experiments conducted when the

variance-covariance is contemporaneously correlated. The results for the identity covariance

matrix do not differ substantially and due to space constraints are not presented here .  All three6

tests suffer from size distortions in small samples.  As the sample size increases they approximate

the correct size (left block of Table 2).  An exception is the underfitting of model DGP(3) where

both the WALD and the LR suffer a substantial size distortion even for large samples (the

percentage of rejections is 63% for both the LR and WALD cases, respectively).  The MWALD 

test rejects 4.8%of the cases.   A possible reason for this size distortion is that model DGP(3) is

an ECM(2); that is, the true model contains one short-run lag, and the error correction term.  By

underfitting DGP(3), an ECM(1) is estimated omitting all short-run dynamics.  When computing

the MWALD test under the underfitting scenario, a VAR(2) is estimated and the test computed

on the reduced model, a VAR(1).  Clearly,  the estimation of a VAR(2) does not omit important

dynamics.  For model DGP(2),  where the null hypothesis is not consistent with the true, the

MWALD test requires a sample size of at least 100 to achieve a relatively high power.  The

WALD and LR rejections approach 100% for sample sizes of at least 100 .  These results

indicate a substantially lower "power of the test" for MWALD in small samples.  The percentage

of rejections goes to 100% for all three tests as the sample size increases indicating local

asymptotic power. 
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The right side of Table 2 presents the tabulated results for the hypothesis that  x -/-> y

(the null hypothesis is not consistent with the true) for the bivariate models. In large samples

(equal to or larger than 100), the three tests generate equivalent results. In small samples,

however, the percentage of rejections of the LR is significantly higher than that of WALD and

MWALD.   The percentage of rejections of WALD is slightly higher than that of MWALD in

samples of size 50.  These results point to a lower power of the test for MWALD in small

samples.  The percentage of rejections for model DGP(2), where bidirectional causality is

present, is similarly low for MWALD and WALD in small samples.  The importance of this

finding is that in small samples, when bidirectional causality is expected, the LR seems to be the

only test with enough power to detect a false null hypothesis in the bivariate models studied

here. 

Table 3 contains the tabulated results for the trivariate models. The left block of the table

presents the results for the hypothesis that y -/-> x (the hypothesis is consistent with the truth). 

Overall, results are similar to those for bivariate models.  All three tests show significant size

distortions in small samples.  In large samples the MWALD test approximates the correct size,

the WALD suffers in model DGP(6) "U" from the same size distortion as model DGP(3) when

short-run dynamics are omitted in the estimation of the ECM.  The LR shows the largest

deviation from the theoretical size of 5%  for model DGP(6).  The size distortion occurs in both

the "O" and "U" cases .  The right block of the table shows the results for the hypothesis that x -/-

> y (the hypothesis is not consistent with the null).  For samples of size 25, the power of the LR

test is very high in trivariate models.  For samples of size 50 or smaller the MWALD test

appears to be sensitive to model structure as a false null hypothesis is not rejected too often

(DGP(5)).  The power performance of the WALD test falls between the other two tests.  For

samples of size at least 50, the power approaches 100. 

5. SUMMARY AND CONCLUSIONS

This paper has presented Monte Carlo evidence on the performance of two Wald and a

likelihood  ratio tests for non-causality in cointegrated bivariate and trivariate models.  The

models were estimated using Johansen's maximum likelihood approach and least squares

estimation of an augmented VAR. The experiment was designed to a) address questions of test
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If the simulation study had considered cases where there is no cointegration or the stability7

and rank conditions are not satisfied, the conclusions could have had a different flavour, as
correctly indicated by an anonymous referee.

performance as related to sample size, lag structure, unidirectional and bidirectional causality;

and b) to compare the small sample performance of a more efficient LR test to two versions of

the Wald test, namely a Wald statistic computed from an estimated "augmented" VAR

(MWALD) and a Wald statistic computed from an estimated ECM.   The main conclusions that

emerge from the experiment can be summarized as follows.

Long-run non-causality (that is, non-causality through the error-correction term (ECT) as

in models 1, 2, and 5) is consistently detected by  the three tests when the model is correctly

specified.   The MWALD test for non-causality approaches the nominal size as the sample

increases.  For small samples the empirical size is larger than the nomical size.  The results at

samples of size 100 and larger appear quite accurate.  Overfitting or underfitting does not seem to

affect the empirical size of the test in detecting non-causality.  The MWALD test is based on an

estimator that does not incorporate the information about the degree of  integration  and/or

cointegration of the variables in the system.  An advantage of the MWALD test is that it has a

limiting chi-squared distribution even if there is no cointegration or the stability and rank

conditions are not satisfied .  On the other hand, as the estimator (VAR)  is less efficient than the7

maximum likelihood estimator for cointegrated systems,  MWALD would be expected to have a

lower power of the test than the WALD and the LR tests in all cases studied in this experiment. 

The results show this to be the case for small samples, 25 and 50, only.  Therefore, it is important

to note, given the power performance of the tests in larger samples, that the MWALD approach

has much practical appeal because of its simplicity.

The empirical size of the WALD test approaches the nominal size when the model is

estimated with the true or the overfitted lag structure.  The results at samples of size 50,

nonetheless, appear quite accurate.  Underfitting (i.e., specification of the short-run dynamics)

affects the test size.  Both LR and WALD tests are very sensitive to the specification of the

short-run dynamics in ECMs even in large samples.  The size distortions were very apparent

when an ECM(2) model was underfitted, as in DGP(3) and DGP(6).  The effect of underfitting

on the size of the tests is believed to be the result of the bias of the Johansen's maximum
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likelihood estimator when models are underfitted.  Gonzalo (1994) finds OLS to be superior to

the Johansen's maximum likelihood estimator when the ECM is underparametrized .  

The empirical size of the LR test approaches the nominal size when the model is

estimated with the true lag structure.  For the bivariate models in the experiment, underfitting did

affect test size.  In trivariate models both underfitting and overfitting seem to affect the empirical

size of the test.  Alternative covariance structures appear to have a significant effect on empirical

size when the estimated model is not the true lag structure.  

One practical implication of these results is that in choosing the lag structure of ECMs,

alternative selection criteria must be examined; it appears that in testing for directional causality

in these systems, parsimony may not be the guiding principle as all three tests suffer from severe

size distortions regardless of the sample size when important dynamics are omitted.  

Overfitting affects the power of the three tests at small samples (25,50) and this effect

appears to be stronger when there is bidirectional causality through the ECT (DGP(2)).  

In summary, our experiments suggest that all three tests have a high power of the test in

moderate to large samples regardless of model structure.  In small samples (50 or less

observations), the MWALD test suffers the most loss in power, with the LR performing best in

terms of power.  This is encouraging for practitioners who may often have limited data upon

which to make inference about economic dynamics. 

In closing, it must be pointed out that Phillips (1995, pp.1053) has advocated the use of

the "Fully Modified VAR" (FMVAR) approach.  It appears that, judging from the results for the

MWALD test in these experiments, this new FMVAR approach has much to offer to applied

researchers studying "causality" and other related dynamic questions.  Using this estimator,

Phillips shows that a Wald test for non-causality has a limiting distribution that is a linear

combination of independent chi-squared variates (see Theorem 6.1 pp. 1054).  Non-causality

tests based on the FMVAR approach are expected to have higher power than those based on the

Augmented VAR estimator (i.e MWALD) since the FMVAR approach does not involve the

inefficiency of having to estimate coefficient matrices for surplus lags (see Phillips, 1995, pp.

1053). 
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TABLE 1 . Data Generation Processes (DGP).
Model '      ' "     $1 2
DGP(1) -0.25  1.00

  0.00 -2.00

DGP(2) -0.25  1.00
  0.40 -2.00

DGP(3)  0.50 0.50 -0.25  1.00
 0.00 0.25  0.00 -2.00

DGP(4)  0.50 0.50 0.00 0.25 -0.25  1.00
 0.00 0.25 0.00 0.00  0.00 -2.00

DGP(5) -0.68  0.10  1.00 0.00
  0.00  0.31  0.50 0.75
  0.00 -0.38 -0.50 1.00

DGP(6) -1.07 -0.48  0.49 -0.68  0.10  1.00 0.00
 0.00 -0.46  0.02  0.00  0.31  0.50 0.75
 0.00  0.02 -0.31  0.00 -0.38 -0.50 1.00

Note: Two cases of the covariance matrix E were used: a) an identity matrix, and b) a symmetric  matrix with 0.5
replacing the zeros in the identity matrix. In the bivariate models, p=1,  p =1, r =1 and r =1, E is a 2x2 matrix; and1 2 1 2

in the trivariate models, p=1,  p =2, r =1 and r =1, and E is a 3x3 matrix.1 2 1 2
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