
AARES 53
rd

 Annual Conference  

2009 

Title: Biological control of invasive plant species: stochastic economic analysis 

Author and presenter: 

Morteza Chalak-Haghighi  

Co-Authors: 

Arjan Ruijs  

 Ekko C. van Ierland 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7082895?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Biological control of invasive plant species: stochastic economic analysis 

ABSTRACT 

We analysed to what extent the stochastic effects of two biological control agents (i.e. weevils and 

mycoherbicides) affect the optimal choice of Californian thistle control. A stochastic, dynamic 

optimisation model was  set up to  analyse strategies that maximise the expected net present values. 

We analysed the cost-effective strategies to control the thistle for deterministic and stochastic cases. 

Results show that the stochasticity of the efficacy of weevils does not affect the optimal strategy. 

Compared to the deterministic case, however, mycoherbicides will be introduced at a higher level of 

weed density if we take the stochastic effect of mycoherbicides into account. 
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1. Introduction 

Alien invasive species are one of the most significant threats to biodiversity, threatening significant 

percentages of listed rare and endangered native plant species (Pimental, 2002). Of these, alien weeds 

are the most costly causing more than a third of the estimated US$350 billion worldwide annual 

economic damages caused by all introduced pests (Sheppard et al., 2003). Classical biological weed 

control involves the introduction of exotic natural enemies, such as insects, to reduce the abundance of 

a plant that has become an invader when spread outside of its native range. The practical aims of 

biological weed control are to achieve and maintain low population levels and to replace the weed 

with a more desirable plant (McEvoy and Cox, 1991). Among different ways of controlling invasive 

plants, biological control is widely regarded as a safer and more suitable alternative to other forms of 

invasive species management (Pemberton, 2000; Ehler, 1998; McFadyen, 1998; and Thomas and 

Willis, 1998). Hill and Greathead, (2000) claimed that biological control is a highly cost effective 

means for controlling invasive weeds on regional scales as compared to chemical control methods. 

However, biological control agents can have stochastic effects on the target plants because of the 

difficulties of establishing and adapting to the new environment. Some plants can become resistant 

against the insect (Derera et al., 2000; Ortiz et al., 1995; and Giga et al., 1991). As a result managers 

do not easily choose for biological control as other controlling measures (such as chemical and 

mechanical controls) can be more reliable. 

 The aim of this paper is to analyze if a biological control agent (in our study the insect Apion 

Onopordi) becomes a less attractive option when considering its stochastic effects. For this, we create 

sets of control strategies some with and some without the biological control. Then we evaluate which 

control strategies give the best results if the stochastic effect of the insect  is considered.  We choose 

the control strategy that maximizes the expected net benefits obtained from the pasture. For such types 

of studies a number of dynamic programming models have been set up (see e.g. Odom et al,. 2003, 

Bulte and van Kooten, 1999, Higgins, et al., 1997). When including the stochastic effect of biological 

controls a stochastic dynamic programming approach is needed. Some studies have been conducted 



using stochastic dynamic programming (see Bulte E. H. and van Kooten G.C., 1999; and Pandey and 

Medd, 1991).  

Our paper makes new contributions to the previous studies in three aspects. Firstly, we conduct a 

stochastic optimal control model with a discrete decision variable (consisting of 62 possible strategies) 

which deals with the stochasticity of introducing a biological agent: weevil, Apion onopordi,. In the 

above mentioned studies either only a single decision variable or a few decision variables were 

analyzed. Secondly, in this paper we look at two categories of the decision variables. One category is 

reversible and can be chosen on an annual basis. The second category is irreversible and includes the 

introduction of the insect (weevil). It has the characteristic that once the weevil has been introduced it 

will remain active in the pasture and therefore does not have to be chosen in the later stages. Thirdly, 

we focus on the stochastic efficacy of the biological control agent on the invasive plant, while the 

above mentioned studies mainly focused on the negative effects of biological control and less attention 

was paid to the success of biological control management of invasive species.  

The objective of this paper is to answer some of the policy relevant questions to the management of 

environmental invasive plants in general and the Californian thistle in New Zealand in particular. The 

results of this paper can be used particularly when there is stochasticity in the effect of a biological 

control agent on the target plants. To address this issue, we first describe the problem and study area 

followed by policy issues regarding the management of Californian thistle. Then we present the 

model. In the model section, we first present the deterministic model and then introduce the stochastic 

model in an empirical setting. Finally we discuss the results and present some conclusions.    

2. Californian thistle in New Zealand 

The Californian thistle (Cirsium arvense) is a widespread, aggressive, perennial weed of pastures, 

rangelands, and other agricultural land (Skinner et al., 2000; Morishita, 1999; and Donald, 1990). This 

thistle is found in both perennial and annual crops in Eurasia and America, as well as New Zealand 

and it is considered one of the “world’s worst weeds” (Friedli and Bacher, 2001). New Zealand is a 

country with a very diverse and valuable natural resource base that is widely invaded by Californian 

thistle causing severe environmental problems (Bourdôt et al., 2004; and Bascand and Jowett, 1982). 



The damages caused by weeds here have been estimated to be millions of dollars annually (Harris, 

2002).  Therefore it is important to find the best control strategy to reduce the damage caused by this 

invasive weed. We consider seven possible control options to control Californian thistle in New 

Zealand. Furthermore, we analyze a combination of these control options which will result in 62 

control strategies. The seven control options for controlling the thistle are the following.   

2.1. Applying MCPA. MCPA is a systemic herbicide that gives temporary control but severely 

damages nitrogen-fixing clovers in treated pasture. This herbicide is one of the most effective ways of 

quickly reducing thistle shoot density, and therefore can be important in increasing the production of 

the pasture (Barrons, 1969). In this study, benefits lost by removing clover are added to the price of 

MCPA. 

2.2. Applying MCPB. MCPB is closely related to MCPA, but does not damage clovers.  

2.3. Mowing in January. Mowing is a mechanical option for controlling Californian thistle. In this 

method the arms and knives of machines remove the thistle’s foliage, which results in reduced root 

growth and reduced shoot production (Bourdôt et al., 1998). 

2.4. Mowing in March.. This is like the previous option, but mowing now occurs in March.  

2.5. Over grazing. Grazing animals such as geese, goats, sheep, and cattle at sufficiently high intensity 

can control invasive species in rangelands. Sheep and goats are most commonly used for this purpose 

because they often eat plants rejected by cattle and horses. The grazing of weeds damages their 

physiology and controls their spread (Monaco et al., 2001) and has been proven to be effective against 

Californian thistle (Hartley et al., 1984). 

2.6. Applying mycoherbicide. These are plant pathogens that can control weeds in a similar way to 

chemical herbicides (Charudattan, 1991; and Trujillo and Templeton, 1981).   

2.7. Introducing weevil: phytophagous insects can be used as biological agent to control weeds. They 

usually come from the native habitat of the weed and must be extensively tested to ensure that they 

will not attack plants other than those being targeted (Pemberton, 2000). Such insects, once 

established, can often support their own growth and expansion. Here we consider the weevil, Apion 



onopordi, a putative biological control agent for Californian thistle which is considered for release in 

New Zealand. Apion onopordi, however, has a stochastic effect on the thistle. 

Given the problem of the Californian thistle and control options the following policy questions are 

posed: 

• Is it worth introducing the weevil (Apion onopordi), considering its stochastic effects? 

• Which combination of control options is optimal? 

• What are the possible costs if we exclude chemicals? 

• Is eradication worth pursuing?  

Olson et al. (2002) claimed that if the discounted expected growth rate of invasive species is more 

than one, eradication of weed is a better control strategy than reducing weed density to a lower level. 

Given the expected growth rate of the thistle (more than one) in this paper we examine if eradication is 

optimal for Californian thistle. 

In order to find the answers to these policy questions we develop a stochastic dynamic programming 

model for Californian thistle management which will be discussed in the following sections.  

       

3. The model 

Weed control decisions have to be made each year and these decisions are subject to stochasticity. 

Therefore we set up a model to determine the combination of control options that maximizes the 

present value of expected net returns obtained from the pasture. The path of weed densities and control 

strategies for a planning period of 40 years are analyzed. Decisions for choosing the control strategies 

are made at the beginning of each year, based on the known weed density at the end of the previous 

year and expected effect of the insect on the growth rate and the density of the thistle. The effect of 

control strategies is observed only in the year of application except for the introduction of the weevil. 

Once the weevil has been introduced, it will remain active for the rest of the planning period and in 

reality it will have a stochastic effect.  



In this section, first a deterministic dynamic programming model will be presented assuming that the 

weevil has a deterministic effect on the growth and the density of the thistle.  Secondly, a stochastic 

optimization model will be presented taking the stochastic effect of the weevil into account.  

 

3.1. Deterministic optimization model         

The objective of the deterministic model is to choose a sequence of control strategies , tu , that 

maximizes the present value of a stream of annual net benefits, tV . Decision variable ( tu ) is a 

discrete variable and corresponds to the control strategy adopted in year t. The number of control 

strategies that a decision maker can choose from is given by ns, where nsut ≤≤1   (See Table A.1. in 

the Appendix for an overview of control strategies). Note that the set of control strategies, 

},...,1{ nscs =  can be subdivided into two subsets:  },...,1{ NINI nscs =  and },...,1{ nsnscs NII += , 

with NIcs   the set of strategies that do not include the introduction of the weevil, and Ics  the set of 

strategies that do include the introduction of the weevil. NIns  represents the number of strategies that 

do not include the introduction of weevil. Once one of the strategies from set Ics  has been adopted, 

the decision maker can only choose from set NIcs  in the subsequent years.  

The optimization problem for year t is given in the following equation:  

  [ ])(),(max)( 11 ttttt
u

tt wVuwBwV
t

+− += δ       (1) 

Subject to:                                                                                                                                    

),( 1 ttt uwfw −= ,         (2) 

where tw  represents the density of the thistle at the end of year t and δ  represents the discount factor. 

In equation (1) the future net benefit, 1+tV , is affected by the density of the thistle shoots at the end of 

year t, tw . The net benefits in year t are affected by the control strategy adopted in year t, tu  and the 

shoot density resulting from applying this strategy.   



The net annual benefits of the pasture ),( ttt uwB in year t, are obtained from the following functions 

(Cousens, 1985):            
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where, )( tt wH  are the benefits obtained from the pasture and )( tt uC  represents the costs of 

controlling the Californian thistle at time t which depend on the strategy chosen. In the benefit 

function, parameter S represents the monetary value of a livestock unit, g represents the amount of 

forage production used per livestock unit per year and γ  represents the annual yield of dry matter 

(kg/m2) in the absence of weed. The parameter ς   represents the percentage of yield loss caused by 

Californian thistle shoots as the density of shoots approaches zero and α  represents the percentage 

loss in yield as the density of the Californian thistle shoots approaches infinity.  

Population dynamics of the thistle as presented in equation (2) are explained by the following logistic 

growth function:           
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Where )( tuL  is a multiplier which indicates the effect of the control strategy, tu , on the growth rate 

of the thistle. )( tuN  is a multiplier vector that indicates the direct effect of the control strategy on the 

thistle density (see Table A.1 in appendix for the values of these parameters). For instance, for the first 

strategy where none of the control strategies are chosen ( 1=tu ), the value of )( tuN  and )( tuL  are 

equal to one which means they have no effect on the benefit function. Control strategy number 11, for 

instance, reduces the growth rate to 70 percent of its initial value ( )7.0)11( =L and reduces the 

density of thistle to 18 percent of its initial value ( 18.0)11( =N ). Parameter µ  represents the 



maximum density of the Californian thistle shoots that can grow on one square meter of land. The 

value of µ  is constant and is not changed by control treatments. The parameter r represents the 

maximum rate of increase in Californian thistle shoot density and is influenced by the ecological 

conditions of a site. The introduction of the weevil, is assumed to reduce the growth rate (r) for all 

remaining years. No other control treatment changes the value of r.  The impacts of the various control 

strategies and their costs are shown in Table A.1 in the appendix. Figure 1 shows the relationship 

between the Californian thistle shoot densities in year t as a function of the density in year t+1 in the 

absence of any control treatment.  
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Figure 1 The dynamics of Californian thistle.  The density of the thistle shoots in year (t+1) is given as 
a function of shoot density in year t as described by Equation (5) without control. 

 

3.2. The stochastic optimization model   

In the deterministic model that has been presented in the previous section, the efficacy of the weevil 

was assumed to be constant. However, the weevil could infect the host plant with lower rates due to 

some environmental factors and the resistance of the host plants (Derera, et al., 2000; Reglinski et al., 

1997; Ortiz et al., 1995; and Giga et al., 1991). In this section, a stochastic optimization model is 

developed considering the stochastic effect of the weevil on the density and growth rate of the thistle. 

The model stochasticity assumes a discrete number of states of nature, each with a known probability 

of occurrence and resulting in a different efficacy of the insect. At the beginning of each period t, 



(knowing thistle density at the end of period t-1) a decision has to be made with respect to the control 

strategy, tu , that should be chosen. As the weevil has stochastic effects, benefits in year t as well as 

future benefits are stochastic. 

To include the stochastic effects of the weevil on the growth rate we introduce a multiplier, )( tuΨ , 

which indicates the effect of the control strategy on the growth rate. The mean and standard deviation 

of Ψ depend on the control strategy. For the strategies that do not include the insect )()( tt uLu =Ψ as 

defined in equation (5). For strategies with the insect included, the expected effect of the strategy on 

the growth rate will be known, with )( tuEΨ = )( tuL .  

The efficacy of the weevil depends on the state of nature with a known probability distribution. In 

order to simulate the stochasticity, we assume discrete states of nature. For each period, t ,there are 

possible states of nature (1, …, I).  

Each state of nature results in a different multiplier for the growth rate ( )Ψ  or the density ( Φ ).  For 

the strategies that include the insect we have: 

itit puu
ψψ ==Ψ ))()(Pr(           (6) 

      

for possible states of nature with i= 1, …, I. 

 The parameters )( ti uψ are the possible realizations of the growth rate multiplier Ψ . It follows that:  
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Because the multipliers of the growth rate and the density are stochastic, the growth function of the 

thistle (5) also becomes stochastic. Thistle density at the end of each period is a stochastic variable 

( tiw , ) depending on a given density level at the end of period t-1 ( 1−tw ). Possible realizations of  tiw ,  

are:   
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for i=1, …, I. 

As a result of this set up, it is not possible to determine net benefit for each strategy at the beginning of 

period t. Only expected net benefits can be determined, which are represented in the following 

equation: 

   )}(),({)( 11 ttttt
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For our case that the effect of weevil is stochastic this is equal to:  
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with tiw ,   the density in period t if )()( tit uu ψ=Ψ  

Because tu  is a discrete variable it is not possible to solve the problem analytically. Therefore we 

solve the model numerically using backward induction. In the next section, we explain how the model 

is solved in more detail.  

 

 

 

 

 

 

 

 

 



 

4. Data and algorithm 

 

4.1. Parameter values 

Parameter values are presented in Table 1 and Table A.1. 

 

Table 1 Parameter values
*

  

 Parameter  Definition  Value  

 γ   Annual yield of dry matter (kg/m2)  8.5  

 α   Percentage loss in yield as the density of the thistle shoots approaches infinity  100  

 r  Growth rate of the thistle  2.5  

 µ   Maximum density of the thistle shoots that can grow on one square meter  80  

 g  Forage production used per livestock unit per year (kg)  550  

 ς   Yield loss caused by the thistle as the density of shoots approaches zero (%)  5  

 S  Monetary value of a livestock unit (NZ$)  68.3  

 δ   Discount factor  0.97  

* γ ,α , r, µ and ς  were obtained from personal communications (Bourdôt and Leathwick, 2006).  Other parameters (g, S 

andδ ) were calculated or obtained from financial budget manual (Burtt, 2004). 

 

4.2. Control strategies and their efficacies 

Seven possible control options are discussed in Section 2.  Table A.1 shows a full matrix of all 

possible combinations (strategies) of these seven control options. The rows of this matrix represent the 

strategies and the columns are the control options. The values in this matrix were set to 0 or 1 with a 

value of zero indicating that the corresponding option is not included in the strategy while 1 means 

that the particular control option is included. For instance, in strategy 1 in which all values of the row 

are zero, no control option is applied. In strategy 16 control options number 1 and 5 were set to 1 the 

others to zero, indicating that this strategy is a combination of MCPB and mowing in March. 



All possible combinations of control options yield 128 potential strategies.  But some of the strategies 

are not logical and are therefore excluded. For example two different herbicides (MPCA, and MPCB) 

and mowing in January, have the same time of application. Practically, applying two types of 

herbicides at the same time or combining them simultaneously with mowing is not logical, because 

there will be no additive effect of the combination. Excluding all illogical strategies results in a final 

matrix of 62 strategies.  

To determine the values of the strategy efficacy vectors N and L, each element of the control strategies 

was itself first allocated an efficacy (shown in row 2-8 in Table A.1), which were based on published 

data (Table A.1 appendix).  For strategies with a combination of control options, the efficacies were 

taken from published data when available.  In the absence of empirical data the strategy efficacy 

values were calculated assuming that the actions of the component options were independent and 

multiplicative.  Thus for strategy 9 (MCPA + mowing in January), the proportion of thistle shoots 

surviving both treatments was N= 0.26 x 0.5 = 0.13 (see Table A.1). 

 

4.3. Probability distribution for efficacy of the weevil    

The efficacy of the weevil has a normal distribution with mean 0.7 and standard deviation of 0.35 

(Bourdôt and Leathwick, 2006). In order to avoid multiplier values less than 0.4 or larger than one, 

which would result in unrealistically low growth rate or a multiplier value exceeding 1, a conditional 

normal distribution is adopted allowing only values of )( ti uψ between 0.4 and 1.  

An often used simulation in stochastic models is to randomly draw a number of possible realizations 

of the stochastic variable from a continuous probability distribution. However this method has a 

disadvantage, because each time the model is solved, the possible efficacies of biological control 

realizations get different values. This may lead to different results and makes it difficult to compare 

scenarios with each other. To solve this problem we introduce I discrete states of nature, i={1, …, I}  

each resulting in  discrete values for the insect efficacy and each with a known probability of 

occurrence.  



To determine the probability of occurrence for each state of nature, intervals of multiplier values are 

considered. As a sensitivity analysis showed that the precision of the results does not change if the 

interval size becomes less than 0.05, interval size of 0.05 have been adopted.   

The probability for each efficacy of the weevil will be calculated by the following equation: 
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F is the cumulative probability function of the normal distribution. In order to have maximum 

cumulative probability of one, )()( ,, ∆−−∆+ titi FF ψψ  is divided by F(1)-F(0.4). As a result: 
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Table 2 represents the values of iψ  and ipψ
, and Figure 2 shows probability distribution for weevil 

efficacy.   
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Figure 2. The probability distribution for efficacies of the weevil.  
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Table 2 Efficacies of the weevil and probabilities of each occurrence. 

Efficacy of the weevil and probabilities of their occurrence  

 Efficacies ( iψ )  

Probabilities (%) 

)Pr( iip ψψ =Ψ=  
 

 0.4  4.91  

 0.45  5.49  

 0.5  6.02  

 0.55  6.46  

 0.6  6.80  

 0.65  7.01  

 0.7  7.08  

 0.75  7.01  

 0.8  6.8  

 0.85  6.46  

 0.9  6.02  

 0.95  5.49  

 1  4.91  

 

4.4. Solving the optimization model 

The model is solved using backward induction by MATLAB. As the insect can be effective from the 

moment of introduction till the end of the planning period, the backward induction algorithm implies 

that we have to solve two models. In the first model it is assumed that in period 1 a control option is 

adopted which includes the introduction of the insect. As a result in other periods the insect will not be 

adopted anymore, but the growth rate will depend on the stochastic effect of the insect. In the second 

model in all 40 periods only the control strategies can be adopted that do not include the insect. The 

latter model is not stochastic because the effects of the other control strategies are assumed to be 

certain. First backward induction is set up as follows. 

For a discrete number of weed densities the model is solved for the final period (t=40). The optimal 

control strategies for period 40 are determined by optimizing the expected benefit for period 40, for a 

given thistle density at the end of period 39, ,39w  and for a given probability distribution of the 



efficacy of the insect. Secondly, for period 39, for a discrete number of possible densities at the end of 

period 38, 38w , the optimal control strategy for period 39 is determined by maximising expected 

benefits for the remaining period, )( 3940 wEVδ , plus expected benefit for the current period, 

),( 393939 uwEB . Possible realizations of 40V  can be determined using the results from the previous 

step. Values of 39,iw for which )( 3940 wEVδ  has not been determined in the previous step are 

estimated using linear interpolation. For the rest of the period the procedure is the same as period 39. 

However 39 is replaced by t and 40 by t+1.  

 

5. Scenarios and results 

In this section, we discuss the effect of the stochastic efficacy of the weevil on the control strategy 

chosen. To analyse these effects we distinguish three scenarios (see Table 3). Moreover, chemicals as 

weed control options have the risk of contaminating food and drink and they can damage the 

environment. Therefore some users prefer not to apply them (Reid et al., 2007). As chemicals could be 

more cost efficient and beneficial from an economic point of view we want to evaluate the exact effect 

on the net benefits of the pasture of excluding these control options. Therefore two sub scenarios are 

derived from each scenario (see Table 3). 

Table 3 Definition of scenarios.  

  With MCPA and MCPB  Without MCPA MCPB 

Deterministic model  
CD   

CND  

Model with stochastic efficacy of 
weevil 

 
CwS ,   

CNwS ,  

 
 
 

In Scenario CD and CND  the efficacy of all control strategies are assumed to be known with certainty. 

Scenario CwS ,  and CNwS ,  represent the results of the stochastic model, in which weevil introduction 

has a stochastic effect on thistle growth. In the above mentioned scenarios index “C” refers to the sub 



scenarios in which chemicals (MCPA and MCPB) are included and index “CN” refers to the sub 

scenarios in which chemicals are not included. For all scenarios and sub scenarios we compare the 

NPV and the thistle density of the optimal strategies.    

 

5.1 Transition of the thistle density between year t and year t+1 

The optimal control problem is autonomous which means that the state transition equation does not 

depend on the time period. For each year, except for the years in which the choice has to be made 

whether or not to introduce the weevil, optimal control strategies only depend on the current thistle 

density and not on control strategies that were chosen in the previous period. Using the optimal 

decision rule provides an optimal state transition. For Scenario CwS ,  and CNwS ,  the optimal transition, 

i.e. the relationship between the state at time t and the state at time t+1, under optimal management is 

shown in Figure 3. Only these transition relationships are shown as all scenarios, which show only a 

zero to 0.02 differences in the density transitions. These small differences show that the stochastic 

effect of the weevil has a very small effect on the thistle density.   

Figure 1 shows that without control treatments, the thistle population rapidly increases. In contrast, the 

application of optimal control strategies results in the maintenance of low thistle densities and the 

quick reduction of density if the initial thistle density is high. Figure 3 shows, for the sub-scenarios 

with chemicals, if the initial density of the thistle is lower than 50 shoot/m
2

, the density of thistle in 

year t+1 is slightly higher in these scenarios than in the sub-scenarios without chemicals. For initial 

densities exceeding 50 the reverse is true.  By excluding chemicals, more control options are needed. 

For higher densities, however, chemicals are more cost effective and can more easily keep the thistle 

density at a lower level.  
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Figure 3 Changes in Californian thistle shoot population density under optimal strategies, for Scenario 

CwS ,  and CNwS ,  in case no control strategy is adopted.  

 

As we can see in Figure 3, in contrast to Olson et al., (2002) densities will never reach zero, even 

though they will become small in only few years. The efficacies of control strategies (see Table A.1) 

show that there is no control strategy that reduces the thistle density by 100 percent, and therefore 

eradication is not a viable strategy.   

5.2 The optimal strategies 

The optimal strategies for the different scenarios are presented in Table 4. It shows that the optimal 

strategies for Scenario CD  are the same as for Scenario CwS , , and the optimal strategies for Scenario 

CND  are the same as for Scenario CNwS , . This means that the optimal strategy for the deterministic 

case is similar to the optimal strategy in the case where the effect of weevil is stochastic. Even though 

the target plants can be resistant to the weevil (Derera et al., 2000; Ortiz et al., 1995; and Giga et al., 

1991) and its efficacy is stochastic, the costs of introducing weevil are so low as compared to other 

control options, that no change is observed in the optimal strategies. Moreover, weevil is the only 



control option which once introduced can compensate a low efficacy in one year with a possible high 

effect in another year. 

These results are in contrast with some arguments against the introduction of weevil, as some think 

that weevil is not worth introducing because of its stochastic impact.  Its low costs and long-run effect, 

however, make it a very attractive control option as long as it is not causing a significant negative 

external effect to the ecosystem.   

Table 4 Optimal starting strategies for different ranges of initial thistle density for the deterministic 
model and stochastic models. Chemicals are either included or excluded .*  

Initial Californian  With chemicals  Without chemicals 

Thistle  Scenario CD   Scenario CND  

density 
(shoots/m2) 

 

 Number  Strategy  Number  Strategy  

0.00-1  8  Insect  8  Ins. 
1-3  39  Ov.Gr., Ins.  40  Mo.J. Ov.Gr., Ins. 
3-5  14  MCPA, Ov.Gr., Ins.  29  Myc., Mo.J., Ov.Gr., Ins. 

5-17  14  MCPA, Ov.Gr., Ins.  62  Myc.,Mo.M. Mo.J., Ov.Gr., Ins. 

17-49  15  MCPA, Mo.J. Ov.Gr., Ins.  62  Myc.,Mo.M. Mo.J., Ov.Gr., Ins. 

49-100  55  MCPA, Myc., Ov.Gr., Ins.  62  Myc.,Mo.M. Mo.J., Ov.Gr., Ins. 

 
  Scenario CwS ,   Scenario CNwS ,  

  Number  Strategy  Number  Strategy 

0.00-1  8  Insect  8  Ins. 
1-3  39  Ov.Gr., Ins.  40  Mo.J. Ov.Gr., Ins. 
3-5  14  MCPA, Ov.Gr., Ins.  29  Myc., Mo.J., Ov.Gr., Ins. 
5-17  14  MCPA, Ov.Gr., Ins.  62  Myc.,Mo.M. Mo.J., Ov.Gr., Ins. 

17-49  15  MCPA, Mo.J. Ov.Gr., Ins.  62  Myc.,Mo.M. Mo.J., Ov.Gr., Ins. 

49-100  55  MCPA, Myc., Ov.Gr., Ins.  62  Myc.,Mo.M. Mo.J., Ov.Gr., Ins. 

*Myc (mycoherbicide), Mo.M (mow in March), Mo.J (mow in January), Ov.Gr. (overgraze), Ins. 
(weevil). 

 

In Table 4, the optimal strategies for a range of possible initial densities of the thistle are given. Two 

observations can be made from this. Firstly, the higher the initial thistle density the more control 

options are needed to keep the density of the thistle at an optimal level. For high densities of the thistle 

the marginal economic damages of the thistle are higher than the costs of additional control options. 

Secondly, for the sub-scenarios without chemicals ( CND , CNwS , ) more than one control option is 

needed to substitute one chemical control option. This is because the application of chemicals is more 

effective than the non-chemical control options. Thirdly results show that mycoherbicide is a good 

alternative for the use of MCPA and MCPB. In the sub-scenarios without chemicals, mycoherbicide is 



applied at a much lower density levels than in sub-scenarios with chemicals, even when stochasticity 

is included.  

The NPVs (NZ$/ha) for the various scenarios for a range of initial densities of thistle are presented in 

Table 5. Comparing the NPV of the stochastic and deterministic model, it can be seen that when the 

stochastic effect of the weevil is included in the model, the NPV obtained from the pasture is the same 

as the deterministic scenario. Because the cost per hectare of introducing the weevil is low and the 

weevil only affects the growth rate of the thistle. Table 5 also shows that when chemicals are excluded 

from the control strategies a slightly lower NPV is obtained. This reduction in NPV becomes larger as 

thistle density increases. As explained above, for higher densities of thistle, chemicals become more 

cost effective. 

 Table 5 shows that effects of excluding chemicals on the NPV are low. It can be concluded that 

replacing chemicals by more environmentally friendly options can easily be done at low costs.  

Table 5 NPV(NZ$/ha) for selected initial thistle densities for the deterministic model and stochastic 
models. Chemicals are either included or excluded .*  

Initial Californian  NPV when chemicals are 
included (NZ$/ha) 

 NPV when chemicals are 
excluded (NZ$/ha) 

 Percentage decrease in 

thistle density  Scenario CD   Scenario CND   NPV when chemicals are 
excluded 

1  23341  23341  0 
5  23170  22987  0.8 

10  23119  22877  1.1 
20  23039  22724  1.4 
40  22952  22578  1.6 
60  22880  22476  1.8 
80  22821  22394  1.9 

 
  Scenario CwS ,   Scenario CNwS ,    

1  23341  23341  0 
5  23170  22987  0.8 

10  23119  22877  1.1 
20  23039  22724  1.4 
40  22952  22578  1.6 
60  22880  22476  1.8 
80  22821  22394  1.9 

 

5.3. Sensitivity analysis  

We conducted a sensitivity analysis to examine the effects of variations of parameter values on the 

optimal strategy chosen. Table 6 shows for which variations in parameter values optimal strategies do 

not change. Of course NPV slightly changes if parameter values change.  

 



 

Table 6 Parameter deviations (%)  and the range of their change that do not affect the optimal 

strategy.
*

 

Parameter  Deviations (%)  Range  

γ   18  6.9-10 

α   50  50-100 

r   8  2.3-2.7 

µ   40  48-112 

g   20  440-660 

ς   20  4-6 

S  20  55-89 

δ   85  0.15-1.8 

C  15  Depend on the strategy 

N 1   10  Depend on the strategy 

N 2    40  Depend on the strategy 

L  14  Depend on the strategy  

* γ  (annual yield of dry matter (kg/m2)), α  (percentage loss in yield as the density of the thistle shoots approaches 

infinity), r (growth rate of the thistle), µ  (maximum density of the thistle shoots that can grow on one square meter), g 

(forage production used per livestock unit per year (kg),), ς  (Yield loss caused by the thistle as the density of shoots 

approaches zero(%)). S (monetary value of a livestock unit (NZ$)),δ  (discount factor), N 1 (density efficacy for strategies 2-

8), N2 (density efficacy of a singe control option within the control strategies 9-62) and L (growth rate efficacy).  

 

 
The sensitivity analysis shows that firstly the growth rate of the thistle has the strongest effect on the 

results because the growth rate influences the thistle density which has a large impact on the benefit 

obtained from the pasture. Secondly, most of the non-economic parameters such as γ ,α , µ , g,  and 

ς ,that are influenced by conditions of the site, have a low impact on the strategy chosen.  Thirdly, 

efficacies of the control options have a low impact on the strategy chosen. This impact is lower when 

the control option is combined with other options, because when one control option is combined with 

other options, variation is absorbed by the other control options. For example the application of 

MCPA alone reduces the thistle density by 74 percent (strategy number 2) but when it is combined 

with mycoherbicide, mowing in March and over grazing (strategy number 53) the additive efficacy of 



MCPA is only 4.2 percent. Fourthly, variations in the economic parameters (C and δ ) have a very 

low effect on the strategy chosen particularly discount factor (δ ). We conclude that within the ranges 

of our sensitivity analysis the model is robust against changes in the parameter values. 

 

6. Summary and conclusions 

We obtained a solution to an invasive species management problem which considered the stochastic 

effect of biological control treatment (the insect). We applied a stochastic dynamic programming 

approach for controlling Californian thistle in pastures in New Zealand. This model helps us to answer 

the following questions that were raised in Section 2: 

1. Is it worth introducing the weevil (Apion onopordi) , considering its stochastic effects? 

2. Which combination of control options is optimal? 

3. What are the possible costs if we exclude chemicals? 

4. Is eradication worth pursuing?  

 Regarding the first question, we found that despite of the possible resistance of host plants to weevil 

(Derera, et al., 2000; Ortiz et al., 1995; and Giga et al., 1991) that result in its stochastic efficacy, it is 

still optimal to introduce weevil to the pastures in New Zealand assuming it has no adverse effect on 

other species.  

Regarding the second question, the analysis indicates that when chemicals are included, for most 

ranges of thistle densities (densities between 5 to 61 shoot/
2

m ) the best control strategies are to apply 

MCPA, overgrazing and introduction of weevil (number 14) and MCPA, mowing in January, 

overgrazing and introduction of weevil (number 15). It is also shown that when chemicals are 

excluded, for most densities (densities more than 8 shoot/
2

m ), the best strategy is to apply 

mycoherbicide, mowing in March, mowing in January and overgrazing (number 62).  

Regarding the third question the model shows that excluding chemicals and using more 

environmentally friendly options reduce NPV by a maximum of 1.3 percent.  



Regarding to the forth question the results show that total eradication, as found to be optimal by Olson 

et al. (2002), is not pursued in our case. Note that there are no control options that allow for total 

eradication, making the conclusion of Olson et al. (2002) rather theoretical.  

Finally, the results show that the stochasticity of the efficacy of the insect does not affect the optimal 

control measure adopted.  

 Our analysis demonstrates how stochastic dynamic programming offers a useful framework for 

management of invasive species that include stochastic parameters. We concluded that the stochastic 

efficacy of biological control agent does not change the optimal control strategy adopted under current 

setting in the model. The biological control agent can be applied at very low cost and it remains 

attractive to be used, even under a stochastic setting. In further research we will investigate whether 

stochastic impacts in other control options will affect the results. 
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Table A.1 Controlling strategies, their efficacy and costs.   The values of N and L were calculated from published data when available (see 

“Source” column), or were estimated by GWB
1

 and DL
2

 when published data was not available.  Costs, C, were obtained from Fleming et. 

al. (2003).  Myc (mycoherbicide), Mo.M (mow in March), Mo.J (mow in January), Ov.Gr. (overgraze), Ins (Apion onopordi).  

 Control options  Efficacy   

Strategy 1 
MCPA 

2 
MCPB 

3 
Myc. 

4 
Mo.M. 

5 
Mo.J. 

6 
Ov.Gr. 

7 
Ins. 

 N  L  Cost 
($NZ/h
a) 

Source  

1 0 0 0 0 0 0 0  1.00  1  0  
2 1 0 0 0 0 0 0  0.26  1  90.8 Hartley et al. (1984) 
3 0 1 0 0 0 0 0  0.28  1  98 Hartley et al. (1984) 
4 0 0 1 0 0 0 0  0.40  1  115 Hurrell et al..(2001) 
5 0 0 0 1 0 0 0  0.57  1  75 Bourdôt et al..(1998) 
6 0 0 0 0 1 0 0  0.50  1  75 Bourdôt et al..(1998) 
7 0 0 0 0 0 1 0  0.29  1  34 Hartley et al. (1984) 
8 0 0 0 0 0 0 1  0.68  0.7  3 Friedli and Bacher(2001)  
9 1 0 0 0 1 0 0  0.13  1  165.8 GWB and DL 
10 1 0 0 0 0 1 0  0.08  1  124.8 GWB and DL 
11 1 0 0 0 0 0 1  0.18  0.7  93.8 GWB and DL 
12 1 0 0 0 1 1 0  0.04  1  199.8 GWB and DL 
13 1 0 0 0 1 0 1  0.09  0.7  168.8 GWB and DL 
14 1 0 0 0 0 1 1  0.05  0.7  127.8 GWB and DL 
15 1 0 0 0 1 1 1  0.03  0.7  202.8 GWB and DL 
16 0 1 0 0 1 0 0  0.14  1  173 GWB and DL 
17 0 1 0 0 0 1 0  0.08  1  132 Hartley et al. (1984) 
18 0 1 0 0 0 0 1  0.19  0.7  101 GWB and DL 
19 0 1 0 0 1 1 0  0.04  1  207 GWB and DL 
20 0 1 0 0 1 0 1  0.10  0.7  176 GWB and DL 
21 0 1 0 0 0 1 1  0.06  0.7  135 GWB and DL 
22 0 1 0 0 1 1 1  0.03  0.7  210 GWB and DL 
23 0 0 1 0 1 0 0  0.20  1  190 GWB and DL 
24 0 0 1 0 0 1 0  0.12  1  149 GWB and DL 
25 0 0 1 0 0 0 1  0.27  0.7  118 GWB and DL 
26 0 0 1 0 1 1 0  0.06  1  224 GWB and DL 
27 0 0 1 0 1 0 1  0.14  0.7  193 GWB and DL 
28 0 0 1 0 0 1 1  0.08  0.7  152 GWB and DL 
29 0 0 1 0 1 1 1  0.04  0.7  227 GWB and DL 
30 0 0 0 1 1 0 0  0.29  1  150 Bourdôt et al..(1998) 
31 0 0 0 1 0 1 0  0.17  1  109 GWB and DL 
32 0 0 0 1 0 0 1  0.39  0.7  78 GWB and DL 
33 0 0 0 1 1 1 0  0.08  1  184 GWB and DL 
34 0 0 0 1 1 0 1  0.20  0.7  153 GWB and DL 
35 0 0 0 1 0 1 1  0.11  0.7  112 GWB and DL 
36 0 0 0 1 1 1 1  0.06  0.7  187 GWB and DL 
37 0 0 0 0 1 1 0  0.15  1  109 GWB and DL 
38 0 0 0 0 1 0 1  0.34  0.7  78 GWB and DL 
39 0 0 0 0 0 1 1  0.20  0.7  37 GWB and DL 
40 0 0 0 0 1 1 1  0.10  0.7  112 GWB and DL 
41 1 0 1 0 0 0 0  0.10  1  205.8 GWB and DL 
42 0 1 1 0 0 0 0  0.11  1  213 GWB and DL 
43 0 0 1 1 0 0 0  0.23  1  190 GWB and DL 
44 1 0 1 0 1 0 0  0.05  1  280.8 GWB and DL 
45 1 0 1 0 0 1 0  0.03  1  239.8 GWB and DL 
46 1 0 1 0 0 0 1  0.07  0.7  208.8 GWB and DL 
47 0 1 1 0 1 0 0  0.06  1  288 GWB and DL 

48 0 1 1 0 0 1 0  0.03  1  247 GWB and DL 

49 0 1 1 0 0 0 1  0.08  0.7  216 GWB and DL 
50 0 0 1 1 1 0 0  0.11  1  265 GWB and DL 
51 0 0 1 1 0 1 0  0.07  1  224 GWB and DL 
52 0 0 1 1 0 0 1  0.16  0.7  193 GWB and DL 
53 1 0 1 0 1 1 0  0.02  1  314.8 GWB and DL 
54 1 0 1 0 1 0 1  0.04  0.7  283.4 GWB and DL 
55 1 0 1 0 0 1 1  0.02  0.7  242 GWB and DL 
56 0 1 1 0 1 1 0  0.02  1  322 GWB and DL 
57 0 1 1 0 0 1 1  0.02  0.7  250 GWB and DL 
58 0 0 0 1 1 1 1  0.06  0.7  187 GWB and DL 
59 0 0 1 1 1 1 0  0.03  1  299 GWB and DL 
60 0 0 1 1 1 0 1  0.08  0.7  268 GWB and DL 
61 0 0 1 1 0 1 1  0.01  0.7  227 GWB and DL 
62 0 0 1 1 1 1 1  0.02  0.7  302 GWB and DL 
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