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Weather Derivatives: Managing Risk with Market-Based I nstruments
Practitioners Abstract:
Accurate pricing of wegther derivativesis critically dependent upon correct specification of the underlying
weether process. Wetest among six likely aternative processes using maximum likeihood methods and data
from the Fresno, CA weather station. Using these data, we find that the best processis a mean-reverting
geometric Brownian process with discrete jumps and ARCH errors. We describe a pricing modd for weather
derivatives based on such a process.
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I ntroduction

Despite extreme price volatility, sengtivity of yidds to fluctuations in temperature and precipitation, and

expressed demand for some form of risk management tool (Blank and McDonald), there are few risk
management aternatives available to Cdiforniafruit growers. Indeed, because most fruits are highly perishable
and are indagtic in demand, there are few in the agricultura economy who experience returns volatility greeter
than fruit growers. Such volatility imposes significant cogts on both the industry and society asiit forces growers
to adopt enterprise divergfication, crop rotation, capita reserve, off-farm employment or downstream integration
drategies that they would otherwise not attempt if their primary activities were more stable. Recent modifications
to the federdly subsidized crop insurance program through the Crop Insurance Reform Act of 1994 and the
Agriculturd Risk Protection Act of 2000 provide incentives for insurance companies to develop awider range of
insurance products for specidty crop producers, but these have not met with the leve of success that was
origindly hoped. Even with these reforms, many bdlieve that traditiond crop insurance smply will not work for
fruit growers due to the heterogeneity of risks they face and their inherently entrepreneurid nature. Moreover,
these initiatives promise levels of government expenditure that are not likely to be sustainable given current

budget projections and, perhgps most importantly, represent an extent of government intervention in an industry
in which government regulation of any type, even if financialy beneficid for dl, is an anathema. Consequently, the
only long-term solution to the demand for an effective risk management tool in the Cdifornia fruit industry must be
amarket-based one.

In thisregard, weather derivatives represent a potentidly promising solution.  Although * over the counter”
weether products (those that are not traded on aforma exchange) exit for rainfdl, snowfal, humidity and
temperature, the latter are the most common. Consequently, we believe that they are the most likely to of useto
agriculturd risk managers. Broadly defined, weether derivatives provide firms the ability to manage volumetric
risk that derives from unusua wesather events or seasond deviations from longer term climatic norms. Coupled
with conventiona price-hedging or forward contracting, weether derivatives provide a revenue risk management
capability that has proven to be attractive to many different types of firms. In fact, Turvey reports that some
4000 weather derivative transactions took place in the year 2000 worth approximately $8.0 billion (Weather
Risk Advisory Ltd.) Given the broad range of firmsthat may be able to use weeather derivativesto great
advantage, this value should only increase. Achieving this liquidity, however, requires a more generd
understanding of how these tools work.

There are five essentid eements to every weather contract: (1) the underlying weether index, (2) the period over
which the index accumulates, typicaly a season or month, (3) the weather sation that reports daily maximum and
minimum temperatures, (4) the dollar value atached to each move of the index vaue, and (5) the reference or
“drike’ vadue of the underlying index (Cao and Wel). Essentidly, weather derivatives are contingent securities
that acquire value when the temperatureis elther grester than or less than some benchmark value, typicaly 65
degrees fahrenheit, at some reference location.? Each day the temperature averages greater than this benchmark
contributes one cooling degree day (CDD) to the value of the cumulative CDD index, whereas each day below
adds to a heating degree day (HDD) index. At the agreed expiry date, the holder of aput (cal) will receive a

2 Although precipitation derivatives also exist, temperature-based derivatives are more common and serve
toillustrate the concept equally well.

-1-



payment if the cumulative amount of the underlying index fals below (rises aove) the strike leve. The amount of
the payment is equa to the number of CDD or HDD above the gtrike level multiplied by some notiond dollar
vaue per unit of theindex. Idedlly, the buyer of the derivative is thus compensated by the writer for an amount
that offsets the redl business losses that have been incurred as aresult of the weather pattern that emerges. For
example, an amusement park owner would buy a CDD put that pays out if thereisastring of unusudly cold
days. The vaue accumulated with the long put position will help offset the lost revenue from customers who have
stayed away during the adverse wegther period. If, on the other hand, the intervening period was unusualy hot
s0 that the CDD index rises wdl above the strike leve, then the put will expire worthless and the amusement

park owner is out the premium he paid at the initiation of the contract to the writer of the put, but is happy to do
30 because his business revenue likely more than compensates for the price of this*insurance palicy.” Clearly,
the gpplication to farming is directly analogous to the amusement park owner. A fruit grower, for example,
would likely buy a CDD call so that he or sheis compensated if astring of unusudly hot weether causesa
reduction in elther yield or fruit quality compared to that expected had the CDD index reached the strike vaue
over the growing period. Despite the apparent attractiveness of this ability to pass revenue risk to another, there
are some problems that have, until now, limited the usefulness of westher derivatives as agriculturd risk
management tools.

Although wesether derivative researchers and analysts commonly cite agricultura producers as likely users of
wesgther derivatives, there has been little interest to date (Dischdl). Severd factors contribute to thisincluding the
lack of aforward market in ardevant weather index, potentia basis risk, problems defining meaningful wegther
data, and alack of accurate pricing models (Dischd; Turvey). Firgt, dthough the Chicago Mercantile Exchange
(CME) began trading degree-day futures and options for a number of mgor U.S. citiesin the Fall of 1999, the
fact that wesether isaloca phenomenon and micro-climates often differ radicaly within small geographic areas
mean that the CME products are of little use to most agricultura producers. Second, without a traded instrument
to from part of ariskless hedge, conventiona preference-free Black-Scholes pricing models cannot be used to
price weether derivatives. However, dternative approaches based on the weather-state variable are available
that take into account the market price of risk, abeit they are not as smple to apply as standard option pricing
modds. Third, bassrisk islikely to be asignificant problem for assets based on weether indices. Badsrisk, in
this case, refers to the difference between a weether futures index value based in a particular city and the true
vaue of the same wesather index defined for apecific firm. Badsrisk dso arises from the fact that revenue,
particularly in agriculture, derives from both rain and hest fluctuation. Precipitation and temperature are not
perfectly corrdated, nor do they have linear relaionshipsto yieds and market prices. Related to thisproblemis
the fact that temperature varies continuoudy from region to region, whereas precipitation risk is discrete, often
occurring in some fields, but leaving others only yards away dry. If weether is specific to very smdl geographic
aress as We expect, then collecting useable data and defining arelevant index are both vitaly important and
potentidly difficult.

Of dl these potentid problems, it is the absence of redistic pricing modd s developed specificdly for the
idiosyncracies of weether derivatives that islargely responsible for the large bid-ask spreads typical of quoted
derivatives (Cao and Wei). While improved liquidity, ingtitutiond and regulatory changes, and better data
collection methods can help solve thefirg three problems, academic research may help solve the find one,
Admittedly, the complexities in both modeling and estimating processes underlying any wesather index creete
chalenges for any attempt to price westher derivatives. However, in this paper, we use well understood
methods to find the “best” index modd from among severd viable dternatives. With this process, we then may
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be able to create a potentidly useful pricing modd for Caiforniafruit growers. Specificaly, the objectives of this
paper areto: (1) determine the nature of the process underlying atemperature index for Centrd Cdifornia, and
(2) to sketch the requirements for an appropriate pricing model based on our preferred weather process for
CDD westher derivatives. We begin the paper by describing the unique features of weather processes and
defining several possible stochastic processes that may be used to describe the path of a CDD index through a
growing season. Next, describe the data we use to estimate each of the CDD process models. Fourth, we
provide a discussion of how we estimate the parameters of each of these processes and how we test among
severd competing empirical modelsin order to find the best CDD respresentation. A fourth section providesa
discussion of the results obtained by comparing the fit of each index moded while the fina section concludes our
findings and suggests severd avenues for future research.  In thisfind section we dso draw severd implications
for the likely vaue of weether derivatives to growers who face problems in accessing effective ways to manage
revenue risk.

Empirical Model of California Weather
Overview of Method

Asisclear from our objective statement, we focus our effortsin this paper on the specific issue of determining the
correct form of the stochastic processes underlying weether derivative pricing models. Consequently, our
research method consists of two stages: first, we develop and estimate dternative models for stochastic
processes underlying a westher index (CDD) for Cdiforniafruit growers and, second, we describe a pricing
modd that is congstent with the preferred underlying weether process. Because we focus on temperature
measures from the Fresno, CA westher station, we leave open the question of how geographic basisrisk and
local micro-climatesimpact the effectiveness of a weather derivative-based hedging program. We begin,
however, by describing these datain more detail.

Data Sources and Sample Description

The wesather datafor this study are from the U.S. Nationd Climatic Data Center for awesather station located in
Fresno, CA Based on prior analyses of the optima length of a data series required to estimate a weether
process (Dischel), we estimate each of severad candidate mode s with 30 years of daily temperature data for each
weether gation. The datacongs of dailly maximum temperature, minimum temperature, and average
temperature. With these measures, we congtruct an index of cooling degree days (CDD) for agrowing season
that is assumed to run from May through July — the critical phase of find fruit development for the soft fruit
(peaches, plums, and nectarines) and table grapes grown in the Fresno area. Although the temperature seriesis
not directly gpplicable to any particular grower, primarily because it is gathered at the Fresno Air Termind, the
proximity of many growers to Fresno and the relative topographica homogeneity of the surrounding area should
minimize the basis risk that would likely exist for growers located farther awvay from the weather sation. Table 1
provides summary statistics for the CDD index for aseries of 5-year intervals from 1970 to 2000. Contrary to
what many believe, these data do not suggest that a* heat idand” effect has been respongble for agenerd risein
temperatures in the Fresno area over thistime period. With these data, we consder avariety of aternative forms
for the underlying weather process.

Alternative Stochastic Processes



When pricing any derivative security, the accuracy of the pricing mode depends criticaly upon the nature of the
process for the underlying security or, in our case, the weather process from which the derivative derivesits
vaue Inthisanalyss, we congder four dternatives of increasing complexity and, correspondingly, decreasing
parsmony: (1) geometric Brownian motion, (2) ajump-diffuson, or Poisson-norma mixture mode!, (3) mean-
reverting jump-diffuson and (4) a geometric, mean-reverting jump-diffuson mode. In each of the latter cases,
there is dso consderable empirical evidence that the volatility of weether processes may be stochadtic, so we
account for this possibility by using asmple autoregressive, conditiona heteroskedastic (ARCH) error structure
(Jorion; Hull and White). To determine which process provides a better fit to the weether data, we conduct
pairwise comparisons of related modds using likeihood ratio tests. In the Smplest case, we assume the westher
gate-variadle follows a geometric Brownian motion (GBM) &kin to that used in atypica Black-Scholes mode!:

dWW = adt + odz, (@)

where Wisthe CDD index, " isitsinstantaneous rate of change, F isthe standard deviation of the process, and
dz defines the Wiener process with properties: E(dz) = 0 and E(dZ?) = dt. Next, we definew = log(W,/ W, ;)

asthe daily percentage change in the weether index sothat 1 = @ - 62/2 isthe mean growth rate of w.

Intuitively, a GBM process is a continuous-time version of a discrete random walk and istypica of many price
processes, particularly those of stock prices traded on public equity markets.

However, many authors recognize the weekness of this assumption for not only westher processes, but for many
other real-world processes aswell. These authors identify biases that arise in attempting to apply this modd to
generate accurate price predictions (Merton; Bal and Torous; Jarrow and Rosenfeld; Jorion; Naik and Leg;
Bates, Hilliard and Reis). Perhgps not surprisingly, the smplifying assumption of GBM is even lesslikely to hold
for the evolution of temperatures as for stock prices, exchange rates, or interest rates. Specifically, weather
indices are not likely to follow GBM processes because changes in the index from day to day (ie. the daily
temperatures) are: (1) seasond, (2) highly non-linear, (3) mean reverting, and (4) likdly to experience sgnificant
periodic jumps. In the context of stock prices, Merton argues that jumps are likely to occur because news
arivesto financid marketsin discrete, often unpredictable intervals. Similarly, Jorion argues that foreign
exchange markets are likely to experience jumps due to exchange rate regime realignments and periodic currency
devauations. Like market news, extreme weather events tend to occur infrequently and contain unique sources
of peril for crops. Consequently, we represent a more plausible weather index process in terms of ajump-
diffuson modd of the form:

dW/W = (e - Ld)dt + od + bdg, ©

where now F isthe variance of the weather process conditiona on no discontinuities, q is the Poisson counter
with mean arrivd rate 8, and N is random percentage jump in the weather index conditiona on a Poisson event.
Moreover, in the base model we assume the random variable (1 + N) islog-normaly distributed: In (1 + N) ~
N(( - 0.5*2, *2) and the digtribution of q isgiven by:

_ |6 with prebabiity 1- A df

dg = || Gith probabiliy A dt | 3)



Following Johnson and Barz, we generdize thismode in the empirical example below, but we assume that the
jump magnitude is log-normd, rather than exponentidly, distributed. Recent research in this area finds that an
assumption that jumps are distributed double-exponentia (Kou) represents a preferable aternative for options on
futures and interest rate derivatives, while Lewis provides a more generd option vauation method for a broad
class of jJump-diffuson processes. Either way, ajump-diffusion process represents not only infrequent jumpsin
temperature, but non-norma skewness and, with dight modification, mean reverson as wel — both likely
attributes of any well defined weather process. In fact, Bates (1991, 1996) shows that accounting for discrete
jumps explains such pricing anomalies as voldility smilesin both stock price and foreign exchange data

The specificationin (2) is, however, asmplification in that each of the parametersis conditional on a particular
variance vaue. Hull and White and Jorion, on the other hand, recognize that other types of processes can
explain the same excess kurtosis thet istypicd of weather digtributions, namely a mixture of normas or one with
dochadtic volatility. Stochastic volatility, in the sense of Engle (1982) means that the second moment of the
digtribution varies over time. Incorporating stochastic volatility into (2) is rdatively sraightforward aswe can
write an expression for the conditional volatility as afirs-order ARCH process:

hz = E‘_]I(Of) = Yo ¥ chwz-l - m?’ 4

and estimate each of the parameters Smultaneoudy by substituting h in for F2 in the likdlihood function defined
below. Some researchers, however, believe that weether indices tend to follow processes that exhibit even more
complex behavior than that described by the stochastic-volatility, jump-diffusion specification described up to this

point.

In particular, Pirrong argues that the process represented in (2) isinsufficient for energy or westher derivetives
because jumps tend to be one-sided, with prices risng upon the arriva of a new weather system, but declining
dowly over time. Standard jump-diffuson modds aso implicitly assume that the jump is permanent, whereas
jumpsin aweether index are likely to revert quickly to the mean. An additiond complication in estimating jump
parametersis the fact that jump probabilities are likely to be seasond. While the latter point is obviated by
congdering only season-specific weather indices, Cao and Wel, usng CDD and HDD indices for severd mgor
U.S. metropolitan aress, find that daily temperatures are indeed strongly mean-reverting. To accommodate these
characterigtics, Johnson and Barz propose a deseasondized, geometric mean-reverting jump-diffuson modd. In
fact, they show that such a process outperforms standard Brownian motion, geometric Brownian motion and
basc Orgein-Uhlenbeck processesin explaining Cdifornia dectricity prices, each with or without smilar jump
processes. Incorporating each of these festures, the geometric mean-reverting modd isasfollows:

AWW=x@ - L - hiNE + ok + $dg, (5)

where 6 isthe rate of mean-reversion. Again, we estimate this modd using maximum likelihood methods as a
generdization of (2) above, under dternative assumptions regarding the jJump-distribution, and compare
goodness of fit usng a series of likdihood ratio tests. However, estimating these modds using maximum
likelihood is not the only approach.

Estimation Method



In fact, there are three dternative methods for estimating the parameters of the jump-diffuson weather process
given by (5): (2) direct maximum likelihood estimation asin Bal and Torous (1983, 1985), Jorion or Jarrow and
Rosenfeld, (2) implied estimation of derivative moments using an existing price series (Hilliard and Reiss) and (3)
aleast-squares estimator (Bates 1991, 1996). There are advantages and disadvantages of each approach. One
problem with maximum likelihood estimation is the amount of data that are required. Because jumps are, by
definition, infrequent, identifying jJumps requires along data series. However, over longer time series, the earlier
periods may not be rlevant to the current period in terms of ether the volatility or the amplitude of the Poisson
process (Hilliard and Reis). Second, the number of eventsis somewhat arbitrary, depending upon the
researcher’ s definition of what congtitutes “unusud” in adatistical sense. Third, the estimated parameters are
those of the true process, so the researcher must make assumptions asto the form of preferences and technology
underlying the data generating process. However, implied estimation with westher derivatives faces an even
more fundamentd problem -- the lack of derivative pricing data on which to base the estimates. There are
existing wegther derivative price data series, but there is some question as to how efficiently these are priced,
whether the information on which they are based are accurate, and how rdevant they are for growersin the
Fresno area. Consequently, we adopt the direct maximum likelihood gpproach of Ball and Torous (1983,
1985); Jarrow and Rosenfeld, and Jorion.

With this approach, we test each of the specifications defined above againgt each other using a series of
likelihood-ratio tests. These specifications include: (1) geometric Brownian maotion (GBM), (2) mean-reverting
geometric Brownian motion (MRGBM), (3) geometric Brownian motion with alog-normd jump (GBM-J), (4) a
mean-reverting version of (3) (MRGBM-J), (5) an auto-regressive conditiona heteroscedastic version of (3)
(GBM-JARCH), and (6) an auto-regressive conditiona heteroscedastic version of (4) (MRGBM-J-ARCH).
The most generd of these specifications, including mean reverson, log-norma jumps and ARCH errorsis

Lee |B) = —T)\.—%h(21:)+

AT P - w,- (@ +h,/2+n8/2- nd - mw)(1 -2 %) | | ©6)
D Ty =P 2
=1 0 % “hﬁbin 201, + 8"n)

for M observations of log-reltives of the westher index: (w,= (W, ,/ W, ,)) where 8 is the Poisson intensity

parameter, 62 isthe volatility of the continuous part, 82 the volatility of the discrete part, and N is the mean

jump size® Following Bal and Torous (1985), we define n as the random redization of a shock to revenue, and
fix N a avaue likely to include al possible occurrences of a shock (for most data sets, three has proven to be
aufficient), and maximize (6) with respect to the remaining parameters. We define each of the other likelihood
functionsin asmilar way, but with appropriate substitutions for the maintained form of the stochastic process for
w,. With the gppropriate numerica optimization agorithm, the likelihood function in each case converges rapidly
and isrobust over arange of sarting vaues. Because each of the firgt five modds is nested within the sixth, we
select the best from among competing specifications with likelihood ratio tests. If these tests that one of the latter
five modelsis preferred, then the weather derivative pricing modd that follows will be of non-standard form.

3 This assumption is more general than Ball and Torous (1985), who assume a jump size of mean zero.
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Determination of Appropriate Pricing Model

For purposes of this paper, we discuss the likely dternative pricing models, but leave implementation for future
work. To serve asthe bass for an effective weather derivative trading program, we define an gppropriate pricing
model as onethat: (1) is condstent with the underlying weeather index process, (2) reflects the fact that a CDD
index is cumulative, unlike stock prices, exchange rates, or other asset prices, and (3) is understandable by users
in the field, whether extension agents, bankers, suppliers, or growers themselves. Origindly, practitioners used
sample “burn rate’ models or modified existing Black-Scholes based pricing modds to the weether problem by
defining the underlying security in terms of the CME cooling degree day (CDD) or heeting degree day (HDD)
contracts defined for a specific urban location. Burn rate modd s have one key advantage that explains their
popularity among practitioners -- ease of use. However, severa problems exist with this gpproach (Dischd;
Turvey; Pirrong). Most importantly, derivatives that are priced according to a burn rate mode will trade
infrequently, if at al, because there is no way to update the probabilities of adverse weether events. Without
such volatility, there is no opportunity for the parties to arbitrage risk, so there will be no liquidity in the market
(Turvey). Introducing a more complex process for the underlying index means that the smple averaging process
implied by aburn rate modd will not work, so a contingent clam (or dynamic programming) approach smilar is

necessay.

Y et, we cannot gpply a standard andytical solution method without some modification. In fact, there are ahost
of well-documented problems associated with applying a smple Black-Scholes gpproach to a problem with a
fundamentally different underlying payoff structure (Nelken; Dischel 1999). Most importantly, the underlying
wezther index is not atraded asset, but rather astate variable.* Therefore, the risks associated with weather are
non-hedgesble so any derivative pricing model based on aweather index must include the market price of risk in
an equilibrium pricing framework. The lack of aforward market for westher indices dso means that there will be
no way for traders to price derivatives and, hence, trade them on a continuous basis. Further, Pirrong believes
that highly non-linear and seasond wesether indices mean that there is no stochastic representation that can easily
fit into a contingent claim framework. Nonetheless, Turvey argues that the absence of a hedgeable asset can be
addressed by gpplying the risk-neutra pricing mode of Cox and Ross under the smplifying assumptions that the
mean drift rate of the weather index and the “weather betd’ are both zero.> Hilliard and Reisuse asimilar
approach to vaue commodity options where jump-risks are assumed to be systematic and, therefore,
undiversfiable. Using this assumption, we recognize that a risk-free hedge is unavailable, so we can potentialy
estimate a“risk neutrdized” weether process that incorporates agents margind utility of wedth and the jump-
diffusion characteristic of a CDD westher index (Bates 1991):

AWIW = - L*¢*d + o&k* + ¢ dg*, (7)

4 Although there are CDD and HDD futures contracts on the CME, these apply to only a handful of major
metropolitan areas, so cannot be used to hedge weather risks for growersin Central California, or many other
agricultural areas for that matter.

5 This latter assumption isjustified on the groundsthat it is unlikely that the market portfolio can have any
impact on the number of degree days, but it is not necessarily true that weather events do not impact the market
portfolio.
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where L * =A[1 +EQAJ IT)], ¢*= +eov(d,AJ, /) [1+EQAT, 1)), andJ, isthe marginal utility of

wedlth. With this process o defined, we then form the fundamenta partid differentia equation in the usud way
and solve for the derivative price andyticaly. For example, in the most generd MRGBM-JARCH process
case, aCDD cdl option assumed to be exercisable only a expiry will have a price equd to:

-£z %
- SE { (“) } U@ (-d) - wd(-d)] )

where:

4,

_ {h(w/z} + 1/2\;2.:}’ 4 - {h(w/z} - 1/2\;%}’ ©

e ot

v2 = h,tnd2/t, re=r-L & -xhwtny/t, 82 isthevaianceof thelog of N,y =leg(1+*), ad

L = L +¢™. Theefore thevaue of aweather-based cal option on awesther index that follows a
compogite jump-diffusion process is Smply aweighted average of its value under each possible redization of the
random number of discrete events, given adjusments to the variance of revenue and the discount rate. While this
modd should provide accurate weether derivative prices, others suggest that an equilibrium-pricing gpproach isa
preferable way of pricing such non-stlandard claims, particularly when the jump risks are systematic and the
payoff path-dependent (Cao and Wei; Firrong). Comparing derivative prices caculated using each of these
gpproaches may be afruitful avenue for future research, but here we focus on the structure of the underlying
weather process.

Results and Discussion

In this section, we first provide pairwise comparisons of each aternative CDD process, and then briefly discuss
the implied structure of the preferred model. Although others gpply this method to estimate the parameters of
stock price processes (Bal and Torous 1983, 1985; Jarrow and Rosenfeld) and foreign exchange rates (Jorion),
this represents the firgt attempt to parameterize anon-financia series. AsBal and Torous (1985) suggest, a
Bernoulli jump-diffuson modd provides useful sarting vaues for the maximum likelihood estimation procedure.
With these sarting vaues, convergence of each mode occurs within 40 iterations using a Newton-Raphson non-
linear solution agorithm. Table 2 provides the likelihood ratio statistics we use to compare the various CDD
models.

Firgt, we compare the base geometric Brownian motion (GBM) model to ajump-diffusion dternative with
Poisson arrival times and log-normal jump-magnitude (GBM-J). At a5% leve of sgnificance, the likelihood
ratio test clearly favors the unrestricted model. Second, we compare a mean-reverting geometric Brownian
motion (MRGBM) process to the base GBM modd. With one degree of freedom and a 5% level of
sgnificance, the likelihood retio test datistic again suggests rgjection of the null hypothesis that the reverson
parameter (6) iszero. Given the gpparent superiority of both mean-reversion and jump-diffusion eements
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relaive to the base model, we next compare a mean-reverting process with jumps (MRGBM-J) to one that does
not include discrete shocks (MRGBM). At a5% levd, we rgect the null hypothess that each of the jump
parameters (arrival rate, 8, jump variance, *, and jump magnitude, N) is equa to zero, so conclude that the
preferred specification likely includes discrete jumps. To test whether the preferred jump-diffusion processis
mean-reverting as well, we next compare the mean-reverting jump-diffuson process (MRGBM-J) to the base
modd with jumps (GBM-J). With one degree of freedom and a 5% significance leve, the chi-square Statistic of
192.72 provides clear support for the mean-reverting modd.

Due to previous evidence of the importance of stochastic volatility in financid series (Bates 1991), we conduct a
fifth test that compares the preferred jump-diffuson mode to afirst-order autoregressive conditiona
heteroscedagtic (ARCH) variant of the base GBM-Jmodd (GBM-JARCH). In this case, we only margindly
rgect the null hypothesis at a 5% level that the additiond ARCH parameter isequd to zero. Given this
preference for an ARCH specification, our find test compares a mean-reverting verson (MRGBM-JARCH) to
anon-reverting specification. Again a a5% level and one degree of freedom, the resultsin table 2 suggest
rejecting the non-reverting modd. Therefore, we find that our preferred modd is a mean-reverting geometric
Brownian motion with log-norma jumps and first-order autoregressive conditiona heteroscedagtic errors.

The reaultsin table 3 not only provide evidence as to the preferred mode, but illustrate sharp quditative
differencesin the implications of each process aswell. For example, comparing the preferred model to GBM
finds that the mpler process overstates the mean drift rate of the series by afactor of three. Criticaly, however,
by ignoring mean-reversion, the GBM specification leaves open the possihility that the CDD index can wander
away from itslong-term average indefinitely. Thisisnot likely to happen in redity, so should not be reflected in
wegther derivative prices. Second, if we rely on forecasts of a CDD index generated by a GBM process, we
would dso miss the fact that much of the cumulative index vaue comes not from prolonged, smdl deviations from
the reference vaue (650 F), but often in short, discrete jJumps in temperature. Statisticaly, the resultsin table 2
show the importance of jumpsin the weather process through the large incrementd improvementsin fit by each
jump-diffuson model relative to its continuous anadlog. Although the CDD processis physicd, rather than
financid, these results are consgtent with the implications of ignoring “fat tails’ in financia asset returns processes
found by Bates (1991, 1996); Naik and Lee; and Jorion. Third, athough we find that alowing for stochastic
volaility improves the fit of each modd, including and ARCH error component is gpparently not as important as
in other contexts. Specificdly, in their comparison of aternative option pricing models, Bakshi, Cao and Chen
provide evidence from S& P 500 index options that alowing for sochastic volatility providesthe largest
incrementa gain in option pricing “fit” from among each of the Black-Scholes extensons that they consider. By
using stocks traded on organized exchanges, however, they are able to use indirect market evidenceto
demondrate the superiority of their sochastic volatility models, whereas we necessarily rely on direct estimation.

Conclusions

This study determines the appropriate form for the stochastic process underlying aweeather derivative pricing
modd for risks specific to the Central Vdley of Cdifornia (Fresno). The creation of such amodel isimportant to
the industry as they lack many of the risk management tools that growers of traditiona crops take for granted.
Previous research into smilar types of processes (electricity, stock prices, exchange rates) have found the usua
geometric Brownian motion assumption to be inadequate. To investigate whether thisis aso the case for aCDD
index, we condder Sx dternative specifications and test among them using a series of likelihood ratio tests. Inthis
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way, we find that the preferred mode is instead a mean-reverting, geometric Brownian motion process with first-
order autoregressive errors and alog-normaly distributed jump term. While we do not formally estimate
derivative prices congstent with this index, we derive a pricing modd thet is gppropriate for a CDD index that
follows such a process.

Asthis study concerns only the nature of the underlying weether process for a single region, opportunities for
future research that build on this foundation are clear. Firgt, it would be of consderable practicd vaueto
cadculate a series of weether derivative prices consstent with the preferred underlying process and use thesein
samulated revenue-risk management programs for Cdiforniatree fruit growers to determine their potentia
effectiveness. Second, issues of bagisrisk and micro-climate variaion can be consdered by estimating smilar
processes for adjacent weather stations and determining their correlation with the Fresno series. Third, research
is a0 needed into derivatives for other key weather variables — precipitation, heating degree days during the
winter season, or derivatives specificaly for catastrophic frost risks such as that which hit the California orange
industry in the winter of 1998. Fourth, it is dways the case that other researchers could extend our modd by
considering more complex error structures, such as GARCH, or higher order ARCH processes. Findly, aswe
suggest above, comparing weether derivative prices under risk-neutral and equilibrium pricing solution methods
would be an important contribution to this emerging field of study.

-10-



Reference List

Bakshi, G., C. Cao, and Z. Chen. “Empirica Performance of Alternative Option Pricing Models.” Journal of
Finance 52(December 1997): 2003-2048.

Bdl, C. A. and W. N. Torous. “On Jumpsin Common Stock Prices and Their Impact on Cdl Option Pricing.”
Journal of Finance 40(March 1985): 155-173.

Barz, G. “ Stochastic Processes for Electricity Derivatives.” Unpublished Ph.D. Dissertation. Department of
Engineering and Economic Systems, Stanford University, Stanford, CA. 1999.

Bates, D. S. “Jumps and Stochadtic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options.”
Review of Financial Sudies 9(Spring 1996): 69-107.

Bates, D. S. “The Crash of ‘87: Was it Expected? The Evidence from Options Markets.” Journal of Finance
46(July 1991): 1009-1044.

Black, F. and M. Scholes. “The Pricing of Options and Corporate Liabilities” Journal of Political Economy.
81(1973): 637-659.

Black, F., and M. Scholes. “The Vauation of Option Contracts and a Test of Market Efficiency.” Journal of
Finance 27(1972): 399-417.

Black, F. “The Pricing of Commodity Contracts.” Journal of Financial Economics 3(1976): 167-179.
Blank, S. C., and J. McDondd. “Crop Insurance as a Risk Management Toal in Cdifornia The Untapped
Market.” Research report prepared for the Federal Crop Insurance Corporation, project no. 92-EXCA-3-
0208. Department of Agriculturd Economics, U. C. - Davis. August, 1993.

Cao, M. and J. Wel. “Pricing Wesather Derivatives. An Equilibrium Approach.” Working paper, The Rotman
Graduate School of Management, The University of Toronto, Toronto, Ont. October 1999.

Cox, J. and S. A. Ross. “The Vduation of Optionsfor Alternative Stochastic Processes.” Journal of Finance
and Economics 3(1976): 145-166.

Cox, J,, J. E. Ingersoll, and S. A. Ross. “A Theory of the Term Structure of Interest Rates.” Econometrica
53(1985): 385-407.

Dischdl, R.. “The Fledgling Westher Market Takes Off,” Applied Derivatives Trading Focus.
(http:/Awww.adtrading.com). 1998.

Dischd, B. “Black-ScholesWon't Do.” Wesather Risk Specid Report. Energy and Power Risk Management.
Risk Publications. October, 1998.

-11-



Engle, R. “ Autoregressive Conditional Heteroscedadticity with Estimates of the Variance of United Kingdom
Inflation.” Econometrica 50(1982): 987 - 1007.

Hilliard, J. E. and J. A. Reis. “Jump Processesin Commodity Futures Prices and Options Pricing.” American
Journal of Agricultural Economics. 81(1999): 273 - 286.

Hull, J. C. and A. White. “The Pricing of Options on Asssts with Stochadtic Volatilities” Journal of Finance
42(1987): 281 - 300.

Jarrow, R. A. and E. R. Rosenfdd. “Jump Risks and the Intertempord Capital Asset Pricing Modd.” Journal of
Business 57(1984): 337-351.

Johnson, B. and G. Barz. “ Sdecting Stochastic Processes for Moddlling Electricity Prices” in Energy Modelling
and the Management of Uncertainty London, U.K.: Risk Books. 1999.

Jorion, P. “On Jump Processes in the Foreign Exchange and Stock Markets.” Review of Financial Sudies
1(Winter 1989): 427-445.

Kou, S. G. “A Jump Diffuson Modd for Option Pricing with Three Properties: Leptokurtic Festure, Volatility
Smile, and Andyticd Tractability.” Working paper, Department of IEOR, Columbia University, New York, NY.
November, 1999.

Lewis A. “A Smple Option Formulafor Generd Jump-Diffusion and Other Exponentia Levy Processes”
Envison Financial Systems and OptionCity.net. Newport Beach, CA. September, 2001.

Merton, R. C. “Option Pricing when Underlying Stock Returns are Discontinuous.” Journal of Financial
Economics 3(1976): 125-144.

Nak, V. and M. Lee. “Generd Equilibrium Pricing of Options on the Market Portfolio with Discontinuous
Returns” Review of Financial Sudies 39(Winter 1990): 493-521.

Neken, |. “Wesether Derivatives - Pricing and Hedging.” Super Computer Consulting, Inc. Munddein, Illinais.

Firrong, C. and Jermakyan, M. “Vauing Power and Wegther Derivatives on a Mesh Using Finite Difference
Methods.” Working Peper, Olin School of Business, Washington University. S. Louis, Missouri. June 1999,

Turvey, C. “A Pricing Mode for Degree-Day Wesather Options.” forthcoming in the Journal of Risk. 2001.

-12-



Table 1. Summary of Fresno Wesather Data by Half-Decade

Decade N Mean Std. Deviation Minimum Maximum
CDD CDD Index CDD Index

1970 - 1974 460 387.14 314.41 0.00 1145.00
1975 - 1979 460 369.73 302.33 0.00 1145.00
1980 - 1984 460 423.86 366.48 0.00 1343.50
1985 - 1989 460 443.95 355.07 0.00 1302.50
1990 - 1994 460 38241 319.09 0.00 1193.50
1995 - 1999 460 354.42 317.76 0.00 1157.00

Table 2. Likdihood Ratio Specification Tests for CDD Index

Models! Restrictions Critical P? Egtimated P?
(1) GBM vs. GBM-J 3 7.815 7,021.46
(2) MRGBM vs. GBM 1 3.840 9.94
(3) MRGBM-J vs. MRGBM 3 7.815 7,204.24
(4) MRGBM-J vs. GBM-J 1 3.840 192.72
(5) GBM-J-ARCH vs. MRGBM-J 1 3.840 4.40
(6) MRGBM-J-ARCH vs. MRGBM-J 1 3.840 50.42

L A 5% level of significance is used for all critical values. The likelihood ratio chi-square statistic is calculated as: LR =2 (
LLF, - LLFg) where LLF isthelog-likelihood function value.



Table 3. CDD Index Stochastic Process Estimation Results

M odel* Parameter Estimates LLF
- * 6 N G G
(1) GBM NA. 0.064 N.A. NA. NA. 0.022 N.A 1326.86
(22.381) (37.147)
(2) GBM-J 0.219 0.025 0.025 NA. 0.175 0.035 N.A 4837.59
(19.419) (53.649) (10.452) (20.828) (21.582)
(3) MRGBM NA. 0.022 N.A. 0.002 NA. 0.022 N.A 1331.83
(11.169) (10.966) (56.853)
(4) MRGBM-J 0.266 0.032 0.020 0.004 0.409 0.024 N.A 4933.95
(19.093) (7.357) (11.171) (15.947) (12.207) (18.586)
(5) GBM-J- 0.054 0.036 0.113 NA. 0.394 0.036 0.251  4936.16
ARCH (8.433) (57.366)  (5.373) (10.214) (18.374) (16.082)
(6) MRGBM-J- 0.265 0.011 0.019 0.003 0.419 0.023 0.006  4961.36
ARCH (17.564) (10.866) (11.088) (41.854) (16.274) (17.527) (1.752)

1 Inthistable, N.A. = not applicable, GBM = Geometric Brownian Motion, MRGBM = Mean Reverting Geometric Brownian
Motion, GBM-J = Geometric Brownian Motion with Log-Normal Jump, MRGBM-J = Mean Reverting GBM with Log-Normal
Jump, GBM-J-ARCH = GBM with Log-Normal Jump and Autoregressive Conditional Heteroskedastic error term, MRGBM-J-
ARCH = Mean Reverting GBM with Log-Normal Jump and Autregressive Conditional Heteroskedastic error term.






