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Consider the following problem: at each date in the future, a given event may
or may not occur, and you will be asked to forecast, at each date, the probability
that the event will occur in the next date. Unless you make degenerate forecasts
(zero or one), the fact that the event does or does not occur does not prove
your forecast wrong. But, in the long run, if your forecasts are accurate, the
conditional relative frequencies of occurrence of the event should approach your
forecast.
[4] has presented an algorithm that, whatever the sequence of realizations of

the event, will meet the long-run accuracy criterion, even though it is completely
ignorant about the real probabilities of occurrence of the event, or about the
reasons why the event occurs or fails to occur. It is an adaptive algorithm, that
reacts to the history of forecasts and occurrences, but does not learn from the
history anything about the future: indeed, the past need not say anything about
the future realizations of the event. The algorithm only looks at its own past
inaccuracies and tries to make up for them in the future. The amazing result
is that this (making up for past inaccuracies) can be done with arbitrarily high
probability!
Alternative arguments for this result have been proposed in the literature,

remarkably by [3], where a very simple algorithm has been proved to work, using
a classical result in game theory: Blackwell’s approachability result, [1]. Very
recently, [2] has especialized Blackwell’s theorem in a way that (under a minor
modification of the algorithm) simplifies the argument of [3]. Here I present
such modification and argument.

1 Preliminaries

At each future date t ∈ N, an event may occur (xt = 1) or not (xt = 0). For
each t, a forecast is a number pt ∈ [0, 1] representing the probability that, one
suggests, the event will occur at t. It is assumed that the forecast is made

∗Department of Economics, Royal Holloway College, University of London;
andres.carvajal@rhul.ac.uk. I thank Alvaro Riascos for comments that improved
the presentation of the argument.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7082255?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


after observing (xq)
t−1
q=1, and that only a subset of forecasts are acceptable.To

formalize this, fix M ∈ N, and denote M := {1, ...,M}. For each m ∈ M,

define I(m) :=
£
m−1
M , mM

¤
, and p(m) := 2m−1

2M . Notice that
SM
m=1 I(M) = [0, 1]

and that p(m) is the middle point of I(m). It is assumed that the forecast is
restricted to be an element of the set {p(m)}m∈M. Since p defines a one-to-one
correspondence, I will refer to m also as the forecast p(m).
For each T ∈ N, denote HT := (M× {0, 1})T , with generic element h :=

(mt, xt)
T
t=1, where mt represents the forecast made for t. For simplicity, adopt

the convention that H0 := {(1, 0)}.
In the long-run, a good forecast should have the property that if p(m) has

been forecast infinitely many times, then the relative frequency of occurrence
conditional on p(m) having been forecast should approach p(m), and, in partic-
ular, should lie in I(m).
Define, for each m ∈M, ρmT : HT → [0, 1], dmT : HT → R, and emT : HT → R

as

ρmT (h) :=

⎧⎪⎨⎪⎩
PT

t=1 xtI(mt=m)PT
t=1 I(mt=m)

, if
PT

t=1 I(mt = m) > 0;

p(m), otherwise.

dmT (h) :=

µ
m− 1
M

− ρmT (h)

¶ TX
t=1

I(mt = m)

T
,

and

emT (h) :=
³
ρmT (h)−

m

M

´ TX
t=1

I(mt = m)

T
.

Define also CT : HT → R+ as

CT (h) :=
MX
m=1

¡
dmT (h)

+ + emT (h)
+
¢
.

It is straightforward that ρmT (h) ∈ I(m) iff dmT (h) ≤ 0 and emT (h) ≤ 0, so
(CT )

∞
T=1 is a good measure of how inaccurate the performance of a sequence of

forecasts is along different paths.
Also, notice that dmT (h) ≥ 0 implies emT (h) < 0, and emT (h) ≥ 0 implies

dmT (h) < 0.

Lemma 1 (Foster). Fix T ∈ N and h ∈ HT such that for all m ∈M, ρmT (h) /∈
I(m). Then, there exists m ∈M such that dmT (h) > 0 and e

m−1
T (h) > 0

Proof. By assumption, ∀m ∈M, either dmT (h) > 0 or e
m
T (h) > 0. By construc-

tion, d1T (h) ≤ 0 and eMT (h) ≤ 0, so e1T (h) > 0 and dMT (h) > 0. If d2T (h) > 0,
we are done. Otherwise, d2T (h) ≤ 0 and, hence e2T (h) > 0, and we can follow
the search. The result follows since M ∈ N: at the latest, dM−1T (h) ≤ 0, so
eM−1T (h) > 0, which suffices since dMT (h) > 0.
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2 Randomized forecasts and calibration

One does not need to impose structure on how the sequence x := (xt)
∞
t=1 is

determined, with the only exception that it is assumed that xt cannot be de-
termined as a function of mt. This is so, because the choice of the forecast is
allowed to be made randomly.
Let ∆ denote the (M − 1)-dimensional unit simplex.
A (randomized) forecast (or learning algorithm) is a sequence

L :=
¡
Lt : H

T−1 → ∆
¢∞
t=1

That is, given a history h ∈ Ht−1, L induces a random variable on M, with
distribution Lt(h).
Given a forecast L and a sequence x := (xt)∞t=1 ∈ {0, 1}∞, let PL,x denote

the probability measure induced onM∞ (see the Appendix).
A forecast L is (asymptotically) calibrated if for every > 0, there exists

T ∈ N such that, for any x ∈ {0, 1}∞,

PL,x
³
{h ∈M∞ : ∃T ≥ T : CT

³
(mt, xt)

T
t=1

´
≥ }

´
< .

3 A calibrated forecast

The following forecast is a very minor modification of the one presented by [3]:
define L as follows: for T ∈ N, given h ∈ HT−1,

1. If there exists m̄ ∈M such that ρm̄T−1(h) ∈ I(m̄), then

LT (h)(m) :=

⎧⎨⎩ 1, if m = m̄;

0, otherwise.

2. Otherwise, find m̄ ∈M such that dm̄T−1(h) > 0 and em̄−1T−1 (h) > 0, and let

LT (h)(m) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

em−1T−1 (h)

dmT−1(h)+e
m−1
T−1 (h)

, if m = m̄;

dm+1
T−1 (h)

dm+1
T−1 (h)+e

m
T−1(h)

, if m = m̄− 1;

0, otherwise.

It follows from the lemma that L is well defined.
The forecast is different from the one presented by [3] in that, in case 2, for

the same m̄, it randomizes between m̄ and m̄ − 1, with probabilities propor-
tional to em̄−1T−1 (h) and d

m̄
T−1(h), respectively, while the forecast of [3] randomizes

between m̄ and m̄+ 1 with probabilities proportional to dm̄T−1(h) and em̄−1T−1 (h),
respectively. While this difference is subtle, it is not, I think, trivial.
Following [3], but using [2] instead of [1], I now show that L is calibrated:
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Theorem 1 (Foster and Vohra). L is calibrated

Proof. As in [1] and [2], define a vector-valued game Γ = (A,A0, V, γ) as follows:
the set of actions of a player, A, is finite; A0, which is the set of actions of the
opponent(s), is arbitrary; set V is a vector space over R, endowed with an inner
product and the outcome function is γ : A×A0 → V .
Now, consider the infinite, sequential repetition of the game defined by A :=

M, A0 := {0, 1}, V := R2M , and, as in [3], γ defined as: for each l ∈ {1, ..., 2M},

γl(m,x) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
m−1
M − x, if m = l;

x− m
M , if m = l −M ;

0, otherwise.

It is obvious that γ is bounded, and it follows, by construction, that for
every l ∈ {1, ...,M},

TX
t=1

γl(mt, xt) =
TX
t=1

I(xt = 0)I(mt = l)

µ
l − 1
M

¶

+
TX
t=1

I(xt = 1)I(mt = l)

µ
l − 1
M
− 1
¶

=
TX
t=1

I(mt = l)

µ
l − 1
M

¶
−

TX
t=1

xtI(mt = l)

so, if
PT

t=1 I(mt = l) = 0 then
PT

t=1 γl(mt, xt) = 0, while if
PT

t=1 I(mt = l) 6= 0
then

TX
t=1

γl(mt, xt) =
TX
t=1

I(mt = l)

µ
l − 1
M
− ρlT (h)

¶
= dlT (h)T.

Similarly, for every l ∈ {M + 1, ..., 2M}, if
PT

t=1 I(mt = l − M) = 0, thenPT
t=1 γl(mt, xt) = 0, while if

PT
t=1 I(mt = l −M) 6= 0 then

TX
t=1

γl(mt, xt) = elT (h)T

Now, I want to show that for every T ∈ N, h ∈ HT−1 and x ∈ {0, 1},Ã
T−1X
t=1

γ(mt, xt)

!+
·

MX
m=1

LT (h)(m)γ(m,x) ≤ 0

For this, we consider two cases:
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1. There exists m ∈M such that ρmT−1(h) ∈ I(m);

2. For all m ∈M, ρmT−1(h) /∈ I(m).

In the first case, there exists m̄ ∈M such that ρm̄T−1(h) ∈ I(m̄), and

LT (h)(m) :=

⎧⎨⎩ 1 if m = m̄

0 otherwise

Then, Ã
T−1X
t=1

γ(mt, xt)

!+
·

MX
m=1

LT (h)(m)γ(m,x)

=

Ã
T−1X
t=1

γm̄(mt, xt)

!+
LT (h)(m̄)γm̄(m̄, x)

+

Ã
T−1X
t=1

γm̄+M (mt, xt)

!+
LT (h)(m̄)γm̄+M (m̄, x)

If
PT−1

t=1 I(mt = m̄) = 0, then
PT−1

t=1 γm̄(mt, xt) = 0 and
PT−1

t=1 γm̄+M (mt, xt) =

0, so the result is obvious. Else,
PT−1

t=1 γm̄(mt, xt) = dm̄T−1(h)(T − 1) andPT−1
t=1 γm̄+M (mt, xt) = em̄T−1(h)(T−1), which implies that

³PT−1
t=1 γm̄(mt, xt)

´+
=

0 and
³PT−1

t=1 γm̄+M (mt, xt)
´+

= 0, since ρm̄T−1(h) ∈ I(m̄) implies that dm̄T−1(h) ≤
0 and em̄T−1(h) ≤ 0.
In the second case, there exists some m̄ ∈ M such that dm̄T−1(h) > 0,

em̄−1T−1 (h) > 0, and

LT (h)(m) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

em̄−1T−1 (h)

dm̄T−1(h)+e
m̄−1
T−1 (h)

, if m = m̄;

dm̄T−1(h)

dm̄T−1(h)+e
m̄−1
T−1 (h)

, if m = m̄− 1;

0, otherwise.
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Then, Ã
T−1X
t=1

γ(mt, xt)

!+
·

MX
m=1

LT (h)(m)γ(m,x)

=

Ã
T−1X
t=1

γm̄(mt, xt)

!+
LT (h)(m̄)γm̄(m̄, x)

+

Ã
T−1X
t=1

γm̄−1(mt, xt)

!+
LT (h)(m̄− 1)γm̄−1(m̄− 1, x)

+

Ã
T−1X
t=1

γm̄+M (mt, xt)

!+
LT (h)(m̄)γm̄+M (m̄, x)

+

Ã
T−1X
t=1

γm̄+M−1(mt, xt)

!+
LT (h)(m̄− 1)γm̄+M−1(m̄− 1, x)

Since , dm̄T−1(h) > 0 and e
m̄−1
T−1 (h) > 0, it follows that

PT−1
t=1 I(mt = m̄− 1) 6= 0,PT−1

t=1 I(mt = m̄)(h) 6= 0, em̄T−1(h) < 0, and dm̄−1T−1 (h) < 0.This implies that

T−1X
t=1

γm̄(mt, xt) = dm̄T−1(h)(T − 1) ≥ 0

T−1X
t=1

γm̄−1(mt, xt) = dm̄−1T−1 (h)(T − 1) ≤ 0

T−1X
t=1

γm̄+M (mt, xt) = em̄T−1(h)(T − 1) ≤ 0

T−1X
t=1

γm̄+M−1(mt, xt) = em̄−1T−1 (h)(T − 1) ≥ 0

and, hence, thatÃ
T−1X
t=1

γ(mt, xt)

!+
·

MX
m=1

LT (h)(m)γ(m,x)

= dm̄T−1(h)
em̄−1T−1 (h)

dm̄T−1(h) + em̄−1T−1 (h)

µ
m̄− 1
M

− x

¶
(T − 1)

+em̄−1T−1 (h)
dm̄T−1(h)

dm̄T−1(h) + em̄−1T−1 (h)

µ
x− m̄− 1

M

¶
(T − 1)

= 0

It follows, then, from [2, §5], that for every > 0, there exists T ∈ N such
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that for every x ∈ {0, 1}∞,

PL,x

⎛⎝{h ∈M∞ : ∃T ≥ T :
2MX
m=1

Ã
TX
t=1

γm(mt, xt)

T

!+
≥

⎞⎠ < .

This suffices, since, again

2MX
m=1

Ã
TX
t=1

γm(mt, xt)

T

!+
=

MX
m=1

¡
dmT
¡
(mt, xt)

T
t=1

¢¢+
+

MX
m=1

¡
emT
¡
(mt, xt)

T
t=1

¢¢+
.

Appendix

A forecast L and a sequence x := (xt)
∞
t=1 ∈ {0, 1}∞, define a probability dis-

tribution on {1} ×M∞ as follows. Let S be the algebra of finite collections of
finite histories:⎧⎨⎩S ⊆ {1} ×M∞ :

|S| ∈ (N ∪ {0})
∧

∀C ∈ S, ∃T ∈ (N ∪ {0}) : ∃m ∈MT : C = {1} × {m} ×M∞

⎫⎬⎭
and define the outer measure P∗ : S → [0, 1] by

P∗({{1}×{(ms
t )
Ts
t=1}×M∞}Ss=1) :=

SX
s=1

Ã
L1((1))(m

s
1)

TsY
t=2

Lt((m
s
q, xq)

t−1
q=1)(m

s
t )

!

Then, construct the probability space ({1}×M∞,Σ,PL,x), using Carathéodory’s
extension procedure: Σ is the set of P∗-measurable subsets of {1} ×M∞ and
PL,x is the restriction to Σ of the extension of P

∗ as

P∗(S) := inf

( ∞X
n=1

P∗(Sn) : {Sn}∞n=1 ⊆ S ∧ S ⊆
∞[
n=1

Sn

)

Obviously, we can drop {1} from the notation. Informally, we can simply
consider the probability induced, recursively, as:

PL,x
³
mT = m| (mt)

T−1
t=1 , x

´
:= LT

³
(mt, xt)

T−1
t=1

´
(m).
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