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Abstract:

We study the application of bootstrap procedures to the problem of
constructing confidence intervals for the coefficients of random effects
panel data models, based on GLS point estimation. The central
problem is the one of adequately resampling from the estimated
residuals of the model, avoiding violations of the structural features
of the random shocks.
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1 Introduction

One of the most important tools in microeconometrics, as well as in other fields
of econometrics, is the use of models that combine time series and cross-sectional
data, or panel data models. On the other hand, bootstrap procedures to evaluate
the accuracy of summary statistics, or for inference problems in general, have
gained popularity. Although they are computationally more expensive than
standard methods, they can be applied to almost any statistical problem, do
not pose problems when the statistician transforms her or his parameters, are
usually more accurate than the standard intervals' and do not require having
to assume particular probability distributions?.

In this paper, we study the application of bootstrap procedures to the prob-
lem of constructing confidence intervals for the coefficients of random effects
panel data models, based on GLS point estimation. The central problem is the
one of adequately resampling from the estimated residuals of the model, avoid-
ing (important) violations of the structural features of the random processes.

The paper is organized as follows: in the following section we introduce the
random effects panel data model; then, we study the generalities of the boot-
strap procedures, paying particular attention to the resampling problem for a
random effects panel data model. In particular we concentrate in the problem
of resampling the estimated residuals in a coherent way that avoids the impo-
sition of false restrictions on the structure of the random shocks. We propose
four alternative resampling plans; after that, we introduce an experiment that
tests the proposed plans; once we analyze the results of our experiment, we
state some conclusions that are to be taken as a preliminary approach to the
problem.

2 The Random Effects Panel Data Model

2.1 Model and Assumptions
Consider the following canonical model:
Yir = 8w+ vi + & + wyt (1)

where ¢ € {1,2,..,N}, t € {1,2,...,T}, the dimensions of both z;; and 3 are
K x 1 and all the other terms in the equation are scalars. v;, €; and w;; are
random disturbances®, and x;; is the vector of explanatory variables. We assume
that the model includes a constant, so that

it = S
Lt
1 Efron (1987), p. 171.

2Efron and Tibshirani (1993), p. 160.
3v; is an individual-specific, or idiosincratic, shock, while e; is time-specific. Since wgy
is not particualr of an individual or time period, we will refer to it as a unspecific shock.




where x5, is a (K — 1) x 1 vector.

We also assume that the following conditions are satisfied:
Condition 1 : E(v;)) = E(gy) = E(wit) =0

Condition 2 : Vi € {1,2,...,N}, vVt € {1,2,..,T}, E (vier) = E (vjwyz) =
E(etwit) =0

Condition 3 :

o if i=j
E(viv;) = {0 otherwise
a'g if t=s
E(etes) = {0 otherwise

02 if i=4 and t=s
E(wiywjs) = { w i J

0 otherwise

Condition 4 : Vie {1,2,...,N} andVt € {1,2,...,T}, E(v;zi) = E (gymy) =
E (wirzit) =0

Under these conditions, it is straightforward that

2 2 2
Var (yit | xi) = 05 + 02 + 0, (2)
Now, denote
1 €1
ly = : for any integer A, ¢ = : )
1 Ax1 er Tx1
!
Wyl Yi1 Ti1
w; = s Y= : and X; = :
/
Wit ) pyq Yir ) 11 it ) TxK

and let u;; = v; + & + Wi, u; = vilr + € + w; and

Y1 X1
Y= : , X = : =(Inr Xs),
YN J NTx1 X1 ) Nrvk
(1 w1y
v = and w =
UN / NTx1 wr

NTx1

where X% is a NT x (K — 1) matrix. Then, we can reexpress (3) as

y=XB+v@lr+(In®Ir)e+w (3)



2.2 Generalized Least Squares (GLS) Estimation

Denoting

Uy

U2

u= . =vRIlr+(In®Ir)e+w

UN / NTx1

one gets
Q=F (uu |X)—O’ (IN®ZTIT)+CT (Inly ®IT)+O' InT 4)

and the GLS estimator

> _ -1 —
Bars = (X'Q7'X)  X'Q7'Y (5)

5° 2 B
p= ( 39 ) and Bgrs = ( AgLS>
Bars
~C ~S
where 8¢ and S g are scalars and 5° and S, g are (K — 1) x 1 vectors. Since
 is usually hard to invert, some algebra —Judge et al, (1985)— shows that one

is BLUE. Denote

can also obtain the slope coeflicients, EG Lg as

=5 XiQ1Xs | X4Q2Xs | XLQXs\ ™
5GLS = < SU% + 502 + SO-Q (6)
X Q1Xs X QQXS XsQXs+5
< g ﬁl = 62 > 2 ﬁ
w
where
B el Inelyp
Q1 = Iy T T NT
_ lNl?V lNTlNT
Q2 = N Iy — NT
B Irly ANy INTUNT
Q = Int—In® T N It + NT
0% = qu—l—Tag
cr% = anJrNcrg
5 / =1 5
By = (XsQlXS) XgQuy
~S _
By = (X§Q2Xs)' XQay
~8

= (X5QXs) ' X5Qy

While the constant can be obtained as

N T ,
BgLS = % ZZ (yit - (BZLS) xft) (7)

i=1 t=1



3 Bootstrap Confidence Intervals

3.1 Bootstrap Procedures

Any bootstrap procedure follows two basic concepts:

Definition 5 Let the sequence <zm>f\,/l[:1 represent a random sample of size M,
0 < M < oo, of a random wvariable Z, which has distribution function F :
R — [0,1]. The empirical distribution function, denoted F : R — [0,1],
is the (simple) function that assigns to each zyn a mass M~'. Thus, F(z) =
M~'Card{z,, € (—o0,2]}.

Definition 6 Let F represent the set of all distribution functions, and consider
a mapping 6 : Fg — © where Fg C F. If F € Fg, we refer to 0(F) as
a parameter of the distribution F. The plug-in estimate of such parameter is

=0 (ﬁ), whenever F € Fo.
In particular, consider the case of a regression model

Ym = lem + U

for m € {1,2,..., M}. The bootstrap confidence intervals procedure consists of

using the empirical distribution of the sequence of estimated residuals (ﬁm>%:1,

to resample sequences <ﬂfn>n]\f:1, for b € {1,2, ..., B}*; then, the sequence of the
dependent variable (y) is recreated, conditional on the independent variables

(z) and the estimates of the regression coefficients (), using <ﬂ$’n>i\f:1(more
~/ -~
clearly: 3% = B a,, +u%); then, for each b, a new (3, is estimated using the

M. with this, one ob-

observed sequence (xm>n]\f:1 and the simulated (y5) = ;

~\ B
tains the sequence <Bb> , and can calculate its (simple) distribution function

G : R — [0,1], which is the empirical analogous of the (possibly unknown)
distribution function, G, of the random variable 3; Finally, one uses the plug-in
principle and, through the inverse function G—!, obtains the confidence inter-
val®.

3.2 Resampling from the GLS residuals

The crux of the problem in the case of panel data models is that there is no
obvious way to resample the estimated residuals. The whole point is that when
we obtain the estimated residuals, what we are getting (retaking the notation

N
introduced in section 1) is the sequence <<ﬁit>tT:1>A , where u;; = v; + & + Wi,
while, ideally, we would like to resample independently from each of the following

N
sequences: (ﬁi)f\il, <€t>?:1 and <<@it>?:1>, v
=

4B is a “large” integer number about whose determination we will later talk.
SHow exactly to determine the bounds will be explained later on.



Before proceeding, we introduce the following definitions:
Definition 7 A resampling plan is time-coherent if Vb
Wy =Ty + 85 + Ding = Uy =Ty + 85+ Wyjngr Vj € {1,.., N}
where 1,4',i", 7', 7" € {1,..., N} and t,s,s',s" € {1,....,T}.
Definition 8 A resampling plan is individual-coherent if Vb
Wy = 0j + By + Wi = Uy = 0; +Ey + Wjnsr V¥s € {1,...,T}
where i,7,7,7" € {1,..., N} and t,t',t",s',s" € {1,...,T}.
Definition 9 A resampling plan is dynamically over-restrictive if 3b such that
W, =Dy + 8 + Wi => s € {1,.., T}, s £ £ : WYy = 0; + Eor + Wyrar
where 1,7',1",5,7' € {1,...,N} and t,t',t",s" € {1,...,T}.

Definition 10 A resampling plan is cross-sectionally over-restrictive if 3b such
that

a?t = lﬁi’ +/§t/ —+ i’ji”t” —— Elj € {1, ,N} ,j # i: ﬂft = /ﬁ]’ +€s + {Di”s’
where 3,¢',¢", 7' € {1,..., N} and t,t',t"s, s € {1,..,T}.

Since the notation is cumbersome, these definitions deserve further comment.
A plan is time-coherent if, during the simulations, if at time ¢ an individual re-
ceives the time-specific shock corresponding to time s (€5), then all the other
individuals should receive that same time-specific shock at that same time pe-
riod. A plan is individual-coherent if, during the simulations, at some period
an individual ¢ receives the idiosyncratic shock corresponding to individual j
(0), implies then that at all other time periods, that same individual (¢) should
receive that same individual-specific shock. One would like to use a plan that
is both time- and individual-coherent.

On the other hand, a plan is dynamically over-restrictive if it happens that,
during some simulation, the fact that at time ¢ one individual receives an unspe-
cific shock corresponding to some time period " (w;¢) suffices to imply that
the same individual will (at some other point) receive another unspecific shock
corresponding to that same time period (¢”). Since w is unspecific, one would
like to have a plan where that does not happen. In some sense, a dynamically
over-restrictive imposes to the empirical distribution of w a dynamic correlation
that we have ruled out form the features of the true distribution. Similarly,
a plan is cross-sectionally over-restrictive if, during some simulation, the fact
that at some time period individual ¢ receives an unspecific shock corresponding
to some individual ¢ implies that at that same time period someone else will
receive a unspecific shock also corresponding to ¢ (although, maybe at some



other time). Again, this amounts to empirically imposing to w a cross-sectional
correlation that it does not have. One would like to avoid such imposition.
One choice that the researcher has is to try and study the possibility of de-
composing between the three components®. We take a different approach. What
we do is to present different resampling plans for the sequence <<@it>tT:1> and

i=1
see their advantages and disadvantages in terms of the features we just defined.

N
In order to keep things simple, consider the sequence <<ﬂit>tT:1> organized
i=1
in a T' x N matrix as follows

U1 U221 - UN1
U2 U2 -+ UN2

(8)
wir U2 UNT

where the rows are the time dimension and the columns are the cross-sectional

dimension”. The problem of resampling is simply to construct, for each b, a
matrix

~b b b

ué1 ugl u el

Urp  Ugg UnN2

: (9)
b b =b
uip Ugp 1t UNT

. . . . o \T
which will be used, in a consistent manner, to create the sequence <<u2’t> t_1>
=1/i=1

3.2.1 Incoherent Resampling Plan (IRP)

One first approach would be to ignore the coherence problem altogether and

N
resample from the sequence <<ﬂit>f:1>‘ ) giving a probability mass equal to
1/NT to each and all of its elements. In terms of the matrices we introduced
beforehand, this means to fill each of the positions of the matrix 9 by random
selection (with replacement) of the elements of matrix 8 with probability 1/NT.
The advantage of this plan is that it is not over-restrictive, neither dynamically
nor cross-sectionally. The cost it implies is, however, that our resampling will
be both time- and individual-incoherent.

~S ~S Y
6The most appealing way probably being to use the estimators 3] and 85 to obtain (vi>f.V:1

N
and (?QZLl respectively and then obtain <<’L/l7it>z;1> . This is interesting but is not free
= = 1

1=

T
of problems. For example, it amounts to assuming that Vi % S wip = E(wi) = 0, Vt
=1

N T N
% Zl wit = E(wi) = 0, and that %tzl et = E(er) = 0 and % Zl v, = E(v;) = 0 and,
i= = i=

nongtheless7 introduces theoretical probiems regarding the variances.
TOne must be cautious and notice that, contrary to what is usual, @;; is placed in the (¢,1)
entry of the matrix in the sense that it occupies the t** row and the i** column.



3.2.2 (Fully) Coherent Resampling Plan (CRP)

On the other extreme, we can use a plan that fully ensures the coherence of
matrix 9. The plan consists of two steps, the order of which is immaterial:

e First, one constructs a matrix whose rows are randomly selected (with
replacement) from the rows of matrix 8, with probability 1/7T". The key fact
at this step, is that one preserves the row of matrix 8 when constructing
the new matrix. This fact ensures the time-coherence of the plan.

e Then, based on the new matrix we just created, we create matrix 9. To
do it coherently, one selects the columns of 9 randomly (and with re-
placement) from the columns of the matrix previously constructed, with
probability 1/N. This ensures the individual-coherence of the plan.

The advantages of the plan are, as we just said, its full coherence. Its
disadvantage should also be clear: resampling in this way is both dynamically
and cross-sectionally over-restrictive.

3.2.3 Time-Coherent Resampling Plan (TCRP)

Another alternative combines the ideas of the (extreme) previous plans. Again,
there are two steps:

e As in the CRP, one first constructs a matrix whose rows are randomly
selected (with replacement) from the rows of matrix 8, with probability
1/T. Again, this suffices to ensure the time-coherence of the plan.

e Now, in order to avoid being cross-sectionally over-restrictive, one con-
structs matrix 9 by randomly choosing for each element of its rows from
the elements of the corresponding row of the previously created matrix,
with probability 1/N. This is independently repeated for each of the rows.

The difference between the last steps of the TCRP and the CRP is simple:
while in the CRP one resamples the whole columns, in the TCRP one resamples,
for each row, element by element. The independence that the second step
of the TCRP has implies that it is not cross-sectionally over-restrictive while
the dependence that the first step has implies that it is time-coherent. The
disadvantages are clear, the TCRP is not individual-coherent and is dynamically
over-restrictive.

3.2.4 Individual-Coherent Plan (ICRP)
The fourth alternative is the “transpose” of the concept behind the TCRP:

e First, one creates a matrix whose columns are randomly selected (with
replacement) from the columns of matrix 8, with probability 1/N. The
fact that one preserves the whole column suffices to imply that the plan
is individual-coherent.



e Then, one constructs matrix 9 by randomly choosing for each element of its
columns one element of the corresponding column of the matrix created
in the first step, with probability 1/7. This is done independently for
each of the columns, which ensures that the plan is not 1/N dynamically
over-restrictive.

We already mentioned the advantages of the ICRP plan: it is individual-
coherent and not dynamically over-restrictive. Its disadvantages are also clear:
it is time-incoherent and cross-sectionally over-restrictive.

3.2.5 Choosing the right plan

It must be clear now that, without identifying each of the components of u;; one
cannot get a perfect plan: time-coherence implies dynamic over-restrictiveness,
and individual-coherence implies cross-sectional over-restrictiveness. What we
later do is to perform an experiment to show how the relative magnitudes of
02, 0% and o2 imply “better” or “worse” confidence intervals in each of the
resampling plans. Before that, however, we introduce the concepts that we will
need for the construction of the confidence intervals.

3.3 The BC Confidence Intervals

N
. ~
and <<z§t>t:1>i71, aswell as Bqg, are

N
T
For each b, the sequences <<u?t>t—1>
=1/i=1

N N
T T .
used to create a new sequence <<y§’t>t:1>i_1. Then, <<y§’t,xgt>t:1>i_1 is used

to estimate, also by GLS, a new Bb. Repeating the process B times, one gets the
.\ B

sequence <ﬂb>b

mapping G : R —> [0, 1], which is, as we had previously said, the (empirical)

. Suppose, for simplicity®, K = 1. Then, one constructs the
1

cdf of 3. The determination of the 1 — 2« confidence interval? reduces now to
simply determining some critical points of such cdf.

Efron (1987) introduced a bootstrap confidence interval which proved to
have reduced bias and high accuracy. It was called the BC, confidence interval.
Let ® : R — [0,1] represent the standard normal cdf and let 35% (o) and

—BC, . .
B " (a) be the lower and upper bounds of the BC, interval, respectively. They
are given by

876 (@), 87 (@] = [ (@ ((a))), G @1 - )] (10)
where the function z : [0,1] — R is defined as

20+ @71 (v)
l—a(z+ @71 (7))

81In the case K > 1, one does the following for the element of Bb corresponding to the one
of B on whose confidence interval one is interested.

%i.e. one which leaves (100a)% of the probability mass below its lower bound and (100c)%
of it above its upper bound, approximately.

BC,

z(y) =20+ (11)




given two constants:

=0 (@ (7)) (12

o= LlskEw <é5> (13)
6 =

where equation 13 is only an approximation and /gis the score function of the

random variable B under the parameter 0.
If one forces a = 0, so that equation 11 becomes

2 () = 220+ &7 () (14)

and still uses 12, then 10 can be used to find QBC(a) and BBC (c), defining the
BC bootstrap confidence interval.

4 Our Experiment

We carried out an experiment to evaluate the performance of our resampling
plans in what has to do with the bias and width of the BC (and BC,, we think)
confidence interval. The design of the experiment was as follows.

We let K =2 and N = T = 20 and construct a matrix X (400 x 2) as
defined in section 2.1'!'. Then, we simulated random shocks as follows:

Vi € {1,..,N}, v; ~iid N(0,02)
vt e {1,..T}, e ~iid. N(0,0%)
V(@i,t) € {1,.,N}x{l,..T}, wy ~iid N(0,0%)

using different configurations for the variances.

With the sequences of shocks, and the matrix X, we constructed y (400 x 1)

series using, as Judge et al (1985) propose!?,

()

Then, we constructed BC confidence intervals'?® for the “slope” coefficient

10That is, the gradient of the log-likelihood function.

11 Actually, the first 10 observations of the first 4 individuals were taken from Judge et al
(1985), exercise 13.8.2, pp. 553-553. However since we wanted a large N=T, we extended the
series. The series, of course, are available upon request.

12Exercise 13.8.2, pp. 553-553.

13Since we are using normally distributed shocks, we claim that the BC and BC, confidence
intervals coincide (at least to the degree to which equation 13 is a good approximation). To
see why, one just notices that, given equation 4, upon diffrentiation one finds that

b =—X'Q 1 (y — XB) ~ N (0- Iz, X'Q1X)

so that, V3, SKEW (Zg) = 0 and a = 0 according to equation 13.



(B9;), using each of the resampling plans and using B = 1000, for 1 — 2«
levels of 0.9, 0.95 and 0.99. We calculated both the width of the interval and
its bias, defined as the absolute value of the difference between the midpoint of
the interval and the true value (54, = 1).

We repeated the whole experiment 25 times'”, and calculated the averages
of bias and width across the 25 experiments, for each of the confidence levels,
resampling plans and variance configurations.. The results we obtained are the
material of the next section.

15

5 Results of our Experiment'®

5.1 Configuration C1 (02 =38, 02 =8, 02 = 16)

Since 02 = 0% and 02 = 02402, it seems hard to say a priori whether coherence

or over-restrictiveness should concern us more. What our results showed was
that, as expected, the CRP gave narrower confidence intervals than any other
plan. The ICRP and TCRP gave intervals with approximately the same width,
which was always lower than the one of the intervals produced by the IRP.

As for the bias, the results turned out to be less clear, although they also
seem to favor the CRP. Differences in the average bias were low, but for “low”
levels of a the CRP obtained the lowest average bias. In all the cases, the IRP
exhibited the largest average bias.

Obviously, one should use a formal criterion, defined ex-ante, to decide which
of the plans did perform best under this variance profile. Without such criterion,
however, it seems that in this case the CRP gave the best results in the sense
of narrow intervals with a low bias. The fact that the IRP produced the least
satisfactory results seems less controversial 7.

5.2 Configuration C2 (02 =38, 02 = 16, 02 = 8)

This configuration implies higher variance for the time-specific shock than for
any other. Thus, a conjecture would be that time-coherence should be a major
concern.

What we found was that the TCRP gave in average the second narrowest
confidence intervals'®. On the other hand, however, TCRP produced the least
biased results. Again, without a formal criterion, any conclusion has to be taken
carefully. It seems, however, that the combination of relatively narrow intervals

4 There are methods to determine B endogenously —e.g. Andrews and Buchinsky (1999).
However, for reasons of computational costs, we followed B=1000 as the rule of thunb proposed
by Efron (1987, p. 173 and section 9).

15This number may seem low and indeed it is. However, it was the largest feasible number,
given the computational constraints.

16 A summary of these results is given in a table attached at the end of this paper. The
Gauss program with which we performed the experiment is, of course, available upon request.

17One must recognize, nonetheless, that (by a little) the IRP is less computationally costly
that the others.

18The ascending order, according to average width was: CRP, TCRP, ICRP, IRP.

10



with the lowest bias favors, under this variance configuration, the performance
of the TCRP.

5.3 Configuration C3 (02 =16, 02 =8, 02 = 8)

Again, based on the magnitude of the variance of the individual-specific shock, in
this case one should be particularly concerned about individual coherence. Once
again, the results conform to that conjecture: on average, the ICRP provides us
with the second narrowest but least biased BC confidence intervals. The CRP
gives us narrower but more biased results (to the 95 and 90%, the CRP gives
the most biased intervals).

Consistently with the results under configuration C2, in this case, the ICRP
seems to exhibit the best performance.

5.4 Configuration C4 (02 =1, 02 =1, 02 = 16)

Under this variance configuration, the magnitude of the variance of the unspe-
cific shock would lead one to be especially concerned about the over-restrictiveness
problem. and, in effect, our results are consistent with that, in the sense that it
is the IRP the plan that seems to give optimal results!'?. In general, the width
of the intervals was very similar across all the plans®’. On the other hand, the
IRP showed the lowest bias to the 99 and 90% and the second lowest to the 95%
confidence levels.

5.5 Configuration C5 (02 =38, 02> =8, 02 =1)

Again, this is a case in which coherence, in both dimensions of the panel, seems
to be most important concern. Accordingly, the plan that seems to give the
most adequate results is the CRP. It gives intervals far narrower than the ones
obtained through other plans, with levels of bias that in one case are the lowest
of all, and in the others are no much larger (never being the largest) than the
IRP. This case is less conclusive, but a fair conjecture seems to be that the CRP
would be the optimal plan under this configuration.

6 Final Remarks

In order to build bootstrap confidence intervals for a random effects panel data
model, we would like to have a resampling plan that is coherent and does not
impose restrictions that do not exist (we assume) on the true random shocks.
We have argued that that may be an impossible task whenever we do not want

19Tn which case, the pejorative name “incoherent”, that we gave to this plan, presents itself
as particularly unfair. One could better use, for example, “adequately restrictive”. But we
will not.

20This is actually a very strong result for the IRP, which is designed to have higher variance
as a resampling plan. In this case, the IRP usually gave the second narrowest intervals, but
the differences with the narrowest were small.

11



to try and estimate series for each of the shocks. Nonetheless, we believe that by
adequately choosing the resampling plan, we can minimize the problems of inco-
herences and /or over-restrictiveness. The results of our experiment suggest that
the variances of each of the shocks may provide the econometrician with an idea
of which of the problems (time- or individual-coherence, or over-restrictiveness)
should be the major concern. Consistently a more adequate resampling plan
may be used.

Of course, the results that we did obtain constitute only a particular exper-
iment. Further considerations should add to the decision. However, we believe
that one experiment similar to the one we performed here, in the case of a par-
ticular applied work, may be helpful in the sense of orienting the econometrician
towards more precise confidence intervals.
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Summary of results: Bias and width of the BC confidence intervals,

by resampling plan, variances configuration and confidence coefficient (1 — 2a)

Configuration |Confidence IRP CRP TCRP ICRP

Coefficient Bias Width Bias Width Bias Width Bias Width

0.99 0.0284 0.2740 | 0.0258 | 0.1888 | 0.0272 | 0.2375 | 0.0240 | 0.2439
Cl 0.95 0.0271 0.2086 0.0252 | 0.1439 ] 0.0268 | 0.1785 | 0.0258 | 0.1808
0.90 0.0268 0.1747 0.0252 | 0.1202 | 0.0265 | 0.1507 | 0.0255 | 0.1514

0.99 0.0268 0.2805 0.0255 0.1420 | 0.0247 | 0.2047 | 0.0254 | 0.2435
C2 0.95 0.0261 0.2128 0.0260 | 0.1061 | 0.0254 | 0.1517 | 0.0266 | 0.1812
0.90 0.0266 0.1785 0.0261 0.0887 | 0.0252 | 0.1266 ] 0.0261 | 0.1523

0.99 0.0235 0.2863 0.0206 | 0.1385 | 0.0200 | 0.2417 | 0.0191 | 0.2064
c3 0.95 0.0199 0.2142 0.0204 | 0.1033 | 0.0200 [ 0.1840 | 0.0198 | 0.1535
0.90 0.0201 0.1780 | 0.0207 | 0.0874 | 0.0204 | 0.1510 | 0.0199 | 0.1291

0.99 0.0313 0.1735 0.0320 | 0.1738 | 0.0343 | 0.1772 ] 0.0323 | 0.1694
C4 0.95 0.0312 0.1305 0.0325 | 0.1286 | 0.0324 | 0.1336 | 0.0311 | 0.1255
0.90 0.0311 0.1091 0.0324 | 0.1081 ] 0.0326 [ 0.1119 ] 0.0314 | 0.1055

0.99 0.0091 0.2037 0.0080 | 0.0495 ] 0.0085 | 0.1424 | 0.0095 | 0.1505
C5 0.95 0.0077 0.1518 0.0078 | 0.0372 ] 0.0077 | 0.1065 | 0.0085 | 0.1143
0.90 0.0076 0.1273 0.0079 | 0.0310 | 0.0078 | 0.0887 | 0.0086 [ 0.0970




