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1 Introduction
One of the most important tools in microeconometrics, as well as in other fields
of econometrics, is the use of models that combine time series and cross-sectional
data, or panel data models. On the other hand, bootstrap procedures to evaluate
the accuracy of summary statistics, or for inference problems in general, have
gained popularity. Although they are computationally more expensive than
standard methods, they can be applied to almost any statistical problem, do
not pose problems when the statistician transforms her or his parameters, are
usually more accurate than the standard intervals1 and do not require having
to assume particular probability distributions2.
In this paper, we study the application of bootstrap procedures to the prob-

lem of constructing confidence intervals for the coefficients of random effects
panel data models, based on GLS point estimation. The central problem is the
one of adequately resampling from the estimated residuals of the model, avoid-
ing (important) violations of the structural features of the random processes.
The paper is organized as follows: in the following section we introduce the

random effects panel data model; then, we study the generalities of the boot-
strap procedures, paying particular attention to the resampling problem for a
random effects panel data model. In particular we concentrate in the problem
of resampling the estimated residuals in a coherent way that avoids the impo-
sition of false restrictions on the structure of the random shocks. We propose
four alternative resampling plans; after that, we introduce an experiment that
tests the proposed plans; once we analyze the results of our experiment, we
state some conclusions that are to be taken as a preliminary approach to the
problem.

2 The Random Effects Panel Data Model

2.1 Model and Assumptions

Consider the following canonical model:

yit = β0xit + vi + εt + wit (1)

where i ∈ {1, 2, ..., N}, t ∈ {1, 2, ..., T}, the dimensions of both xit and β are
K × 1 and all the other terms in the equation are scalars. vi, εt and wit are
random disturbances3, and xit is the vector of explanatory variables. We assume
that the model includes a constant, so that

xit =

µ
1
xSit

¶
1Efron (1987), p. 171.
2Efron and Tibshirani (1993), p. 160.
3vi is an individual-specific, or idiosincratic, shock, while εt is time-specific. Since wit

is not particualr of an individual or time period, we will refer to it as a unspecific shock.
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where xSit is a (K − 1)× 1 vector.
We also assume that the following conditions are satisfied:

Condition 1 : E (vi) = E (εt) = E (wit) = 0

Condition 2 : ∀ i ∈ {1, 2, ..., N}, ∀t ∈ {1, 2, ..., T}, E (viεt) = E (viwit) =
E (εtwit) = 0

Condition 3 :

E (vivj) =

½
σ2v if i = j
0 otherwise

E (εtεs) =

½
σ2ε if t = s
0 otherwise

E (witwjs) =

½
σ2w if i = j and t = s
0 otherwise

Condition 4 : ∀ i ∈ {1, 2, ...,N} and ∀t ∈ {1, 2, ..., T}, E (vixit) = E (εtxit) =
E (witxit) = 0

Under these conditions, it is straightforward that

V ar (yit | xit) = σ2v + σ2ε + σ2w (2)

Now, denote

lA =

 1
...
1


A×1

for any integer A, ε =

 ε1
...
εT


T×1

,

wi =

 wi1

...
wiT


T×1

, yi =

 yi1
...

yiT


T×1

and Xi =

 x0i1
...

x0iT


T×K

and let uit = vi + εt + wit, ui = vilT + + wi and

y =

 y1
...
yN


NT×1

, X =

 X1

...
XT


NT×K

=
¡
lNT XS

¢
,

v =

 v1
...
vN


NT×1

and w =

 w1
...
wT


NT×1

where XS is a NT × (K − 1) matrix. Then, we can reexpress (3) as
y = Xβ + v ⊗ lT + (lN ⊗ IT ) ε+ w (3)
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2.2 Generalized Least Squares (GLS) Estimation

Denoting

u =


u1
u2
...
uN


NT×1

= v ⊗ lT + (lN ⊗ IT ) ε+ w

one gets

Ω = E (uu0 | X) = σ2v (IN ⊗ lT l
0
T ) + σ2ε (lN l

0
N ⊗ IT ) + σ2wINT (4)

and the GLS estimator bβGLS = ¡X 0Ω−1X
¢−1

X 0Ω−1Y (5)

is BLUE. Denote

β =

µ
βC

βS

¶
and bβGLS =

Ã bβCGLSbβSGLS
!

where βC and bβCGLS are scalars and βS and bβSGLS are (K − 1)×1 vectors. Since
Ω is usually hard to invert, some algebra —Judge et al, (1985)— shows that one

can also obtain the slope coefficients, bβSGLS as
bβSGLS =

µ
X 0
SQ1XS

σ21
+

X 0
SQ2XS

σ22
+

X 0
SQXS

σ2w

¶−1
(6)µ

X 0
SQ1XS

σ21
bβS1 + X 0

SQ2XS

σ22
bβS2 + X 0

SQXS

σ2w
bβS¶

where

Q1 = IN ⊗ lT l
0
T

T
− lNT l

0
NT

NT

Q2 =
lN l

0
N

N
⊗ IT − lNT l

0
NT

NT

Q = INT − IN ⊗ lT l
0
T

T
− lN l

0
N

N
⊗ IT +

lNT l
0
NT

NT

σ21 = σ2w + Tσ2v
σ22 = σ2w +Nσ2εbβS1 = (X 0

SQ1XS)
−1

X 0
SQ1ybβS2 = (X 0

SQ2XS)
−1

X 0
SQ2ybβS = (X 0

SQXS)
−1

X 0
SQy

While the constant can be obtained as

bβCGLS = 1

NT

NX
i=1

TX
t=1

µ
yit −

³bβSGLS´0 xSit¶ (7)
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3 Bootstrap Confidence Intervals

3.1 Bootstrap Procedures

Any bootstrap procedure follows two basic concepts:

Definition 5 Let the sequence hzmiMm=1 represent a random sample of size M ,
0 < M < ∞, of a random variable Z, which has distribution function F :
R −→ [0, 1]. The empirical distribution function, denoted bF : R −→ [0, 1],
is the (simple) function that assigns to each zm a mass M−1. Thus, bF (z) =
M−1Card{zm ∈ (−∞, z]}.
Definition 6 Let z represent the set of all distribution functions, and consider
a mapping θ : zθ −→ Θ where zθ ⊆ z. If F ∈ zθ, we refer to θ (F ) as
a parameter of the distribution F . The plug-in estimate of such parameter isbθ = θ

³ bF´, whenever bF ∈ zθ.

In particular, consider the case of a regression model

ym = β0xm + um

for m ∈ {1, 2, ...,M} . The bootstrap confidence intervals procedure consists of
using the empirical distribution of the sequence of estimated residuals hbumiMm=1,
to resample sequences

bubm®Mm=1, for b ∈ {1, 2, ..., B}4; then, the sequence of the
dependent variable (y) is recreated, conditional on the independent variables
(x) and the estimates of the regression coefficients (bβ), using bubm®Mm=1(more
clearly: ybm = bβ0xm + bubm); then, for each b, a new bβb is estimated using the
observed sequence hxmiMm=1 and the simulated


ybm
®M
m=1

; with this, one ob-

tains the sequence
DbβbEB

b=1
, and can calculate its (simple) distribution functionbG : R −→ [0, 1], which is the empirical analogous of the (possibly unknown)

distribution function, G, of the random variable bβ; Finally, one uses the plug-in
principle and, through the inverse function bG−1, obtains the confidence inter-
val5.

3.2 Resampling from the GLS residuals

The crux of the problem in the case of panel data models is that there is no
obvious way to resample the estimated residuals. The whole point is that when
we obtain the estimated residuals, what we are getting (retaking the notation

introduced in section 1) is the sequence
D
hbuitiTt=1EN

i=1
, where uit = vi+εt+wit,

while, ideally, we would like to resample independently from each of the following

sequences: hbviiNi=1 , hbεtiTt=1 and Dh bwitiTt=1
EN
i=1
.

4B is a “large” integer number about whose determination we will later talk.
5How exactly to determine the bounds will be explained later on.
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Before proceeding, we introduce the following definitions:

Definition 7 A resampling plan is time-coherent if ∀b

bubit = bvi0 + bεs + bwi00s0 =⇒ bubjt = bvj0 + bεs + bwj00s00 ∀j ∈ {1, ...,N}

where i, i0, i00, j0, j00 ∈ {1, ..., N} and t, s, s0, s00 ∈ {1, ..., T}.

Definition 8 A resampling plan is individual-coherent if ∀b

bubit = bvj + bεt0 + bwj0t00 =⇒ bubis = bvj + bεs0 + bwj00s00 ∀s ∈ {1, ..., T}

where i, j, j0, j00 ∈ {1, ..., N} and t, t0, t00, s0, s00 ∈ {1, ..., T}.

Definition 9 A resampling plan is dynamically over-restrictive if ∃b such that

bubit = bvi0 + bεt0 + bwi00t00 =⇒ ∃s ∈ {1, ..., T} , s 6= t : bubis = bvj + bεs0 + bwj0t00

where i, i0, i00, j, j0 ∈ {1, ..., N} and t, t0, t00, s0 ∈ {1, ..., T}.

Definition 10 A resampling plan is cross-sectionally over-restrictive if ∃b such
that

bubit = bvi0 + bεt0 + bwi00t00 =⇒ ∃j ∈ {1, ..., N} , j 6= i : bubjt = bvj0 + bεs + bwi00s0

where i, i0, i00, j0 ∈ {1, ..., N} and t, t0, t00s, s0 ∈ {1, ..., T}.

Since the notation is cumbersome, these definitions deserve further comment.
A plan is time-coherent if, during the simulations, if at time t an individual re-
ceives the time-specific shock corresponding to time s (bεs), then all the other
individuals should receive that same time-specific shock at that same time pe-
riod. A plan is individual-coherent if, during the simulations, at some period
an individual i receives the idiosyncratic shock corresponding to individual j
(bvj), implies then that at all other time periods, that same individual (i) should
receive that same individual-specific shock. One would like to use a plan that
is both time- and individual-coherent.
On the other hand, a plan is dynamically over-restrictive if it happens that,

during some simulation, the fact that at time t one individual receives an unspe-
cific shock corresponding to some time period t00 ( bwi00t00) suffices to imply that
the same individual will (at some other point) receive another unspecific shock
corresponding to that same time period (t00). Since w is unspecific, one would
like to have a plan where that does not happen. In some sense, a dynamically
over-restrictive imposes to the empirical distribution of w a dynamic correlation
that we have ruled out form the features of the true distribution. Similarly,
a plan is cross-sectionally over-restrictive if, during some simulation, the fact
that at some time period individual i receives an unspecific shock corresponding
to some individual i00 implies that at that same time period someone else will
receive a unspecific shock also corresponding to i00 (although, maybe at some

5



other time). Again, this amounts to empirically imposing to w a cross-sectional
correlation that it does not have. One would like to avoid such imposition.
One choice that the researcher has is to try and study the possibility of de-

composing between the three components6. We take a different approach. What

we do is to present different resampling plans for the sequence
D
hbuitiTt=1EN

i=1
and

see their advantages and disadvantages in terms of the features we just defined.

In order to keep things simple, consider the sequence
D
hbuitiTt=1EN

i=1
organized

in a T ×N matrix as follows
bu11 bu21 · · · buN1bu12 bu22 · · · buN2
...

...
. . .

...bu1T bu2T · · · buNT

 (8)

where the rows are the time dimension and the columns are the cross-sectional
dimension7. The problem of resampling is simply to construct, for each b, a
matrix 

bub11 bub21 · · · bubN1bub12 bub22 · · · bubN2
...

...
. . .

...bub1T bub2T · · · bubNT

 (9)

which will be used, in a consistent manner, to create the sequence
Dbubit®Tt=1ENi=1

3.2.1 Incoherent Resampling Plan (IRP)

One first approach would be to ignore the coherence problem altogether and

resample from the sequence
D
hbuitiTt=1EN

i=1
giving a probability mass equal to

1/NT to each and all of its elements. In terms of the matrices we introduced
beforehand, this means to fill each of the positions of the matrix 9 by random
selection (with replacement) of the elements of matrix 8 with probability 1/NT .
The advantage of this plan is that it is not over-restrictive, neither dynamically
nor cross-sectionally. The cost it implies is, however, that our resampling will
be both time- and individual-incoherent.

6The most appealing way probably being to use the estimators bβS1 and bβS2 to obtain hbviiNi=1
and hbεtiTt=1 respectively and then obtain Dh bwitiTt=1EN

i=1
. This is interesting but is not free

of problems. For example, it amounts to assuming that ∀i 1
T

TP
t=1

wit = E (wit) = 0, ∀t

1
N

NP
i=1

wit = E (wit) = 0, and that 1
T

TP
t=1

εt = E (εt) = 0 and 1
N

NP
i=1

vi = E (vi) = 0 and,

nonetheless, introduces theoretical problems regarding the variances.
7One must be cautious and notice that, contrary to what is usual, buit is placed in the (t, i)

entry of the matrix in the sense that it occupies the tth row and the ith column.
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3.2.2 (Fully) Coherent Resampling Plan (CRP)

On the other extreme, we can use a plan that fully ensures the coherence of
matrix 9. The plan consists of two steps, the order of which is immaterial:

• First, one constructs a matrix whose rows are randomly selected (with
replacement) from the rows of matrix 8, with probability 1/T . The key fact
at this step, is that one preserves the row of matrix 8 when constructing
the new matrix. This fact ensures the time-coherence of the plan.

• Then, based on the new matrix we just created, we create matrix 9. To
do it coherently, one selects the columns of 9 randomly (and with re-
placement) from the columns of the matrix previously constructed, with
probability 1/N . This ensures the individual-coherence of the plan.

The advantages of the plan are, as we just said, its full coherence. Its
disadvantage should also be clear: resampling in this way is both dynamically
and cross-sectionally over-restrictive.

3.2.3 Time-Coherent Resampling Plan (TCRP)

Another alternative combines the ideas of the (extreme) previous plans. Again,
there are two steps:

• As in the CRP, one first constructs a matrix whose rows are randomly
selected (with replacement) from the rows of matrix 8, with probability
1/T . Again, this suffices to ensure the time-coherence of the plan.

• Now, in order to avoid being cross-sectionally over-restrictive, one con-
structs matrix 9 by randomly choosing for each element of its rows from
the elements of the corresponding row of the previously created matrix,
with probability 1/N . This is independently repeated for each of the rows.

The difference between the last steps of the TCRP and the CRP is simple:
while in the CRP one resamples the whole columns, in the TCRP one resamples,
for each row, element by element. The independence that the second step
of the TCRP has implies that it is not cross-sectionally over-restrictive while
the dependence that the first step has implies that it is time-coherent. The
disadvantages are clear, the TCRP is not individual-coherent and is dynamically
over-restrictive.

3.2.4 Individual-Coherent Plan (ICRP)

The fourth alternative is the “transpose” of the concept behind the TCRP:

• First, one creates a matrix whose columns are randomly selected (with
replacement) from the columns of matrix 8, with probability 1/N . The
fact that one preserves the whole column suffices to imply that the plan
is individual-coherent.
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• Then, one constructs matrix 9 by randomly choosing for each element of its
columns one element of the corresponding column of the matrix created
in the first step, with probability 1/T . This is done independently for
each of the columns, which ensures that the plan is not 1/N dynamically
over-restrictive.

We already mentioned the advantages of the ICRP plan: it is individual-
coherent and not dynamically over-restrictive. Its disadvantages are also clear:
it is time-incoherent and cross-sectionally over-restrictive.

3.2.5 Choosing the right plan

It must be clear now that, without identifying each of the components of buit one
cannot get a perfect plan: time-coherence implies dynamic over-restrictiveness,
and individual-coherence implies cross-sectional over-restrictiveness. What we
later do is to perform an experiment to show how the relative magnitudes of
σ2v, σ

2
ε and σ2w imply “better” or “worse” confidence intervals in each of the

resampling plans. Before that, however, we introduce the concepts that we will
need for the construction of the confidence intervals.

3.3 The BC Confidence Intervals

For each b, the sequences
Dbubit®Tt=1ENi=1 and Dhx0itiTt=1ENi=1, as well as bβGLS , are

used to create a new sequence
D
ybit
®T
t=1

EN
i=1
. Then,

D
ybit, x

0
it

®T
t=1

EN
i=1

is used

to estimate, also by GLS, a new bβb. Repeating the process B times, one gets the
sequence

DbβbEB
b=1
. Suppose, for simplicity8, K = 1. Then, one constructs the

mapping bG : R −→ [0, 1], which is, as we had previously said, the (empirical)
cdf of bβb. The determination of the 1− 2α confidence interval9 reduces now to
simply determining some critical points of such cdf.
Efron (1987) introduced a bootstrap confidence interval which proved to

have reduced bias and high accuracy. It was called the BCa confidence interval.
Let Φ : R −→ [0, 1] represent the standard normal cdf and let βBCa(α) and

β
BCa

(α) be the lower and upper bounds of the BCa interval, respectively. They
are given byh

βBCa(α), β
BCa

(α)
i
=
h bG−1 (Φ (z (α))) , bG−1 (Φ (z (1− α)))

i
(10)

where the function z : [0, 1] −→ R is defined as

z (γ) = z0 +
z0 +Φ

−1 (γ)
1− a (z0 +Φ−1 (γ))

(11)

8 In the case K > 1, one does the following for the element of bβb corresponding to the one
of β on whose confidence interval one is interested.

9 i.e. one which leaves (100α)% of the probability mass below its lower bound and (100α)%
of it above its upper bound, approximately.
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given two constants:

z0 = Φ
−1
³ bG³bβ´´ (12)

a
.
=
1

6
SKEW

µ ·
β

¶
β=bβ (13)

where equation 13 is only an approximation and
·
β is the score function of the

random variable bβ under the parameter β10 .
If one forces a = 0, so that equation 11 becomes

z (γ) = 2z0 +Φ
−1 (γ) (14)

and still uses 12, then 10 can be used to find βBC(α) and β
BC
(α), defining the

BC bootstrap confidence interval.

4 Our Experiment
We carried out an experiment to evaluate the performance of our resampling
plans in what has to do with the bias and width of the BC (and BCa, we think)
confidence interval. The design of the experiment was as follows.
We let K = 2 and N = T = 20 and construct a matrix X (400 × 2) as

defined in section 2.111 . Then, we simulated random shocks as follows:

∀i ∈ {1, ..., N} , vi ∼ i.i.d. N
¡
0, σ2v

¢
∀t ∈ {1, ..., T} , εt ∼ i.i.d. N

¡
0, σ2ε

¢
∀ (i, t) ∈ {1, ..., N} × {1, ..., T} , wit ∼ i.i.d. N

¡
0, σ2w

¢
using different configurations for the variances.
With the sequences of shocks, and the matrix X, we constructed y (400×1)

series using, as Judge et al (1985) propose12,

β =

µ
10
1

¶
Then, we constructed BC confidence intervals13 for the “slope” coefficient

10That is, the gradient of the log-likelihood function.
11Actually, the first 10 observations of the first 4 individuals were taken from Judge et al

(1985), exercise 13.8.2, pp. 553-553. However since we wanted a large N=T, we extended the
series. The series, of course, are available upon request.
12Exercise 13.8.2, pp. 553-553.
13 Since we are using normally distributed shocks, we claim that the BC and BCa confidence

intervals coincide (at least to the degree to which equation 13 is a good approximation). To
see why, one just notices that, given equation 4, upon diffrentiation one finds that

·
β = −X0Ω−1 (y −Xβ) ∼ N

¡
0 · l2,X0Ω−1X

¢
so that, ∀β, SKEW

µ ·
β

¶
= 0 and a

.
= 0 according to equation 13.
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(β21), using each of the resampling plans and using B = 100014 , for 1 − 2α
levels of 0.9, 0.95 and 0.99. We calculated both the width of the interval and
its bias, defined as the absolute value of the difference between the midpoint of
the interval and the true value (β21 = 1).
We repeated the whole experiment 25 times15, and calculated the averages

of bias and width across the 25 experiments, for each of the confidence levels,
resampling plans and variance configurations.. The results we obtained are the
material of the next section.

5 Results of our Experiment16

5.1 Configuration C1 (σ2v = 8, σ
2
ε = 8, σ

2
w = 16)

Since σ2v = σ2ε and σ
2
w = σ2v+σ

2
v, it seems hard to say a priori whether coherence

or over-restrictiveness should concern us more. What our results showed was
that, as expected, the CRP gave narrower confidence intervals than any other
plan. The ICRP and TCRP gave intervals with approximately the same width,
which was always lower than the one of the intervals produced by the IRP.
As for the bias, the results turned out to be less clear, although they also

seem to favor the CRP. Differences in the average bias were low, but for “low”
levels of α the CRP obtained the lowest average bias. In all the cases, the IRP
exhibited the largest average bias.
Obviously, one should use a formal criterion, defined ex-ante, to decide which

of the plans did perform best under this variance profile. Without such criterion,
however, it seems that in this case the CRP gave the best results in the sense
of narrow intervals with a low bias. The fact that the IRP produced the least
satisfactory results seems less controversial 17.

5.2 Configuration C2 (σ2v = 8, σ2ε = 16, σ2w = 8)

This configuration implies higher variance for the time-specific shock than for
any other. Thus, a conjecture would be that time-coherence should be a major
concern.
What we found was that the TCRP gave in average the second narrowest

confidence intervals18 . On the other hand, however, TCRP produced the least
biased results. Again, without a formal criterion, any conclusion has to be taken
carefully. It seems, however, that the combination of relatively narrow intervals

14There are methods to determine B endogenously —e.g. Andrews and Buchinsky (1999).
However, for reasons of computational costs, we followed B=1000 as the rule of thunb proposed
by Efron (1987, p. 173 and section 9).
15This number may seem low and indeed it is. However, it was the largest feasible number,

given the computational constraints.
16A summary of these results is given in a table attached at the end of this paper. The

Gauss program with which we performed the experiment is, of course, available upon request.
17One must recognize, nonetheless, that (by a little) the IRP is less computationally costly

that the others.
18The ascending order, according to average width was: CRP, TCRP, ICRP, IRP.
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with the lowest bias favors, under this variance configuration, the performance
of the TCRP.

5.3 Configuration C3 (σ2v = 16, σ2ε = 8, σ2w = 8)

Again, based on the magnitude of the variance of the individual-specific shock, in
this case one should be particularly concerned about individual coherence. Once
again, the results conform to that conjecture: on average, the ICRP provides us
with the second narrowest but least biased BC confidence intervals. The CRP
gives us narrower but more biased results (to the 95 and 90%, the CRP gives
the most biased intervals).
Consistently with the results under configuration C2, in this case, the ICRP

seems to exhibit the best performance.

5.4 Configuration C4 (σ2v = 1, σ2ε = 1, σ2w = 16)

Under this variance configuration, the magnitude of the variance of the unspe-
cific shock would lead one to be especially concerned about the over-restrictiveness
problem. and, in effect, our results are consistent with that, in the sense that it
is the IRP the plan that seems to give optimal results19. In general, the width
of the intervals was very similar across all the plans20. On the other hand, the
IRP showed the lowest bias to the 99 and 90% and the second lowest to the 95%
confidence levels.

5.5 Configuration C5 (σ2v = 8, σ
2
ε = 8, σ

2
w = 1)

Again, this is a case in which coherence, in both dimensions of the panel, seems
to be most important concern. Accordingly, the plan that seems to give the
most adequate results is the CRP. It gives intervals far narrower than the ones
obtained through other plans, with levels of bias that in one case are the lowest
of all, and in the others are no much larger (never being the largest) than the
IRP. This case is less conclusive, but a fair conjecture seems to be that the CRP
would be the optimal plan under this configuration.

6 Final Remarks
In order to build bootstrap confidence intervals for a random effects panel data
model, we would like to have a resampling plan that is coherent and does not
impose restrictions that do not exist (we assume) on the true random shocks.
We have argued that that may be an impossible task whenever we do not want

19 In which case, the pejorative name “incoherent”, that we gave to this plan, presents itself
as particularly unfair. One could better use, for example, “adequately restrictive”. But we
will not.
20This is actually a very strong result for the IRP, which is designed to have higher variance

as a resampling plan. In this case, the IRP usually gave the second narrowest intervals, but
the differences with the narrowest were small.
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to try and estimate series for each of the shocks. Nonetheless, we believe that by
adequately choosing the resampling plan, we can minimize the problems of inco-
herences and/or over-restrictiveness. The results of our experiment suggest that
the variances of each of the shocks may provide the econometrician with an idea
of which of the problems (time- or individual-coherence, or over-restrictiveness)
should be the major concern. Consistently a more adequate resampling plan
may be used.
Of course, the results that we did obtain constitute only a particular exper-

iment. Further considerations should add to the decision. However, we believe
that one experiment similar to the one we performed here, in the case of a par-
ticular applied work, may be helpful in the sense of orienting the econometrician
towards more precise confidence intervals.
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Summary of results: Bias and width of the BC confidence intervals,

by resampling plan, variances configuration and confidence coefficient (1  2)

Configuration Confidence
Coefficient Bias Width Bias Width Bias Width Bias Width

0.99 0.0284 0.2740 0.0258 0.1888 0.0272 0.2375 0.0240 0.2439
C1 0.95 0.0271 0.2086 0.0252 0.1439 0.0268 0.1785 0.0258 0.1808

0.90 0.0268 0.1747 0.0252 0.1202 0.0265 0.1507 0.0255 0.1514
0.99 0.0268 0.2805 0.0255 0.1420 0.0247 0.2047 0.0254 0.2435

C2 0.95 0.0261 0.2128 0.0260 0.1061 0.0254 0.1517 0.0266 0.1812
0.90 0.0266 0.1785 0.0261 0.0887 0.0252 0.1266 0.0261 0.1523
0.99 0.0235 0.2863 0.0206 0.1385 0.0200 0.2417 0.0191 0.2064

C3 0.95 0.0199 0.2142 0.0204 0.1033 0.0200 0.1840 0.0198 0.1535
0.90 0.0201 0.1780 0.0207 0.0874 0.0204 0.1510 0.0199 0.1291
0.99 0.0313 0.1735 0.0320 0.1738 0.0343 0.1772 0.0323 0.1694

C4 0.95 0.0312 0.1305 0.0325 0.1286 0.0324 0.1336 0.0311 0.1255
0.90 0.0311 0.1091 0.0324 0.1081 0.0326 0.1119 0.0314 0.1055
0.99 0.0091 0.2037 0.0080 0.0495 0.0085 0.1424 0.0095 0.1505

C5 0.95 0.0077 0.1518 0.0078 0.0372 0.0077 0.1065 0.0085 0.1143
0.90 0.0076 0.1273 0.0079 0.0310 0.0078 0.0887 0.0086 0.0970

IRP CRP TCRP ICRP


