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Abstract: For a class of n-player (n ≥ 2) sequential bargaining games with probabilistic
recognition and general agreement rules, we characterize pure strategy Stationary Subgame Perfect

(PSSP) equilibria via a finite number of equalities and inequalities. We use this characterization

and the degree theory of Shannon, 1994, to show that when utility over agreements has negative

definite second (contingent) derivative, there is a finite number of PSSP equilibrium points for

almost all discount factors. If in addition the space of agreements is one-dimensional, the theo-

rem applies for all SSP equilibria. And for oligarchic voting rules (which include unanimity) with

agreement spaces of arbitrary finite dimension, the number of SSP equilibria is odd and the equi-

librium correspondence is lower-hemicontinuous for almost all discount factors. Finally, we provide

a sufficient condition for uniqueness of SSP equilibrium in oligarchic games.

Keywords: Local Uniqueness of Equilibrium, Regularity, Sequential Bargaining.

Correspondence Address: W. Allen Wallis Institute of Political Economy, 107 Harkness

Hall, University of Rochester, Rochester, NY 14627-0158. E-mail: kalandrakis@yale.edu.

1 I thank John Duggan and participants of the 2003 annual meeting of the American Political Science Association,

Philadelphia, PA, the Political Economy Seminar at Northwestern University, and the Economic Theory seminar at

the University of Rochester for helpful comments. All errors are mine.

1



1. INTRODUCTION

Sequential bargaining models of complete information starting with Rubinstein, 1982, have

provided a fruitful environment for the study of the resolution of disagreements among agents.

Unlike cooperative formulations which are silent about the underlying actions of bargaining parties,

these games juxtapose equilibrium conditions based on a scrutiny of the optimality of individual

choices via which proposals emerge and agreements are crafted. In typical situations, (refined)

equilibria of these games exist allowing applications to numerous areas of social interaction. In

legislative or other political environments where the non-existence of equilibrium of the cooperative

genre is pervasive, such models have been welcomed in celebratory spirits.

Our goal in this paper is to study the structure of the set of equilibria for an important class

of these bargaining games and analyze their stability to perturbations of the model. By stability

in what follows we mean the property that the number of equilibria of these games is finite and

each equilibrium is locally expressible as a continuous function of model parameters. Then, a slight

change in the bargaining environment results in small changes in equilibrium behavior. Importantly,

if we calculate equilibria using parameter values that do not exactly coincide with their true values,

the equilibria we obtain are still close to the true equilibria.

Besides its obvious epistemological significance, such a property seems essential in order to

build richer models of political interaction. In parliamentary systems, for example, government

formation following elections requires us to append a bargaining model at the end of a game

preceded by an electoral stage. In these situations, it is important to ensure conditions such that

changes in the bargaining environment induced at the electoral stage, induce continuous changes

in the distribution of subsequent agreements and policy outcomes.

We focus our investigation on Stationary Subgame Perfect equilibria in pure strategies (PSSP).

We allow general agreement rules, although our results are stronger for a subclass of these. We as-

sume players are recognized to make proposals with some probability fixed across periods. In the

main paper we focus on the case of bargaining with discounting, although in the appendix we show

our analysis also applies in the case of fixed delay costs. With varying degrees of generality, such

models have been analyzed by, for example, Binmore, 1987, Baron and Ferejohn, 1989, Harrington,

1990, Baron, 1991, Merlo and Wilson, 1995, Banks and Duggan, 2000, Jackson and Moselle, 2002,

Eraslan, 2002, Eraslan and Merlo, 2002, etc.
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Except in special cases, the behavior of SSP equilibria for these games is not fully understood.

Banks and Duggan, 2000, studied discounted games such as those we analyze and showed upper-

hemicontinuity of SSP equilibria with respect to parameters. But they also provided an example of

a majority rule game that has a continuum of PSSP and an equilibrium correspondence that fails

lower-hemicontinuity.

Stronger results arise in certain types of unanimity games. For such n-player games with

discounting, Merlo and Wilson, 1995, have shown that stationary equilibria are unique when bar-

gaining emulates the division of a possibly stochastic cake and a contraction condition is met. Thus,

for the subset of games in Merlo and Wilson for which the upper-hemicontinuity result of Banks

and Duggan holds, the equilibrium correspondence simply becomes a continuous function of the

parameters.

But collective bargaining will often not emulate the division of a cake, due to the public goods

aspect of agreements or the ideological nature of disagreements. For such an ideological space, in

section 3 of this paper we provide an example of a four-player discounted unanimity game that

admits a continuum of PSSP equilibria.2

In view of the above, at most we can hope to show that this type of pathological behavior of

the equilibrium set is not generic. Binmore, 1987, showed this is so in Rubinstein’s two player game

with delay costs, but we know of no general arguments to that effect. Our theorem specializes in

three versions of decreasing strength which guarantee that, for almost all discount factors: (a) when

the agreement rule is oligarchic, a class that includes unanimity rule, the number of SSP equilibria is

odd and equilibrium correspondence is lower-hemicontinuous. (b) If the space of agreements is one-

dimensional, then all SSP equilibria are locally unique and finite in number for general agreement

rules. Finally, (c) for non-oligarchic rules in multidimensional agreement spaces there is a finite

number (possibly zero) of PSSP equilibria.

Our results are weaker in the last case since PSSP equilibria may not exist in these games.

Still, this theorem has been used in a majority rule application in Kalandrakis, 2003, to show

that minority governments in parliamentary government formation bargaining almost always occur

2The situation is less encouraging in the case of fixed delay costs. From Rubinstein’s original paper a continuum

of PSSP can emerge in such games even in the two-player unanimity case, even though SSP (and mere Subgame

Perfect) equilibrium is unique in the discounted version. Rubinstein’s game involves alternating offers, but the same

holds for the probabilistic recognition rules we consider.
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with positive probability when utility from cabinet positions is small relative to the ideological

disagreements of political parties.

Before we move to the formal arguments, we tie our analysis to two strands of related lit-

erature offering a guide to the arguments that permitted our results. The first literature sprung

from the study of general equilibrium economies and was pioneered by, Debreu, 1970. There is

also a related game-theoretic literature starting with, Harsanyi, 1973, who provided an alternative

proof of the fact that almost all finite games in normal form have an odd number of Nash equi-

libria. Similarly, Kreps and Wilson, 1982, showed that the equilibrium outcome distributions of

finite games in the extensive form are finite in number. The same was shown true for a class of

cheap talk games by In-Uck Park, 1997. Haller and Lagunoff, 2000, showed genericity of behavior

in Markovian equilibria of dynamic games with finite action and state spaces.

When it comes to games with continuous action spaces, Dubey, 1986, offered a general result

for simultaneous move games. The bargaining games we analyze involve both a continuous action

space for the proposer as well as multi-period dynamic interaction. Thus, these games are not

covered by any existing studies. Yet, due to their particular structure, these games are amenable

to similar techniques. A key insight is that the proposer in each period chooses among a finite

number only of winning coalitions, even though she has to propose from a continuum of agreements.

Exploiting this fact, our proof strategy proceeds as follows.

First, we introduce the notion of an agenda setting plan corresponding to a player/proposer

and a winning coalition: it is a mapping from the possible reservation values of players to optimal

proposals by the proposer that are acceptable by members of the coalition. The role of agenda

setting plans in our analysis is very akin to that of demand functions in the study of economic

equilibrium. Much like demand functions shift the focus from the consumers’ optimization problem

to reduce economic equilibrium to a set of equations that ensure that markets clear, agenda setting

plans sidestep the proposer’s optimization problem and reduce equilibrium to a set of equations

that ensure that players’ coalition choices produce reservation values that are consistent with these

choices.3

PSSP equilibria emerge when each proposer chooses a unique coalition. Since there is a finite

3Kalandrakis, n.d., has used similar arguments to provide a proof of existence of SSP equilibria via Brouwer’s

theorem.
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number of possible combinations of coalition choices by the players, we ensure that every PSSP can

be expressed as the solution to one among a finite number of systems of equations. Thence, our

result only requires that each of these systems of equations has finitely many solutions.

Because they involve solutions to optimization problems (the agenda setting plans) our equi-

librium equations are not sufficiently smooth to allow us to apply Sard’s theorem (or the transver-

sality theorem). In the theory of general economic equilibrium this problem has been confronted

early on by Rader, 1973, who was able to extend Debreu’s 1970 results to cases when the demand

functions are not differentiable but satisfy certain stability properties. More recently, Shannon,

1994, developed a degree theory for non-smooth equations. As an application, she strengthened

Rader’s work to a conclusion similar to Dierker’s, 1972. Our theorem is derived by applying ho-

motopy arguments based on the degree theory of Shannon, 1994, and using a theorem of Rader,

1973.

We have organized our analysis in the remainder as follows. In section 2 we present the

bargaining model analyzed. In section 3, we provide an example of a unanimity game that admits

a continuum of PSSP equilibria. Our analysis culminates in section 4 where we show that the

example in section 3 is not generic in the space of discount factors. We conclude in section 5.

2. MODEL

Consider a set of n ≥ 2 players N = {1, ..., n}. They convene in periods t = 1, 2, ... to reach
an agreement x drawn from a set X. We assume X a convex, compact subset of Rd, d ≥ 1. Much of
related literature sidesteps the underlying space of agreements X to work with the space of payoffs

generated from X. We will eventually resort to similar arguments, but we find it enlightening to

build from the primitives of the model.

An agreement requires the approval of a winning coalition, C ⊆ N . The set of winning

coalitions is determined by the underlying voting rule and is denoted by D ⊂ 2N\∅, D 6= ∅. For
example, if all players have one vote and the voting rule is simple majority, D consists of all

coalitions with more than n
2 members.

Our strongest results concern the class of oligarchic rules. Voting rule D is oligarchic if there
exists coalition Co ∈ D such that Co =

T
C∈D C. One important member of the class of oligarchic

rules is unanimity, when D = {N} and Co = N . Since some of our basic arguments afford greater
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generality, we admit a much wider class of agreement rules. Hence, as in Banks and Duggan, 2000,

the only restriction on D is monotonicity : for any two coalitions A, B with A ⊆ B ⊆ N , we have

A ∈ D =⇒ B ∈ D.
Players bargain as follows. In each period t = 1, 2, ..., one of the players is chosen by nature

(or ‘recognized’ in legislative language) to make a proposal z ∈ X. Having observed the proposal,

players vote yes or no. If a winning coalition vote yes, then the game ends with z being implemented.

Otherwise, the game moves to the next period, a player is recognized anew to make a proposal,

and so on until an agreement is reached. The probability that player i ∈ N is recognized to make

a proposal is constant across periods and equal to πi ≥ 0. Obviously
P

i∈N πi = 1.

Legislator i ∈ N derives von Neuman-Morgenstern stage utility ui : X −→ R from the

agreement x. We assume throughout that ui is continuously differentiable and concave, and that

the agreements are desirable so that ui (x) > 0, for all x ∈ X, all i ∈ N . Our analysis will require

additional assumptions on ui, i ∈ N , which we state in the sequel as necessary.

Players discount the future by a factor δi ∈ (0, 1), i ∈ N . Thus, the payoff of player i from a

decision x ∈ X reached in period t ≥ 1 is given by δt−1i ui (x), and it is zero in the case of perpetual

disagreement. We denote the vector of discount factors for players i = 1, ..., n by δ = (δ1,..., δn) ∈ D,

where D ≡ (0, 1)n. Highlighting the fact that our genericity results are cast in terms of discounting
parameters δ, we denote specific games by Γδ . In the appendix we discuss how our arguments

extend naturally to the case players incur a delay cost ci ∈ R++, i ∈ N instead of discounting the

future.

We shall focus our attention to pure strategy stationary subgame perfect (PSSP) equilibria.

A pure stationary proposal strategy for player i ∈ N is an agreement zi ∈ X proposed when i is

recognized. A stationary voting strategy for player i is specified by an acceptance set Ai ⊆ X.

Ai is the set of proposals on which player i votes yes. A stationary strategy for player i is a pair

σi = (zi, Ai) that consists of a proposal strategy and an acceptance set.

Given stationary strategies σi = (zi, Ai), we calculate players’ continuation value, vi, i ∈ N ,

which is defined as the expected utility if the game moves in the next period. Using the continuation

value, we define the reservation value of player i as:

Definition 1 The reservation value of player i, i ∈ N , for continuation value vi is given by

ri ≡ δivi.
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In general, it is necessary to restrict voting strategies in order to rule out implausible equi-

libria in which winning coalitions approve undesirable proposals or reject desirable proposals solely

because each of the players is not pivotal and hence is indifferent between her voting actions. In

effect, we require that for reservation values r ∈ Rn, voting strategies satisfy:

x ∈Ai ⇐⇒ ui (x) ≥ ri, i ∈ N (1)

i.e. players approve proposals if and only if they weakly prefer them over their reservation value.

Following Baron and Kalai, 1993, we call such voting strategies stage-undominated.

A PSSP equilibrium in stage-undominated voting strategies is an n-tuple of stationary strate-

gies σi, i ∈ N such that Ai are stage undominated given the corresponding reservation values, and

players are sequentially rational. It can be shown (see Banks and Duggan, 2000) that all SSP equi-

libria in the class of games we consider involve no delay, i.e. all equilibrium proposals are approved

given equilibrium voting strategies. In what follows we shall omit reference to the refinement on

voting strategies and the no-delay property of equilibria for compactness. Thus, a PSSP equilibrium

will be taken to imply the use of stage-undominated voting strategies and involve no delay.

3. AN EXAMPLE WITH A CONTINUUM OF PSSP

In this section we shall provide an example of a game satisfying our assumptions that has

a continuum of PSSP equilibria. It involves four players bargaining under unanimity rule over

agreements drawn from a one-dimensional policy space. This example illustrates the gap between

the conditions that ensure uniqueness of equilibrium in the unanimity games of Merlo and Wilson,

1995, and agreement spaces typical in political environments.

[insert figure 1 about here]

Example 1 (See Figure 1) Assume X =
h
−
q

7
6 ,
q

7
6

i
, N = {1, 2, 3, 4}, D = {N}, πi = 1

4 ,

i ∈ N , δi = 1
5 , i = 1, 4, δi = 4

5 , i = 2, 3, and the following utility functions over x ∈ X:

u1 (x) = −x2 − 3x+ 10, and

u2 (x) =


−x2 + 7

2 if x ∈
h
−
q
7
6 , 0
i

−14x30 − 1
4x
2 + 7

2 if x ∈ [0, 1]
−4x2 + 7 if x ∈

h
1,
q

7
6

i
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Also u4 (x) = u1 (−x) and u3 (x) = u2 (−x). Notice that ui, i = 1, 2, 3, 4 are strictly concave and in
fact C1 and that ui > 0, for all x ∈ X.

There is a continuum of PSSP equilibria where players 2 and 3 propose 0, player 1 proposes

α ∈
h
−
q

7
6 ,−1

i
, while player 4 proposes −α. Indeed, with these proposals, players’ reservation

values are as follows:

r1 (α) = 1
5

¡
1
2u1 (0) +

1
4u1 (α) +

1
4u1 (−α)

¢
= 2− 1

10α
2

r2 (α) = 4
5

¡
1
2u2 (0) +

1
4u2 (−α) + 1

4u2 (α)
¢
= −α2 + 7

2 = u2 (α)

It is straightforward to verify that u1 (z) > r1 (α), for z ∈ {α, 0,−α} and that u2 (−α) > r2 (α)

for α ∈
³
−
q

7
6 ,−1

i
, while u2

³q
7
6

´
= r2

³
−
q

7
6

´
. Thus, the unanimously acceptable proposals

are [α,−α] ⊆ X, when α ∈
³
−
q

7
6 ,−1

i
. For these acceptable agreements, proposal strategies are

optimal. Hence these strategies constitute a PSSP for each α ∈
h
−
q
7
6 ,−1

i
.

Note that we give an example with an oligarchic voting rule, but this example can be modified

to obtain a continuum of equilibria with non-oligarchic rules, such as majority rule. Also the

example admits a number of other modifications, such as a fifth player with a ‘bliss’ point at

zero (the median), additional policy dimensions, etc. The key to the result is that the balanced

contraction of the two extreme equilibrium proposals (α and −α) produces a net change in the
reservation values of players 2 and 3 that is exactly equal to the change in utility from the one of

these two proposals that renders each player exactly indifferent.

For this to occur under unanimity in the presence of discounting, utility must change at a

much faster rate at the agreement which these players strictly approve as shown in Figure 1. Clearly,

if players 2 and 3 are strictly indifferent between both proposals α and −α, such differential rate
of change in utilities is not possible without destroying the feasibility of one of the two proposals.

Thus, this type of multiplicity of equilibrium points cannot emerge under the conditions that

ensure uniqueness of equilibrium in Merlo and Wilson, 1995. In their analysis, the assumption

that bargaining amounts to the division of a (stochastic) cake and a contraction condition ensure

that players other than the proposer receive exactly their reservation value under all equilibrium

agreements.

In the next section we shall show that the pathological behavior of the equilibrium set in

the above example can occur for at most a set of Lebesgue measure zero in the space of discount
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factors.

4. GENERIC REGULARITY

We have divided this section into four subsections. We start with subsection (i), in which we

offer a characterization of PSSP equilibria. The advantage of this characterization is that it reduces

the expression of equilibrium to a finite number of equalities and inequalities. In subsection (ii), we

use this characterization in order to apply the degree theory for non-smooth equations developed by

Shannon, 1994, on a weaker notion of equilibrium that ignores the inequalities among equilibrium

conditions. We define regular games Γδ, and develop an index theory for the PSSP equilibria of

regular games. In subsection (iii), we establish sufficient conditions on players’ utilities that ensure

that almost all such games are regular. We conclude this section in subsection (iv), where we

provide a sufficient condition for uniqueness of PSSP equilibrium in oligarchic games.

i. Agenda Setting Plans and PSSP

In order to state our characterization of PSSP equilibria, we introduce some necessary con-

cepts and notation. First, we construct a space of possible continuation values by considering all

possible lotteries over proposals that may prevail in period t + 1 if delay occurs in period t. Let

P [X] be the set of Borel probability measures over X. We obtain the space of possible continuation
values, V , as the image v (P [X]) of the mapping v : P [X] −→ Rn, where vi (µ) ≡

R
X ui (x)µ (dx),

µ ∈ P [X].4

Next we define the set of reservation values for game Γδ . We denote this set by Rδ , since it

depends on discount factors δ ∈ D by the definition of the reservation values ri ≡ δivi. Thus we

have:

Rδ ≡ {x ∈ Rn : xi = δivi, all i ∈ N , all v ∈ V }

We also define a set R ⊂ Rn that contains all possible reservation values for all possible discount

factors δ ∈ D. Specifically,

R ≡
[

δ∈DRδ .

4Even though we focus on pure proposal strategies, the need to consider lotteries over proposals arises from the

fact that proposers are chosen probabilistically.
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Next consider the subset of winning coalitions that include player i and are minimum winning

in the sense that if any player j 6= i is removed from the coalition, the coalition ceases to be a winning

coalition. Denote this set of coalitions by Ξi ⊂ D, more formally defined as5

Ξi ≡ {C ∈ D : i ∈ C and C \ {j} /∈ D,∀j ∈ C, j 6= i}

Let the number of coalitions in Ξi be ξi ≡ |Ξi|. By non-emptiness and monotonicity of the agreement
rule, D, we are guaranteed that ξi ≥ 1, for all ∈ N . In what follows we index the elements of Ξi,

Cω ∈ Ξi, by ω = 1, ..., ξi.
We now introduce the concept of an agenda setting plan. Roughly speaking, an agenda setting

plan specifies optimal agreements for the proposer that meet the approval of a particular winning

coalition for all possible reservation values that members in that coalition may have. We denote

the agenda setting plan of proposer i and coalition Cω ∈ Ξi by f iω. Formally it is a correspondence
f iω : R⇒ X, given by

f iω (r) ≡ argmaxx {ui (x) : uj (x) ≥ rj , j ∈ Cω} .

The significance of agenda setting plans becomes obvious from the following lemma:

Lemma 1 Consider any reservation values r ∈ Rδ and determine voting strategies Ai according

to (1). Then,

argmax
n
ui (x) : x ∈

[
C∈D

h\
h∈C Ah

io
⊆
[ξi

ω=1
f iω (r) (2)

Proof. It suffices to show that optimal agreements y ∈ argmax©ui (x) : x ∈SC∈D
£T

h∈C Ah

¤ª
that are acceptable by any coalition C ∈ D such that C /∈ Ξi are also acceptable by some
coalition Cω ∈ Ξi, so that y ∈f iω (r). Since y is optimal, ui (y) ≥ ui (x) ≥ ri, for all x ∈Sξi
ω=1 f

i
ω (r). By the monotonicity of the agreement rule C

S {i} ∈ D and there exists Cω ⊆
C
S {i} such that Cω ∈ Ξi, by the definition of Ξi. Thus, y ∈

T
h∈Cω Ah hence y ∈f iω (r), since

y ∈ argmax©ui (x) : x ∈SC∈D
£T

h∈C Ah

¤ª
.

In general, an agenda setting plan f iω is a multi-valued correspondence. But in certain modal

cases, as we establish in lemma 3 at the end of subsection (iii), agenda setting plans f iω are functions.

In those cases, we can characterize PSSP equilibria by representing the proposal strategy of player
5Note that coalitions in Ξi need not be minimum winning in the traditional sense since for coalition C ∈ Ξi it

may be that C \ {i} ∈ D, i.e. the coalition is still winning when the proposer is removed.
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i ∈ N as a choice of coalition from Ξi for given reservation values, instead of a choice of agreement

from X. Let Ω ≡ {1, ..., ξi}×n
i=1, so that ω ∈ Ω represents a choice of coalition from Ξi by each of

the n players i ∈ N . We have:

Theorem 1 Consider game Γδ for which f iω is a function for all i ∈ N, ω = 1, ..., ξi. Strategies

{z∗i , A∗i }ni=1 are a PSSP equilibrium of game Γδ if and only if there exists a vector of coalition

choices ω ∈ Ω and a vector of reservation values r∗ ∈ Rδ , such that z∗i = f iωi (r
∗), i ∈ N , and:

r∗i = δi

nX
h=1

πhui

³
fhωh (r

∗)
´
, for all i ∈ N, (3)

ui
¡
f iωi (r

∗)
¢ ≥ ui

¡
f iω0 (r

∗)
¢
, for all ω0 = 1, ..., ξi, i ∈ N (4)

Proof. (=⇒) Suppose strategies {z∗i , A∗i }ni=1 form a PSSP equilibrium. We shall show there

exist ω ∈ Ω, r∗ ∈ Rδ such that z∗i = f iωi (r
∗), i ∈ N , and (3) and (4) hold. Construct the reservation

values r∗ ∈ Rδ according to

r∗i = δi

nX
h=1

πhui (z
∗
i ) , for all i ∈ N.

For these reservation values r∗, we now obtain voting strategies A0i according to (1). Since

{z∗i , A∗i }ni=1 is a no-delay equilibrium (Banks and Duggan, 2000, theorem 1(ii)), we must have

A0h = A∗h and

z∗i ∈ argmax
n
ui (x) : x ∈

[
C∈D

h\
h∈C A0h

io
.

Thus, we must have z∗i ∈
n
f i1 (r

∗) , ..., f iξi (r
∗)
o
, by lemma 1. Thence, there exists ω∗i ∈ {1, ..., ξi}

such that ui
¡
f iωi∗ (r

∗)
¢ ≥ ui

¡
f iω (r

∗)
¢
, for all ω = 1, ..., ξi, all i ∈ N . Set ω = (ω∗1, ..., ω∗n), and this

part of the proof is complete.

(⇐=) Consider ω ∈ Ω, r∗ ∈ Rδ that satisfy (3) and (4). Construct stationary strate-

gies {z0i, A0i}ni=1 by setting z0i = f iωi (r
∗) and A0i = {x ∈ X : ui (x) ≥ r∗i }. We wish to show that

{z0i, A0i}ni=1 form a PSSP equilibrium. Condition (4) and lemma 1 ensure that

z0i ∈ argmax
n
ui (x) : x ∈

[
C∈D

h\
h∈C A0h

io
and A0h are stage-undominated. As a result, strategies {z0i, A0i}ni=1 do not admit profitable one
period deviations and constitute a PSSP equilibrium by the one-stage deviation principle.
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The characterization in theorem 1 allows us to study the PSSP equilibrium set by applying

homotopy arguments on the n equations determined by (3). For that purpose we define a weaker

notion of equilibrium:

Definition 2 Consider game Γδ for which f iω is a function for all i ∈ N , ω = 1, ..., ξi. A pseudo-

PSSP equilibrium is a vector of reservation values r∗ ∈ R and a vector of coalition choices ω ∈ Ω
such that,

r∗i = δi

nX
h=1

πhui

³
fhωh (r

∗)
´
, for all i ∈ N . (5)

Clearly, from theorem 1 and definition 2, genuine no-delay equilibria differ from pseudo-PSSP

in that the latter do not necessarily satisfy the inequalities in (4). Thus, every PSSP equilibrium

is a pseudo-PSSP equilibrium but not vice-versa. In the special case of oligarchic games, we have

ξi = 1, i ∈ N , hence Ω is a singleton and pseudo-PSSP and PSSP equilibria coincide.

ii. Regular Games

Our analysis has permitted the expression of (pseudo)equilibria as solutions to systems of

equations. In this subsection we shall use this formulation to study the behavior of (pseudo)PSSP

equilibria of game Γδ and derive an index theory for the equilibrium set.

Define the set of solutions to equations (5) for given ω ∈ Ω by Eω
δ ≡ {r ∈ Rδ : (5) holds}.

Next, assuming f iω is a function for all i ∈ N , ω = 1, ..., ξi, define for each ω ∈ Ω the mapping
Gω : R −→ Rn as:6

Gω
i (r) ≡

riPn
h=1 πhui

¡
fhωh (r)

¢ , i = 1, .., n
Clearly r ∈ Eω

δ if and only if G
ω (r) = δ.

Following Rader, 1973, and Shannon, 1994, we say that y ∈ Y is a regular value of the

function g : X −→ Y if both Dg (x) exists and is non-singular for all x ∈ X such that g (x) = y.

We say that y ∈ Y is a critical value if it is not a regular value. We can show the following:

Lemma 2 Consider game Γδ and assume f iω a continuous function for all i ∈ N , ω = 1, ..., ξi. If

δ ∈ D is a regular value of Gω , for some ω ∈ Ω, then
(i) |Eω

δ | < +∞, is an odd number, and
6Recall that ui (x) > 0 for all x ∈ X, i ∈ N , so that

Pn
h=1 πhui

¡
fhωh (r)

¢
> 0.
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(ii) Eω
δ is lower-hemicontinuous at δ.

Proof. Let ∂R denote the boundary of R.7 We claim first that:

Claim: For each δ ∈ D, Rδ
T
∂R = ∅. Since Rδ ⊆ R, it suffices to show that R is an

open set. To see that R is open, notice that R can also be expressed as the union
S
v∈V Rv of the

product sets Rv ≡ D {v}, v ∈ V . Clearly, Rv = (0, vi)×n
i=1, and since vi > 0 for all v ∈ V , i ∈ N ,

Rv is open. Hence, R is open as the union of open sets.

Now define G1 : R −→ Rn as G1 (r) ≡ Gω (r)−δ. Since X is compact and ui continuous, ui ≡
min
x∈X

ui (x) is well defined and ui > 0. Let G0 : R −→ Rn be given by G0i (r) ≡
ri
ui
− δi, i = 1, ..., n.

Consider the continuous function Ht = (1− t)G0 + tG1. Let H−1
t (0) ≡ {r ∈ R : Ht (r) = 0}. In

order to apply homotopy arguments, we wish to show that H−1
t (0)

T
∂R = ∅ for all t ∈ [0, 1].

For r ∈H−1
t (0) we have (1− t)G0+ tG1 = 0 =⇒ ri =

δiui
Pn

h=1 πhui
¡
fhωh (r)

¢
(1− t)

Pn
h=1 πhui

¡
fhωh (r)

¢
+ tui

. Set

δ0i ≡
δiui

(1− t)
Pn

h=1 πhui
¡
fhωh (r)

¢
+ tui

, i = 1, ..., n, so that we have ri = δ0i
Pn

h=1 πhui
¡
fhωh (r)

¢
.

We must have
Pn

h=1 πhui
¡
fhωh (r)

¢ ≥ui for all i ∈ N , hence we have δ0i ∈ (0, δi] for all i ∈ N and

all t ∈ [0, 1]. Then, δ0 ∈ D and we have r ∈Rδ0 . But Rδ0
T
∂R = ∅, by the claim. Hence, for all

t ∈ [0, 1] and all r ∈H−1
t (0), we have r /∈∂R.

Note that, since δ is a regular value of Gω and by theorem 10, page 159, in Shannon, 1994,

the degree of Gω is given by d (Gω , R, δ) ≡Pr∈Eω
δ
signdetDGω (r). But, by homotopy invariance,

d
¡
G0, R,0

¢
= d

¡
G1, R,0

¢
, and d

¡
G0, R,0

¢
= 1. Thence, we have d

¡
G1, R,0

¢
= d (Gω , R, δ) = 1.

Since R is a bounded set, we have proven (i): Gω has an odd, finite number (at least one) of

solutions.

To show (ii) notice that, since δ is a regular value, for every rl∈Eω
δ , l = 1, ..., |Eω

δ | there exists
a neighborhood of rl, Nl ⊂ R, such that Eω

δ

T
Nl = {rl} (e.g. Shannon, 1994, theorem 1, page

150). Then, since δ /∈Gω (∂Nl), there exists ε > 0 such that |δ − d| > ε for all d ∈ Gω (∂Nl). Now

the degree is constant, i.e. d
¡
Gω ,Nl, δ

0¢ = d (Gω , Nl, δ) for every δ0 ∈ Bε (δ), where Bε (δ) is the

ε-ball around δ. By theorem 9 of Shannon, 1994, page 158, d (Gω , Nl, δ) = signdetDGω (rl). But

signdetDGω (rl) 6= 0 since δ is a regular value. Thus d
¡
Gω , Nl, δ

0¢ 6= 0 for every δ0 ∈ Bε (δ), i.e.

for every δ0 ∈ Bε (δ) there exists r0 ∈ Nl such that r0 ∈ Eω
δ0 . This establishes lower-hemicontinuity.

7Substantively, the boundary of R is obtained by considering values of the discount factors δi = 1 or δi = 0. Due

to the concavity of ui, we can certainly extend the definition of continuous functions f iω, hence G
ω to the domain R,

instead of R.
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Note that lemma 2 also constitutes a proof of existence of pseudo-PSSP for all ω ∈ Ω. As a
consequence, it also provides a proof of existence of PSSP for oligarchic games when ξi = 1 for all

i ∈ N . We will say that the bargaining game Γδ is regular if δ is a regular value of Gω , for every

ω ∈ Ω.
We can summarize the implications of our analysis for regular games Γδ as follows:

Theorem 2 Consider a regular game Γδ . Then

(i) Γδ has a finite number of PSSP equilibria (possibly zero),

(ii) If X ⊂ R1, Γδ has a finite number (at least one) of SSP equilibria, all in pure strategies,
and

(iii) if the voting rule D, is oligarchic, Γδ has an odd number of SSP equilibria and the

equilibrium correspondence is lower-hemicontinuous at δ.

Proof. Since Ω is a finite set, part (i) follows directly from lemma 2.

To show part (ii), we shall show that all SSP equilibria of game Γδ when X ⊂ R1 are PSSP
equilibria.8 If this is true, the result follows from part (i) since SSP equilibria for these games

exist (Banks and Duggan, 2000, theorem 1). Suppose Γδ has a no-delay SSP equilibrium in mixed

strategies to get a contradiction. Let r ∈ Rδ be players’ reservation values for this equilibrium. The

voting strategies A∗i , i ∈ N are stage-undominated and, since ui are concave, A∗i and
T
h∈C A∗h, are

convex for every C ⊆ N . Also,
S
C∈D

£T
h∈C A∗h

¤
is convex, since the average of proposals must

belong in
T
h∈C A∗h for every C ∈ D. By (2), there exists some player i that mixes between distinct

agreements f iω (r) < f iω0 (r). Since
£
f iω (r) , f

i
ω0 (r)

¤ ⊆ SC∈D
£T

h∈C A∗h
¤
and ui is concave, we have

ui (x) = c for all x ∈ £f iω (r) , f iω0 (r)¤. Thus, at least one of the two agenda setting plans is a
multivalued correspondence, a contradiction.

Lastly, to show part (iii) notice that by (2) and the fact that ξi = 1 for all i ∈ N , for every

reservation values r ∈ Rδ there exists a unique optimal agreement for each player. Thus, all SSP

equilibria are PSSP equilibria, and the latter coincide with the pseudo-PSSP equilibria of the game.

8The argument here is identical to the argument in theorem 2, part (ii) of Banks and Duggan, 2000, who assume

strictly quasi-concave utilities. Mere concavity suffices in our case because of the added assumption that agenda

setting plans are functions.
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The theorem provides a sharp description of the PSSP equilibrium set for regular games.

With some additional arguments, we could show that lower-hemicontinuity also applies in cases

(i) and (ii) of the theorem. Lower-hemicontinuity implies that PSSP equilibria of these games

can be expressed as continuous functions of the parameters in a neighborhood of δ. For discounted

oligarchic games, coupled with the upper-hemicontinuity result of Banks and Duggan, 2000, theorem

2 provides a complete description of the equilibrium correspondence. In effect, we have shown that

regular games Γδ with oligarchic rules are essential (Fort, 1950, Wu and Jiang, 1962) with respect

to the SSP equilibrium set.

iii. Sufficient Conditions for Generic Regularity

The obvious next step is to inquire how prevalent are regular games Γδ in the space of discount

factors D? From the example in section 3 we cannot rule out the existence of critical values of the

maps Gω . Thus, at most we can hope to show that almost all games Γδ are regular. Assuming Gω

is differentiable, we could proceed to show that the set of critical values of Gω is of measure zero

using Sard’s theorem. But the smoothness of Gω depends on the behavior of agenda setting plans,

f iω. Since the latter are solutions to constrained optimization problems, they will typically not be

differentiable due to changes in the set of binding constraints (or due to the non-smoothness of ui,

i ∈ N).

In the context of general equilibrium theory, this problem is analogous to the situation when

the excess demand function is not differentiable (e.g. Katzner, 1968). To deal with the luck of

smoothness of demand functions in that context, Rader, 1973, using a result by Sard, 1958, estab-

lished the following:

Theorem 3 (Rader, 1973) Consider E ⊂ Rn, and f : E −→ Rn that is a.e. differentiable and

maps sets of measure zero into sets of measure zero. Then, the set of critical values of f has

measure zero.

Functions that are a.e. differentiable and map sets of measure zero into sets of measure

zero include Lipschitz and locally Lipschitz functions (see Federer, 1969). Rader, 1973, (lemma 3,

page 918) showed that these requirements are also met by functions that are pointwise Lipschitz

at every point in an open domain. The pointwise Lipschitz property is a stability to perturbations
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property also known as calmness or local upper Lipschitz property in the mathematical optimization

literature. It is weaker than (local) Lipschitz continuity in that one of the two points of comparison

is held fixed:

Definition 3 A function f : X −→ Y is pointwise Lipschitz at x ∈ X if there exists m and a

neighborhood N (x) such that |f (x)− f (z)| ≤ m |x− z| for all z ∈ N (x).

Thus we can state sufficient conditions for almost all games Γδ to be regular by imposing

conditions on the agenda setting plans f iω. In particular:

Theorem 4 Assume f iω is a pointwise Lipshcitz function at every r ∈ R, for all i ∈ N , ω = 1, ..., ξi.

Then, for almost all δ ∈ D game Γδ is regular.

Proof. By theorem 3, it will suffice to show that Gω is pointwise Lipschitz for all ω ∈ Ω.
This is because then the set of critical values of Gω has measure zero and Ω is a finite set. Since

the finite union of sets of measure zero has measure zero, then Γδ is a regular game for almost all

δ ∈ D.

Since ui is C1, the composition ui ◦ f iω is pointwise Lipschitz for all i ∈ N and all f iω.

Also, the sum of pointwise Lipschitz functions,
Pn

h=1 πhui
¡
fhωh (r)

¢
is also pointwise Lipschitz.

Define gi (r) ≡
Pn

h=1 πhui
¡
fhωh (r)

¢
, and note that gi (r) > 0 for all r ∈ R. Thus, we have¯̄̄̄

1

gi (r)
− 1

gi (r0)

¯̄̄̄
=

¯̄̄̄
gi (r

0)− gi (r)

gi (r) gi (r0)

¯̄̄̄
=

1

gi (r) gi (r0)
|gi (r0)− gi (r)| ≤ m

gi (r) gi (r0)
|r− r0| for all r0 ∈

N (r), for some neighborhood N (r) of r, and some m > 0 (since gi (r) is pointwise Lipschitz).

Recall that ui = min {ui (x) : x ∈ X} > 0. Setting m0 =
m

gi (r)ui
, the function

1

gi (r)
is pointwise

Lipschitz at r with modulus m0. Then, Gω (r) =
ri

gi (r)
is pointwise Lipschitz as the product of a

pointwise Lipschitz function and ri, and the proof is complete.

Since agenda setting plans typically do not form part of the description of the bargaining

games we analyze, it is important to also establish conditions on the primitives of the model,

specifically the utility functions ui, that ensure that almost all games Γδ are regular. There is a

large literature on the stability of solutions to perturbed optimization problems (e.g. Robinson,

1982, Bonnans and Shapiro, 1998, Klatte and Kummar, 1999, Levy, 2000, 2001, Klatte, 2001,

etc.) establishing conditions on the smoothness of the objective function and the constraints of the

problem (in our case ui) that guarantee that f iω is pointwise Lipschitz or calm.
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Indispensable in all existing results are (a) the Mangasarian-Fromowitz constraint qualifi-

cation (MFCQ), and (b) a second order sufficient condition that involves generalized notions of

derivatives if ui are not twice continuously differentiable. Since introducing such concepts at this

point would detain the reader from the eminent culmination of our investigation, we shall briefly

discuss these stronger results at the end of this subsection. We can now show:

Lemma 3 Assume either

(A1) ui is at least C2 with negative definite second derivative, D2ui (x) for all x ∈ X, i ∈ N ,

and the Pareto set of X, P (X) ⊂ intX, or

(A2) X = ∆n−1 and, for all i ∈ N , ui (x) = mi (xi) where mi : [0, 1] −→ R, with m0
i (x) > 0

and pointwise Lipschitz inverse m−1i (x) for all x ∈ [mh (0) ,mh (1)].

Then, for all i ∈ N, ω = 1, ..., ξi, f
i
ω : R⇒ X is a pointwise Lipschitz function at all r ∈ R.

Proof. We start with assumption A1 first. Recall that f iω solves the program:

maxui (x) s.t. (AS)

uh (x) ≥ rh, h ∈ Cω

x ∈ X

Consider the correspondence ACω : R ⇒ X defined by ACω ≡ {x ∈ X : uh (x) ≥ rh, h ∈ Cω}.
Concavity of ui, i ∈ N ensures ACω (r) is convex valued since it is the intersection of convex sets.

It is also non-empty for all r ∈ R, since for every measure µ ∈ P (X) that induces the continuation
value v ∈ V that corresponds to r, we have that ui

¡R
X x (dµ)

¢ ≥ vi, by the concavity of ui and

the fact that
R
X x (dµ) ∈ X by the convexity of X. In fact, since δi < 1 for all i ∈ N , we have

vi > ri and thus ACω has non-empty interior. Since ui, i ∈ N , are continuous without “thick”

indifference contours, ACω is continuous as a correspondence. Upper-hemicontinuity of f iω then

follows by Berge’s theorem of the Maximum. By strict concavity of ui, i ∈ N , we have uniqueness

of the maximizer, for every r ∈ R, thus f iω is a continuous function.

To show that f iω is pointwise Lipschitz at r ∈ R, note that P (X) ⊂ intX allows us to ignore

the constraint x ∈ X. For the remaining constraints in program (AS) the MFCQ amounts to Slater’s

constraint qualification (SCQ): there exists x ∈ X such that uh (x) > rh for all h ∈ Cω. But we’ve

already argued that ACω (r) has non-empty interior so that there exists x ∈ X such that uh (x) > rh
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for all r ∈ R. Hence, (SCQ) is satisfied for all r ∈ R. Let L = ui (x) + θh
P

h∈Cω (uh (x)− rh) be

the Lagrangian of program (AS), ignoring constraint x ∈ X. The second order sufficient condition:

D2
xL = D2ui (x)+θh

P
h∈Cω D

2uh (x) is negative definite, holds for all possible Lagrange multipliers

of program (AS), since D2ui (x) is negative definite for all i ∈ N , and since θh ≥ 0 for all h ∈ Cω.

As a result, for every r ∈ R the solution mapping f iω is pointwise Lipschitz by e.g. Klatte and

Kummer, 1999, corollary 5.5, page 82, (see also Levy, 1999, corollary 5.2, page 439, Levy, 2001,

proposition 3.2.1, page 21).

Now consider assumption A2. We have
Pn

i=1m
−1
i (max {mi (0) , ri}) < 1, by the concavity

of ui (hence mi). Then, f iω takes the following form

f iω (r) =


0 if h /∈ Cω

m−1h (max {mh (0) , rh}) if h ∈ Cω\ {i}
1−Pl∈Cω\{j}m

−1
l (max {ml (0) , rl}) if h = i

, i ∈ N , ω = 1, ..., ξi (6)

which is obviously a pointwise Lipschitz function.

Note that assumption A1 covers typical spatial models assumed in political applications,

while assumption A2 admits divide-the-dollar environments with private goods. In combination,

the two assumptions cover most applications in the literature.

We immediately have the following corollary:

Corollary 1 Assume either (A1) or (A2). Then, for almost all δ ∈ D game Γδ is regular.

We have already hinted that we can weaken condition (A1). For instance, condition (A1)

does not cover example 1 in section 3, because utilities there are strictly concave and C1, but not

C2. To accommodate similar cases, we could replace (A1) with:

(A10) ui is C1,1, and for all H ∈ CDu0i, H is negative definite...,

where CDu0i is the contingent derivative of the derivative of ui, u
0
i. This alternative assumption

(for details see Klatte and Kummer, 1999, and Klatte, 2001) would also secure that f iω is pointwise

Lipschitz at r ∈ R.

We assumed throughout that ui is C1, and it seems doubtful whether we can further relax

this assumption in general settings. The same applies for the assumption of concavity, since it is

necessary to ensure that players do not wish to delay the game. Although we find the assumption
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that P (X) ⊂ intX completely natural from casual observation of political interaction, it can

also be significantly weakened. The role of this assumption is to ensure that there are no optimal

agreements at the boundary of X. If we permit such boundary optima, we can alternatively impose

smoothness conditions on the boundary of X.

iv. Uniqueness of PSSP

Lastly, in this subsection we establish sufficient conditions for uniqueness of equilibrium in

oligarchic games. We only focus on oligarchic games, since in the remaining cases the fact that there

are multiple coalition choices available to players (|Ω| > 1) creates natural possibilities for multiple
equilibria even if each combination of coalition choices ω admits a unique pseudo-equilibrium. To

illustrate our uniqueness condition, we apply it on a divide-the-dollar game with linear utilities and

recover the uniqueness result of Merlo and Wilson, 1995. Their uniqueness theorem applies for a

larger class of games and relies on a contraction mapping theorem, while ours is intimately related

to the analysis in subsection (ii).

Since the voting rule D is oligarchic, we have ξi = 1 and there is a single agenda setting plan
we denote by f i for each player i ∈ N . For the purposes of this subsection, we work directly with

equations (5) instead of the equivalent mapping Gω . We thus define

Fi (r) ≡ ri − δi

nX
h=1

πhui

³
fh (r)

´
, i = 1, .., n.

SSP equilibria are now obtained as the solutions to F (r) ≡ 0, and our uniqueness condition can
be stated as follows (see for example Shannon, 1994, corollary 11):

Theorem 5 If 0 is a regular value of F (r), then the oligarchic game Γδ has a unique SSP equi-

librium if detDrF (r) > (<) 0 for all r ∈ R.

As an application, consider a divide-the-dollar unanimity game with X = ∆n−1, and ui (x) =

xi, for all i ∈ N .9 The agenda setting plans for this game are given by:

f i (r) =

 rh if h 6= i

1−Ph6=i rh if h = i

9We allow ui (x) = 0, which is not consequential for our arguments in this example.
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Hence, we formulate F (r) as

Fi (r) ≡ ri − δi

(1− πi) ri + πi

1−X
h6=i

rh


We now calculate the Jacobian DrF (r) as:

DrF (r) =


1− δ1 + δ1π1 δ1π1 · · · δ1π1

δ2π2 1− δ2 + δ2π2 · · · δ2π2
...

...
...

δnπn δnπn · · · 1− δn + δnπn


Via a series of elementary operations and making use of the properties of the determinant (or by

induction) we can obtain

detDrF (r) =
Yn

i=1
(1− δi) +

nX
i=1

δiπi
Y

h6=i (1− δh)

Hence, a sufficient condition for unique equilibrium is that (1− δi) > 0 for each i ∈ N . This is true

for each δ ∈ D. Furthermore, if we allow δi = 1 for only one i ∈ N , then πi > 0 is also sufficient

for a unique equilibrium.

5. CONCLUSIONS

We conclude with a few remarks hinting on interesting avenues for strengthening or weakening

the conclusions of our analysis under alternative assumptions. First, under the stronger condition

that the mapping Gω , is locally Lipschitz, Shannon, 1994, has shown that the equilibrium cor-

respondence is upper Lipschitzian at regular values δ. Unfortunately, as discussed by Robinson,

1982, page 218-219, solutions to rather unspectacular optimization problems may fail to be locally

Lipschitz to canonical perturbations. Thus, to deduce the property we would need stronger condi-

tions, such as the linear independence of the binding constraints at an optimum, which typically fail

in our problem. Interestingly, this last remark implies that one environment where such stronger

results may be possible is when the dimension of the policy space X is at least as large as the size

of the (largest minimum) winning coalition minus one.

Second, there is an intimate connection between the theory we have developed in this paper

and studies of the equilibrium set in the theory of general economic equilibrium. For instance,
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Kleinberg, 1980, Liang, 1993, Pascoa and Ribeiro da Costa Werlang, 1999, have weakened condi-

tions on individual utility to obtain (weaker) properties of the equilibrium set. It appears natural

that analogous results can be established in our framework.

Extending their earlier work (Banks and Duggan, 2000), Banks and Duggan, 2003, have

developed a discounted bargaining model closely related to the one we analyze that dispenses with

the assumption that agreements are desirable. In their model, a status quo remains in place until

it is replaced by a new agreement that is implemented in all subsequent periods. It is relevant to

inquire whether analogous results can be obtained for this alternative model. A stumbling block

appears to be the fact that they require a common discount factor, and our genericity result is

obtained from perturbation of these individual parameters. But our analysis only requires existence

of equilibrium for an open subset of discount factors, which may obtain in such games with general

status quo.

Perhaps the most interesting challenge, which is the subject of our current investigation, is

to extend the results of this analysis to the set of mixed strategy equilibria of non-oligarchic games

and to games with history dependent recognition probabilities. It appears inescapable that this

analysis requires perturbation with respect to a larger class of parameters of this game, such as

some form of perturbation of the stage utilities ui.

APPENDIX: THE CASE OF FIXED DELAY COSTS

In this appendix we show how our arguments extend naturally to the case players incur a

delay cost ci ∈ R++, i ∈ N . In this case, we define the reservation value ri ≡ vi − ci. Then, the

definition of agenda setting plans and the equilibrium characterization in theorem 1 hold. We can

then derive an analogue to lemma 2, this time setting

Gω
i (r) ≡

nX
h=1

πhui

³
fhωh (r)

´
− ri, i = 1, .., n.

and letting G1 (r) ≡ Gω (r) − c, G0i (υ) ≡ ui (x) − ri − ci, i = 1, ..., n, for some x ∈ X, and

Ht (r) = (1− t)G0 (r) + tG1 (r). Now
¯̄
d
¡
G0, R,0

¢¯̄
= 1 and the proof simply amounts to showing

H−1
t (0)

T
∂R = ∅ for all t ∈ [0, 1]. For r ∈H−1

t (0) we have (1− t)G0 + tG1 = 0 =⇒ ri =

t
Pn

h=1 πhui
¡
fhωh (r)

¢
+ (1− t)ui (x) − ci. Since t ∈ [0, 1], if we set vi = t

Pn
h=1 πhui

¡
fhωh (r)

¢
+

(1− t)ui (x) for all i ∈ N we have v ∈ V , the space of possible continuation values. Thus we also
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have r ∈Rc ⊂ R for all t ∈ [0, 1] and the rest of the proof is identical to that in lemma 2. The same
applies for theorem 2.

Now the sufficient conditions in subsection (iii) of section 4 apply directly to the agenda

setting plans of the game with delay costs, so that for almost all c ∈ Rn
++ the corresponding game,

Γc, is a regular game.
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Figure 1: A Four-Player Unanimity Game with a Continuum of Equilibria 
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Key: There exists a continuum of PSSP where players 2 and 3 propose 0, player 1 who 
prefers left-wing policies proposes α, and player 4 that prefers right-wing policies 
proposes –α. The utility of player 2 from α is exactly equal to her reservation value from 
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