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Abstract

This paper axiomatizes an intertemporal version of multiple-priors util-
ity. A central axiom is dynamic consistency, which leads to a recursive
structure for utility, to ‘rectangular’ sets of priors and to prior-by-prior
Bayesian updating as the updating rule for such sets of priors. It is argued
that dynamic consistency is intuitive in a wide range of situations and that
the model is consistent with a rich set of possibilities for dynamic behavior
under ambiguity.

1. INTRODUCTION

1.1. Outline

The Ellsberg Paradox [9] illustrates that aversion to ambiguity, as distinct from
risk, is behaviorally meaningful. Motivated by subsequent related experimental
evidence and by intuition that ambiguity aversion is important much more widely,
particularly in market settings, this paper addresses the following question: “Does
there exist an axiomatically well-founded model of intertemporal utility that ac-
commodates ambiguity aversion?” We provide a positive response that builds
on the atemporal multiple-priors model of Gilboa and Schmeidler [16]. Because
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intertemporal utility is also recursive, we refer to it as recursive multiple-priors
utility.

We view intertemporal utility as a summary of dynamic behavior in settings
where complete commitment to a future course of action is not possible. Ac-
cordingly, foundations are provided by axioms imposed on the entire utility (or
preference) process, rather than merely on initial utility. Importantly, axioms do
not simply apply to conditional preference after each history separately. To ensure
that dynamic behavior is completely determined by preferences, a connection be-
tween conditional preferences is needed. This connection is provided by dynamic
consistency.

There is another reason to assume dynamic consistency. In the Bayesian
model, dynamic consistency delivers a compelling normative argument for Bayesian
updating. In contrast, in nonprobabilistic models of beliefs there is no consensus
about how to update (see [17] for some of the updating rules that have been stud-
ied). It is natural, therefore, to assume dynamic consistency in the multiple-priors
framework to see if a unique updating rule is implied.

Our axiomatization is formulated in the domain of Anscombe-Aumann acts [2],
suitably adapted to the multi-period setting, where we adopt an extremely simple
set of axioms. The essential axioms are roughly that (i) conditional preference at
each time-event pair satisfies the Gilboa-Schmeidler axioms (appropriately trans-
lated to the intertemporal setting), and (ii) the process of conditional preferences
is dynamically consistent.

The resulting representation for the utility of a consumption process ¢ = (¢;)
is

Vile) = min Fq [Sese 5 ules) | ] (1.1)

where P is the agent’s set of priors over the state space, the o-algebra F; represents
information available at time ¢t and where other details will be explained later.
An essential feature is that P is restricted by the noted axioms to satisfy not
only the regularity conditions for sets of priors in the atemporal model, but also
a property that (following [7]) we call rectangularity.! Because of rectangularity,
utilities satisfy the recursive relation

Vile) = min Eq [S12} 5 u(e) + 5 Vi(e) | 7] (12)

! One might be concerned that a model of dynamically consistent preferences has to restrict
the set of priors in unreasonable ways. To the contrary, it will become clear below that rectan-
gularity allows a rich set of possibilities for dynamic behavior under ambiguity.



for all 7 > t, which in turn delivers dynamic consistency. As is apparent from
these functional forms, the corresponding updating rule for sets of priors is Bayes’
Rule applied prior by prior.

The close parallel between the foundations provided here for dynamic modeling
with ambiguity and those that justify traditional expected utility modeling are
sharper when specialized to the case where consumption takes place only at the
(finite) terminal time. In that setting, we have the following results, where the
first is well known and the second is a variant of our main theorem:

Bayesian result If conditional preferences at every time-event pair satisfy ex-
pected utility theory, then they are dynamically consistent if and only if
each prior is updated by Bayes’ Rule.

Multiple-priors result If conditional preferences at every time-event pair sat-
isfy multiple-priors utility theory (suitably adapted), then they are dynam-
ically consistent if and only if each set of priors is rectangular and it is
updated by Bayes’ Rule applied prior by prior.

Besides clarifying the nature of our analysis, the close parallel also supports our
view that recursive multiple-priors utility is the counterpart of the Bayesian model
for a setting with ambiguity. A similar parallel exists in the paper’s setting of
consumption streams, if one adds the usual assumptions of stationarity and in-
tertemporal separability that lead to the additivity and geometric discounting in

(1.1).

1.2. Related Literature

Conclude this introduction with mention of related literature. The model (1.1) is
essentially that adopted in [14], though without axiomatic foundations; a continuous-
time counterpart is formulated in [7].? A related nonaxiomatic model based on
robust control theory has been proposed by Hansen and Sargent and a variety
of coauthors; see [1] and [19], for example. While these authors refer to ‘model
uncertainty’ rather than ‘ambiguity’ as we do here, their model is also motivated
in part by the Ellsberg Paradox and it is proposed as an intertemporal version of
the Gilboa-Schmeidler model. In Section 6 we clarify the behavioral content of
the robust control model and draw comparisons with recursive multiple-priors.

2 A counterpart of (1.1) appears also in [3] in a social choice setting where ¢ indexes individuals
rather than time. However, no axiomatization is provided.



There is a small literature on axiomatic models of intertemporal utility under
risk or uncertainty. For the case of risky consumption processes, that is, where
objects of choice are suitably defined lotteries (probability measures), recursive
models are axiomatized in [24], [10] and [8]. Skiadas [30] axiomatizes recursive
utility when the domain consists of consumption processes, or Savage-style acts,
rather than lotteries. However, his model is still restricted to choice between
risky prospects; in general terms, it is related to the previously cited papers in
the same way that Savage extends von-Neumann Morgenstern. Two papers that
axiomatize intertemporal utility that admit a role for ambiguity are [22] and [33].
They adopt much different and more complicated preference domains and axioms.
This permits them to derive a range of results that are not delivered here. Wang
axiomatizes a representation similar to (1.1). However, our model provides a
much simpler axiomatization and hence also a clearer and sharper response to the
question posed in the opening paragraph. (See Section 4.2 for further comparison.)

Finally, Sarin and Wakker [28, p. 94] observe (in their special setting) that a
rectangular set of priors implies dynamic consistency.

2. THE DOMAIN

Time is discrete and varies over 7 = {0, 1, ..., T'}. We focus on the finite horizon
setting 1" < oo because of its relative simplicity. However, Appendix B considers
the infinite horizon case and thus we adopt notation and formulations (of axioms,
for example) that are compatible with both settings.

The state space is {2 and information about € is represented by the filtration
{F}F, with Fy trivial. We assume that for each finite ¢, F; corresponds to a
finite partition, with F; (w) denoting the partition component containing w. Thus
if w is the true state, then at ¢ the decision-maker knows that F; (w) is true. One
can think of this information structure also in terms of an event tree.

Consumption in any single period lies in the set C'; for example, C' = R}r.
Thus we are interested primarily in C-valued adapted consumption processes and
how they are ranked. However, as is common in axiomatic work, we suppose that
preference is defined on a larger domain, where the outcome in any period is a
(simple) lottery over C, that is, a probability measure on C' having finite support;
the set of such lotteries is denoted A (C'). Thus, adapting the Anscombe-Aumann
formulation to our dynamic setting, we consider A;(C')-valued adapted processes,



or acts of the form h = (h;), where each h; : Q@ — A, (C) is Fi-measurable.?
The set of all such acts, denoted H, is a mixture space under the obvious mixture
operation.*

An adapted consumption process ¢ = (¢;) can be identified with the act h
such that for each w and finite ¢, hi(w) assigns probability 1 to ¢ (w). In this
way, the domain of ultimate interest can be viewed as a subspace of H. Another
important subset of H is (A,(C))" ", referred to as the subset of lottery acts. To
elaborate, identify the act h = (h;) for which each h; is constant at the lottery ¢;
with £ = (¢,) € (A,(C))""". Consumption levels delivered by any lottery act ¢
depend on time and on the realization of each lottery ¢, but not on the state w.
Thus lottery acts involve risk but not ambiguity.

The acts ({o, h_o) and ({o,¢1,h_o1) have the obvious meanings. Similarly,
(K,T,,(Hk),q,q’) denotes the lottery act ¢ in which ¢, = ¢, for t # 7, 7 + k,
¢ =qand l, , = ¢.

Alternative specifications of the domain of preference are conceivable. For
example, one might consider acts of the form h : Q — A,(CT*!), which corre-
spond precisely to Anscombe-Aumann acts where the deterministic outcome set
is CT+1. Such a specification leaves open the question how to restrict h to re-
spect the information structure. In any event, this domain is larger than (that
is, contains a copy of) H. Or one might consider recursive domains as in [22]
or [33]. These, however, are much more complex than H. Thus our reliance on
‘H is preferable both because it corresponds to a weaker assumption about the
extent of rationality of the decision-maker and because it contributes to a more
transparent set of axioms.

3. AXIOMS

The decision maker has a preference ordering on H at any time-event pair rep-
resented by (¢,w). Denote by >;,, the latter preference ordering, thought of as
the ordering conditional on information prevailing at (t,w). We impose axioms
on the collection of preference orderings {=;.,} = {=.: (t,w) € T x Q}.

The first axiom formalizes what is usually meant by ‘conditional preference.’

3The axiomatization in [16] is also formulated in the Anscombe-Aumann framework. For an
axiomatization of the (atemporal) multiple-priors model in a Savage framework see [5].

4In the infinite horizon setting, we will deal with a suitable subset of H as explained in
Appendix B.



Axiom 1 (Conditional Preference - CP). For each t and w:
(1) tt,w :it,w* lf ft(w) = ft(w*)
(ii) If bl (W) = h. (W) VT >t and ' € F(w), then h' ~,, h.

Part (i) ensures that the conditional preference ordering depends only on available
information. Part (ii) reflects the fact that F;(w) is known at ¢ if w is realized.
Accordingly, (ii) states that at (¢,w) only the corresponding continuations of acts
matter for preference. This rules out the possibility that the decision-maker, in
evaluating h at (f,w), cares about the nature of h on parts of the event tree that
are inconsistent with her current information about which states are conceivable.

Next we assume that each conditional ordering =, satisfies the appropriate
versions of the Gilboa-Schmeidler axioms. We state these explicitly both for the
convenience of the reader and also because our formal setup differs slightly from
that in [16] as explained below in the proof of our theorem (Lemma A.1).

Axiom 2 (Multiple-Priors - MP). For eacht and w: (i) =, is complete and
transitive. (ii) For all h, ' and Iottery acts ¢, and for all « in (0,1), b’ =, h
if and only if ah' + (1 —a)l >, ah + (1 —a)l. (i) If K" >, B =10 b,
then ah” + (1 —a)h =1 B =10 PR 4+ (1 — B) h for some o and 3 in (0,1).
(iv) If W (V') =i h(w') for all W, then W =, h°> (v) If b’ ~, h, then
ah’ + (1 —a)h =y, h for all a in (0,1). (vi) b’ >, h for some h' and h.

Gilboa and Schmeidler refer to their versions of the component axioms respec-
tively as Weak Order, Certainty Independence, Continuity, Monotonicity, Uncer-
tainty Aversion and Non-degeneracy, which names suggest interpretations. The
motivation they offer applies here as well. We refer the reader to [16] and Appen-
dix A for further discussion.

The next axiom restricts preferences only over (the purely risky) lottery acts.®

Axiom 3 (Risk Preference - RP). For any lottery act ¢, for all p, p/, q and ¢
in A (C), if
(Ef‘r,f(”r+1) P, p/) tt,u) (Ef‘r,f(”r+1)7 q, q,)

for some w, t and T > t, then it is true for every w, t andt > t.

SFor any given w’, b/ (w') and h (w') are the lottery acts that deliver lotteries A’ (w’) and
hy (W) in every period T and in every state.
6Tt would be unnecessary in a model where consumption occurs only at the terminal time.



Because beliefs about likelihoods are irrelevant to the evaluation of lottery acts,
their ranking should not depend on the state. This property is imposed via the
indicated invariance with respect to w. Invariance with respect to 7 imposes the
following form of time stationarity in the ranking =, of lottery acts (o, ..., ¢r):
The ranking of (p, p') versus (g, ¢'), where these single-period lotteries are delivered
at times 7 and 7+ 1 respectively, (and where ¢_, (1) describes payoffs at other
times in both prospects), does not depend on 7. Invariance with respect to ¢
requires that ({o, ..., b 1,p,p',lt11...) is preferred to (lo, ..., b+-1,4,q , ley1...) at
time 0 if and only if the same ranking prevails at time t. If we assume CP,
whereby only the time ¢ continuations matter when ranking acts at ¢, then the
ranking at ¢ can be viewed as one between (p, p', ¢;11...) and (¢, ¢, li41...), and we
arrive at a familiar form of stationarity (see [23]).

The Risk Preference axiom is satisfied if the ranking of lottery acts induced
by each >;, may be represented by a utility function of the form

Ut (607 ) £T7 w) = ETZt ﬁ”f'*t 'LL(KT)

for some 3 > 0 and u : A,(C) — R'. Since this specification is common,
indeed it is typically assumed further that v conforms to vNM theory, and since
the axiom imposes no restrictions on how the decision-maker addresses ambiguity,
which is our principal focus, we view RP as uncontentious in the present setting.

A central axiom is dynamic consistency. To state it, define nullity in the usual
way. For any 7 > ¢, say that the event A in F; is = ,-null if

h'(-) =h(-) on A° = h' ~y, h.

Axiom 4 (Dynamic Consistency - DC). For every t and w and for all acts
h' and h, if h.(-) = h.(:) for all T <t and if W' =1 h for all ', then h' =, h;
and the latter ranking is strict if the former ranking is strict at every w' in a
=t w-nonnull event.

According to the hypothesis, A’ and h are identical for times up to ¢, while A’
is ranked (weakly) better in every state at ¢t 4+ 1. ‘Therefore’, it should be ranked
better also at (t,w). A stronger and more customary version of the axiom would
require the same conclusion given the weaker hypothesis that

hy(w) = hi(w) and ' =t+1. b for all W e Fi(w).



In fact, given CP, the two versions are equivalent.

Though motivation for assuming dynamic consistency was provided in the in-
troduction, further discussion seems in order. The assumption is attractive on
grounds of analytical tractability and arguably also on normative grounds. In
terms of descriptive modeling, some may hold the view that there exists evidence
that indicates dynamic inconsistency. Moreover, these readers may argue, dy-
namic inconsistency does not pose a serious analytical challenge to the modeler -
one may describe dynamic behavior (in the absence of commitment possibilities)
by assuming that the agent is either myopic or else sophisticated in the sense
that she games against her future selves in a way that has recently been widely
assumed in other contexts.” As regards the supposed evidence, we don’t take a
stand except to state that we know of none that indicates an inherent connection
between dynamic inconsistency and ambiguity. It seems sensible, therefore, to
rule out the former in order to focus more sharply on the latter.

In fact, for an axiomatic study such as ours, we feel that the case for assuming
dynamic consistency is much stronger. As noted earlier, we view utilities as a
summary of behavior in the setting of interest, which we take to be one where
complete commitment to a future course of action is not possible (rendering dy-
namic consistency an issue); and we view axioms as representing core principles
that underlie or characterize that behavior. A result that derives from axioms the
nature of representing utilities admits this interpretation if preferences are dy-
namically consistent, because then dynamic behavior is completely summarized
by these utilities. However, the above noted common modeling approach in the
absence of dynamic consistency is based on ultimately ad hoc assumptions about
how intrapersonal conflicts are resolved. Thus the remaining axioms may very well
characterize conditional utility functions representing the given family of condi-
tional preferences, but they invariably do not characterize dynamic behavior and
thus would not constitute an axiomatic model of behavior.

The final axiom is adopted purely for simplicity.
Axiom 5 (Full Support - FS). FEach nonempty event in U;‘LO}} is »o-nonnull.

More generally, if a component of the partition defined by some F; were null
according to >, we could discard it and apply the preceding axioms to the smaller
state space. In a general formulation without F'S, the preceding axioms would be
modified so as to apply only for a suitable subset of states rather than for all w.

"See [18], however, for a cogent critique of the ‘gaming-against-onself’ modeling approach.
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4. THE REPRESENTATION RESULT

4.1. Rectangularity

Begin by introducing notation for marginals and conditionals of a time 0 set of
priors P on (2, Fr) . For each w, define the set of Bayesian updates by

Pi(w) = {p(- | F)(w) : p€ P},

denote by p™'(- | F;)(w) the restriction of p(- | F;)(w) to Fiy1, and define the set
of conditional one-step-ahead measures by

P (w) = {p"' (- | F)w) : p € P}

These sets can be viewed as realizations of F;-measurable correspondences into
A (Q, Fr) and A (Q, Fyy1) respectively.®

Because the FS axiom will deliver measures having full support on Fr, we
formulate the following simpler definition appropriate for that case and that avoids
reference to ‘a.e.” qualifications.

Definition 4.1. P is {F;}-rectangular if for all t and w,

Pi(w) = { / Pert(W)() dm(w') : peyi (W) € Po(w') Yo', m € P (w)},  (4.1)

or Pw) = /Pt+1 (w) dP;H (w).

When P is the singleton {p}, (4.1) expresses the well-known decomposition
of a measure in terms of its conditionals and marginals. Rectangularity is the
corresponding property for nonsingleton sets. The key feature is that the de-
composition on the right includes combinations of a marginal from P;*(w), say
p™(- | Fi)(w), with any measurable selection of conditionals. This will typi-
cally involve ‘foreign’ conditionals, that is, conditionals of measures other than
p. Thus the essential content of rectangularity is ‘D’, asserting that P is suitably
large. Indeed, the inclusion ‘C’ in (4.1) is true for any P: for given p in P, take

8For each t, A (€, F;) denotes the set of probability measures on the o-algebra 7.

When we refer to pf* as a selection from P;™!, or when we write p;*(w) € P; ! (w) for all
w, then it is understood that w — p; ! (w) is F;-measurable; in other words, selections are
understood to be measurable.



P (W) = p(- | Fip) (') for all " and m = p*(- | F)(w). An additional
observation is that rectangularity of P implies that of each P;(w).

To illustrate, if t = 0 and if F; corresponds to the binary partition {Fi, F7},
then the set on the right consists of all probability mixtures of the form

m(F) p(-| F1) + m(F)p'(-| FY),

where m is a measure in P (restricted to F;) and where p (- | F1) and p' (- | F}),
measures on Fr, are eventwise conditionals of some measures p and p' in P. If
p = p' = m above, then this mixture equals p and thus lies in P. Rectangularity
requires that the mixture lie in P even if the noted measures are distinct.

An important feature of rectangularity is that it implies that P is uniquely
determined by the process of conditional 1-step-ahead correspondences P;™'. More
precisely, begin with an arbitrary set of correspondences’

Pt+1 (0~ A (Qvft-i-l)? (42)

where P;'! is F-measurable for each t. Because each measure in P, (w) is a
measure on F; 1, think of P;"' (w) as the set of conditional 1-step-ahead measures
describing beliefs about the ‘next step’. Then there exists a unique rectangular
set of priors P whose 1-step-ahead conditionals are given by the P;™'’s, that is,

P (w) = P (w) forall t and w. (4.3)

The asserted set P can be constructed by backward induction using the relation'’

Prw) = 1 / P (@) dm(w) : proa(@) € Prn(w), m € PP W)Y (44)

It is readily seen that the set P constructed in this way is the set of all measures
p whose 1-step-ahead conditionals conform with the P;™"’s, that is,

P={pecA,Fr): p( | F)(w) € P (w) for all t and w}.

Further, every rectangular set P can be described in this way; simply use (4.3) to
define P,

9Thus Pt"’1 denotes a primitive correspondence while the calligraphic P;" ! denotes a corre-
spondence induced by a primitive set of priors P. Similar notation is adopted throughout.

At T, the decision-maker knows whether or not any given event in Fr has occurred. Thus
Pr(w’) consists of the single measure p, where p(A) = 14(w’) for A in Fp. The proof that (4.4)
implies (4.3) is similar to Step 3 in the proof of our theorem.
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A Graphical Illustration of Rectangularity

Rectangularity can be illustrated geometrically in the probability simplex. Let
Q = {R, B,G}, corresponding to the three colors of balls in an Ellsberg urn, and
refer to Figure 1 for the corresponding probability simplex.!! For the filtration,
take {F:} where all information is revealed at time 2, while

Fi = {{G}v {RvB}}a

that is, the decision-maker learns at ¢ = 1 whether or not the ball is green.

Every rectangular set of priors P is determined by the specification of 1-
step-ahead conditional measures. Thus consider 1-step-ahead beliefs at time 0,
that is, time 0 beliefs about the likelihood of G. Given ambiguity, these are
naturally represented by a probability interval for G. Because the probability of
GG is constant along any line parallel to the face opposite GG, the noted interval is
defined by the region between the two negatively sloped lines shown. At time 1,
conditional beliefs are trivial if G has been revealed to be true. Given {R, B},
conditional beliefs are described by an interval for the conditional probability of
R. Because the conditional probability of R is constant along any ray emanating
from G, an interval is determined by the region between the two rays shown.
The collection of all probability measures satisfying both interval bounds is the
rectangular set P; and all rectangular sets in the simplex have this form.

Some (related) features of rectangularity merit emphasis. First, rectangular-
ity imposes no restrictions on 1-step-ahead conditionals - these can be specified
arbitrarily. Moreover, the rectangular set P constructed as above from the 1-
step-ahead conditionals, induces these same sets of conditionals and is the largest
set of priors to do so. Third, any set of priors induces a smallest rectangular set
containing it; for example, P is the smallest rectangular set containing P’. More
specifically, P’ induces sets of 1-step-ahead conditionals and these generate P as
described above. Because induced 1-step-ahead conditionals are precisely what
one needs to compute utility by backward induction, we can view P as precisely
the enlargement of P’ needed in order to incorporate the logic of backward in-
duction. Hence the connection between rectangularity and dynamic consistency.
Finally, rectangularity is tied to the filtration. For example, if the information
learned at time 1 is whether or not the color is R, then a rectangular set would

' The vertex R denotes red with probability 1. More generally, a point p in the simplex
delivers red with probability given by the shortest distance between p and the face opposite R.
Similarly for other colors.
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have a similar geometric representation but from the perspective of the vertex R.
In particular, while P’ is rectangular relative to the new filtration, P is not.

4.2. The Theorem

We need some further terminology. Say that a measure p in A (2, Fr) has full
support if
p(A) > 0 for every ) # A € Fr.

Say that u : A (C) — R is mizture linear if u (ap + (1 — a)q) = au(p) + (1—
a)u(q) for all p and ¢ in Ag(C) and 0 < o < 1.
We can now state our main result.

Theorem 4.2. The following statements are equivalent:

(a) {=1w} satisfy CP, MP, RP, DC and FS.

(b) There exists P C A (2, Fr), closed, convex and {F;}-rectangular, with all
measures in P having full support, > 0 and a mixture linear and nonconstant
u : As(C) — R! such that: for every t and w, =, is represented by V;(-,w),
where

Vi(h,w) = min /ET>tﬁTtu(hT)dm. (4.5)

meP;(w)

Moreover, 3 and P are unique and u is unique up to a positive linear transforma-
tion.

Because consumption processes form a subset of H in the way described in
Section 2, the theorem delivers the representation promised in the introduction.
In particular, in (b), rectangularity of P implies that utilities satisfy the recursive
relation

Vi(h,w) = e‘g}?( : / [u(he(w)) + BVir1 (b, w')] dm(w’), (4.6)
which extends (1.2) to the domain H.

Another point made in the introduction was the parallel with foundations for
the Bayesian model. In that connection, note that one obtains an axiomatization
of the subjective expected additive (geometric discounting) utility model, with
Bayesian updating, if the multiple-priors axiom MP is strengthened to the appro-
priate versions of the Anscombe-Aumann axioms; more precisely, if MP (ii) and
(v) are replaced by the independence axiom on the domain H.

12



A representation analogous to that in the theorem is axiomatized in [33, The-
orems 5.3-5.4]. In addition to the greater complexity of that axiomatization, due
in part to the more complicated domain assumed for preference, it delivers only
the special case where each set of conditional 1-step-ahead measures P, (w) is
the core of a convex capacity [29]; this restriction is not made explicit but it is
clear from the proof.

To apply our model, one needs to begin with the specification of a rectangular
set P (in the same way that to apply the Savage model, the modeler needs to select
a prior). We showed in the previous section that this can be done by specifying
1-step-ahead correspondences {P;™'}. Moreover, any specification of {P;™'} is
admissible and generates, by backward recursion, a unique rectangular set of
priors. Thus rectangularity is consistent with any specification of conditional
beliefs about ‘the next step’. Examples of such specifications are provided in the
next section. The noted backward recursion underlies the dynamic consistency
of preference, which in turn delivers tractability as demonstrated in [14], [7] and
[12].12

The role of the filtration warrants elaboration. The theorem presents a model
of utility for acts adapted to a given filtration. Any filtration for which the
axioms are acceptable is admissible and leads to a set of priors and a utility
representation more generally. Because none of our axioms relate choice (that is,
preference) for different filtrations, our model is silent about such across-filtration
restrictions. Thus two filtrations {F;} and {F}}, say with Fr = F}, = F, lead
to the two different sets of priors P and P’ on the common terminal o-algebra
F and correspondingly, to two utility processes V; and V/. This may strike the
reader as incoherent; after all, the decision-maker changes beliefs about events in
F according to the seemingly irrelevant description of how information evolves
in intermediate periods. However, sets of priors are properly interpreted only as
part of the representation of preference and thus the noted change from P to P’
is properly evaluated only by examining its behavioral meaning. The latter is
simply that V5 and V{ will in general rank differently acts in the intersection of
their domains, that is, acts that are adapted to both filtrations. This is because the
temporal resolution of uncertainty matters for preference very much in the same
sense that it matters in the risk context (see [24], [15] and [30], for example).
Fortunately, concern with temporal resolution is plausible psychologically and is

121t is worth mentioning that frequently successful analysis does not require an explicit solution
for the set P arising from the backward recursion (4.4). The recursive relation for utility, and
hence the 1-step-ahead correspondences, often suffice, as shown in the cited papers.
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no less “rational” than is caring about risk or about ambiguity. Moreover, allowing
nonindifference to temporal resolution is the way in which our model escapes the
impossibility result in [11], much as nonindifference in the risk context is the key
to disentangling substitutability across time and risk attitudes [15].

Consider briefly some extensions of the theorem. It is straightforward to char-
acterize the model in which 3 is restricted to be less than 1. For example, the
following additional axiom on the ranking of lottery acts would characterize (4.5)
with 6 < 1: For any p’ and p in A (C), if (p',p',....,0") =0 (p,D,...,p), then
v, p,p,...,p) =0 (p,,D,...,p). Two other extensions are discussed next.

An infinite horizon framework is desirable for the usual reasons and also be-
cause it would permit study of the long-run persistence of ambiguity. In our finite
horizon model, the decision-maker knows at 7' the truth or falsity of any event
in Fr and thus ‘eventually’ there is neither risk nor ambiguity. However, this
need not be the case if we take T = o0o. Appendix B provides a representation
result in an infinite horizon setting. Of particular note is that the set of measures
P that it delivers is (mutually) locally absolutely continuous, that is, mutually
absolutely continuous on Ug°,F;. However, measures in P need not be mutu-
ally absolutely continuous on the limiting o-algebra F,, and thus they need not
merge asymptotically to a single measure as in Blackwell and Dubins [4]. In that
sense, the model permits ambiguity to persist even in the long run after repeated
observations (see [13] for more details).

A final extension is more speculative but we mention it in order to provide
perspective on the theorem. A generalization of (4.6) is the recursive relation

Vith) = min W (ht, / Vit (R) dm>, (4.7)

mG'P;Ll

for a suitable aggregator function W (strictly increasing in its second argument).
If P is a singleton, then this recursive relation is analogous to that axiomatized in
[24] and [30] that is motivated in [15] by the desire to disentangle willingness to
substitute intertemporally from attitudes towards risk. A continuous-time version
of (4.7) is provided in [7], where it is argued that it permits a three-way separation
between the two noted aspects of preference and attitudes towards ambiguity. As
for an axiomatization of (4.7), the implied ordering >, satisfies CP and DC and
it weakens RP in ways that are well understood from studies of risk preference.
In addition, it violates MP, but satisfies the Gilboa-Schmeidler axioms on the
subdomain of acts that are F;-measurable. It seems clear from [24] and [30] that
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axiomatization of (4.7) would require a more complicated hierarchical domain for
preference such as those adopted in [22] and [33]."* Indeed, these studies deliver
related representations.

5. EXAMPLES

Our objective in this section is to cast further light on the scope of the theorem
and on rectangularity. Section 5.1 shows, in the context of a dynamic version
of the classic Ellsberg urn example, that dynamic consistency is problematic in
some settings. However, there are many other settings, including those that are
typical in dynamic modeling in macroeconomics and finance, where backward
induction and hence dynamic consistency are natural. The remaining examples
illustrate such settings. Sections 5.2 and 5.3 show how a rich set of models of
dynamic behavior can easily be constructed by specifying the process of 1-step-
ahead conditionals. These, in turn, lead naturally to a rectangular set of priors
through the logic of backward induction. For concreteness, these examples specify
relatively simple types of history dependence for these conditionals.'* Much more
general history dependence can be accommodated as explained further in Section
5.4. The examples, particularly the last one, also illustrate why the time zero
set of priors P is mot in general equal to the natural set of ‘possible probability
laws’ or ‘possible models of the environment’ that the decision-maker may have
in mind.

5.1. Ellsberg

Consider the 3-color Ellsberg urn experiment in which there are 30 balls that are
red and 60 that are either blue or green. A ball is drawn at random from the urn
at time 0. The goal is to model the decision-maker’s preferences over acts that
pay off according to the color of the ball that is drawn. A natural state space is
Q = {R, B,G}. To introduce dynamics in a simple way, suppose that the color
is revealed to the decision-maker at ¢ = 2, leaving essentially a 3-period model.
At the intermediate stage time 1, the decision-maker is told whether or not the

13 An exception is the case W (hy, Vir1) = a¢(hy) + by(hi)Vis1, which likely can be delivered
in the present framework much as was done in [10] in a risk setting.

14In the language of time series analysis, the models of Sections 5.2 and 5.3 permit the
interpretation that the ‘set of possible models’ does not contain models with ‘hidden state
variables’.
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color drawn is G. Thus the filtration is {F;}, where F; is the power set for all
t > 2 and

To see that dynamic consistency may be problematic in this setting, consider
the ranking of (1,0, 1) versus (0, 1, 1), where the former denotes the act that pays
1 unit of consumption (or utils) at time 2 in the states R and G' and where the
latter is interpreted similarly. (There is no consumption in other periods.) The

time 0 ranking
(1,0,1) <0 (0,1,1). (5.1)

is intuitive in an atemporal setting and arguably also in the present dynamic
setting.!® This ranking is supported by the set of priors P’, where

,P,:{p:(%7p37§_p3)%§p3§%} (52)

Ambiguity about the number of blue versus green balls is reflected in the range of
probabilities for pg.!® Assuming for the moment that P’ is indeed the initial set
of priors, then the conditional rankings at time 1 depend on how P’ is updated.
Under prior by prior Bayesian updating, one concludes that

(1, 0, 1) ~1,{R,B} (0, 1, 1) and (1, 0, 1) ~1{G} (O, 1, 1) , (53)

in contradiction to dynamic consistency.!”

To clarify the connection to our theorem, note that P’ is not {F; }-rectangular
(see Figure 1 and recall its discussion in Section 4.1). Thus it is not surprising
that P’ leads to a violation of dynamic consistency. Our modeling approach would
suggest replacing P’ by P, the smallest {F;}-rectangular set containing P’.1®
Because P is {F;}-rectangular, it would ensure dynamic consistency. However,
as is readily computed, this would be at the cost of reversing the ranking (5.1).

15We argue below that the reverse of (5.1) is plausible in a dynamic setting. For now, we
discuss the scenario that is least favorable to our model.

16The particular bounds are not essential for what follows as long as the interval includes 1/3
in its interior.

17>‘1,{R,B} denotes the common preference order > r=>1,5.

1 ’ 1 ’
18D 1 31Ps 31Ps 2 ;) .1 / 1
P= 31 y PB T 5 —DPp )5 <pB, P73
3+ 5+
3 PB 3 PB

As described in 4.1, P and P’, induce the identical 1-step-ahead conditionals and thus generate
the same rankings at any ¢ of acts that are F;;;-measurable. In particular, they both lead to
(5.3).
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Therefore, the lesson we take from this is not that it is impossible to deliver
dynamic consistency within the multiple-priors framework, but rather that in
some settings, ambiguity may render dynamic consistency problematic.

The essence of these problematic settings seems clear. Begin with any spec-
ification of 1-step-ahead beliefs. These determine 1-step-ahead preferences, by
which we mean the collection of conditional preference orders at any (t,w) over
acts that are F;, -measurable. Backward induction leads to a utility process over
all acts satisfying dynamic consistency. In this construction of utility, 1-step-ahead
beliefs or preferences are unrestricted. A difficulty arises only if there are intuitive
conditional choices that are not expressible in terms of 1-step-ahead preferences;
thus they involve acts that are not measurable with respect to the next period’s
information. The choice (5.1) is an example because the acts given there are not
Fi-measurable.

In fact, as mentioned above, there is reason to expect some decision-makers
to violate (5.1) and to choose

(17 07 1) ~0 (07 17 1) .

One reason is the cognitive appeal of backward induction which leads to this
ranking. Another point is that the acts differ in a dimension that is irrelevant
in an atemporal setting but in principle pertinent here, namely how ambiguity
is resolved over time. Further, a decision-maker may view ambiguity as being
resolved earlier under (1,0, 1) than under the second act; for example, conditional
on {R, B} being realized at time 1, then the perspective is that (1,0, 1) pays off
with the draw of an ‘unambiguous’ red ball while (0,1, 1) pays off only with the
draw of an ‘ambiguous’ blue. Thus, even though (0, 1, 1) might be preferred in an
atemporal setting, (1,0, 1) may still be preferred in the present dynamic setting
by a decision-maker who does not like living with ambiguity and thus wants it
resolved as quickly as possible. This story is more favorable to our model and can
be accommodated, as noted above, by taking for the set of priors P, the smallest
{Fi}-rectangular set containing P’. Ultimately, it is an empirical question whether
this more favorable perspective on the Ellsberg example is more relevant.

We turn now to examples, based on specifications that are common in applied
dynamic modeling, where the appeal of dynamic consistency seems to us to be
unqualified.
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5.2. Ambiguous Random Walk

In many dynamic settings, the description of the environment is most naturally
expressed in terms of 1-step-ahead correspondences and thus a rectangular spec-
ification of the set of priors. As a stylistic benchmark example, suppose that
uncertainty is driven by an integer-valued state process W; which begins at the
value zero (Wy = 0). All processes of interest are adapted to {F:}, where
Fi = o(W,:s<t) defines a filtration on the state space @ = NT*!. The
decision-maker’s subjective view of the law of motion of W; is that, given t and
conditional on the realized value of W;, then W,y — W, = +1. However, she
is not completely confident about the transition probabilities. Thus she thinks in
terms of a set of transition probability measures, or equivalently, in terms of an in-
terval [1’7", HT"‘] for the probability that the increment equal +1, where 0 < k < 1
parametrizes the extent of ambiguity.

As an initial specification, suppose that the same interval describes conditional
beliefs at every realized W;, reflecting the view that the increments Wy, — W,
are unaffected by current (or past) values of the state process (a type of IID
assumption for increments) and also by the calendar time ¢ (a form of stationarity).
The conditional 1-step ahead correspondences P, are defined thereby and they
in turn determine a rectangular set of priors P, as described in (4.2)-(4.4). If
there is no ambiguity (k = 0), then P is a singleton and it describes a random
walk. More generally, P describes an ambiguous random walk.

A rich range of generalizations of this model are possible, including the next
example, in which P! depends on history reflecting learning. In all such cases,
a rectangular set of priors emerges naturally and dynamic consistency is unprob-
lematic.

5.3. Conditional Ambiguity

The ambiguous random walk features ambiguity about both the conditional mean
and the conditional variance, parametrized by k. The idea is easily generalized.
As a further example of the rich dynamics that is compatible with rectangularity,
consider the following ‘autoregressive conditional ambiguity’ model. The state
process is now (y;),

Yr = ay—1 + ber + / hpuy
a+a

2
hie = po+ pihi-1+ (,%—1 - = yt—2>

2
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(a,p1) € la,a] x[p,p] € (=1,1) x[0,1)

— 2
- =1 = — ata
€ € [_515;51‘,]7 g = Pgi_1 + (yt I yt—1>

where u; is white noise, and a, @, p, > 0, p, p, » € (0,1) and ag are fixed
parameters. a

If b =0, a =aand p = p, the model reduces to a standard AR(1) with
zero mean and GARCH (1_,1) errors. More generally, the decision-maker’s beliefs
reflect confidence that the next observation is generated by a density from this
class, but there is ambiguity about the conditional mean and variance.'® Since
each admissible vector of these parameters determines a 1-step-ahead conditional
measure, a set of such measures, and hence also a rectangular set of priors, are
determined by the given specification which thus fits directly into our framework.?"

This model captures time-varying conditional ambiguity that can depend both
on the level of y; and the ‘surprises’ that occur relative to the ‘center’ forecast
zﬂyt,l. As one example of the former, if b = 0 and a = —a, then the interval
for the conditional mean [—ay;_1,ay; 1] is wider, the further away was the last
observation from zero. Given recursive multiple-priors utility, such an observa-
tion would induce ‘greater pessimism’ for a decision-maker with a value function
increasing in y;. As another example, if 1 > @ > a > 0, the decision maker is
confident that there is mean reversion in y;. Again assuming an increasing value
function, we would now have asymmetric behavior, in that the decision-maker
fears that bad times (y; < 0) last longer (¢ = @) than good times, in which mean
reversion is expected to occur more quickly (a = a).

If p < p, the interval for the conditional variance increases if there have been

a lot of ‘surprises’ (relative to the forecast %yt_l) in the recent past. Finally,
if b > 0, the term &; provides a link between forecast errors and ambiguity about
the conditional mean. Assuming for simplicity that @ = a = 0, surprises widen
the interval [—bZ;, bg;] for the mean. An increase in ambiguity caused by a large
surprise is persistent as the ambiguity is resolved gradually.

9The somewhat unusual specification of the conditional variance equation reflects the fact
that the ‘forecast error’ that feeds into the behavior of the conditional variance is measured with
respect to %yt_l, the center of the interval of means that was thought possible at ¢t — 1.

20More accurately, it fits into our framework extended to accommodate filtrations that do not
correspond to finite partitions.
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5.4. An Entropy-Based Set of Priors

In the preceding two examples, the most natural description of the environment
(or of the set of ‘possible probability laws’) is in terms of 1-step-ahead beliefs.
The final example shows that dynamic consistency can be natural even where the
primitive description does not have the 1-step-ahead form.

Suppose the set of probability models considered possible by the decision-
maker is given by

Pt = {Qe A, Fr): d(Q,P) < r}, (5.4)

where P is a reference measure, d denotes relative entropy and r determines the
size of the set.?! As described in the next section, such sets of priors have been
adopted in the robust control approach, which explains the superscript attached
to P. The set P is not rectangular and thus is not admissible in our model.
Because this specification may seem natural, some readers may be concerned that
our model limits unduly the dimensions of ambiguity that can be accommodated.

The key point concerns the interpretation of sets of priors. In particular, there
is an important conceptual distinction between the set of probability laws that the
decision-maker views as possible, such as P, and the set of priors P that is part
of the representation of preference. Only the latter includes elements of reasoning
or processing, backward induction for example, on the part of the decision-maker.
Thus the description of the environment represented by P is consistent with
our model and the use of a rectangular set of priors in the following sense:>?
Determine the 1-step-ahead sets of conditionals P implied by applying Bayes’
Rule prior-by-prior to P™. Then use the P;™"’s to construct, via the backward
recursion (4.4), a new time 0 set of priors P. This set is rectangular and, though
larger than P, yields the identical 1-step-ahead conditionals. Indeed, because
P is the smallest rectangular set containing P"®, it is the minimal enlargement
of P needed in order to accommodate the logic of backward induction. Thus
P may be viewed as the natural vehicle for both capturing the set of possible
models P and simultaneously representing a dynamically consistent preference
process.

The question remains whether the dynamic behavior implied by P is intuitive.
In particular, is there intuitive choice behavior, paralleling (5.1) from the Ellsberg

21 and P are assumed mutually absolutely continuous and d(Q, P) =

Yr>00" Eq [log (%)}, where ), and P, denote the restrictions of @ and P to F.
?2The argument that follows applies equally to any time 0 set of measures and not just to
that given by (5.4).
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example, that is contradicted by P? No such behavior is apparent to us, (though
admittedly, we cannot prove that all the behavioral implications of P are intu-
itive). Given also the broad cognitive appeal of backward induction, we feel that
the onus is on critics to prove that our model is problematic given specifications
such as P for the set of possible models.

The 1-step-ahead conditionals constructed as above from (5.4) will involve rel-
ative entropy in their definitions. Because, entropy plays a large role in related
statistical theory, as well as in the robust control modeling approach, we con-
clude by adding that there is a more direct way to build relative entropy into
parametric specifications of sets of priors. For example, define the 1-step-ahead
correspondence at any ¢t and w directly as a relative entropy neighborhood of the
1-step-ahead conditional of a reference measure, much as in (6.4) below, and then
work with the corresponding rectangular set of time 0 priors.

6. COMPARISON WITH ROBUST CONTROL

In work with a number of coauthors, Hansen and Sargent have adapted and ex-
tended robust control theory to economic settings. Because there now exist a
number of descriptive and normative applications of the robust control model,??
we take this opportunity to compare their approach with ours. In [20], the au-
thors describe the utility specification that supports (or is implicit in) the robust
control approach. We take this utility specification as the economic foundations
for their approach and thus we use it as the basis for comparison. To permit a
clearer comparison of the two models, we translate the description in [20] into
the framework of this paper, thereby modifying their model somewhat, but not
in ways that are germane to the comparison.?* Finally, the related model in [31]
is also discussed.

The entropy-based model described in the preceding section can be viewed as
a reformulation of the robust control approach that fits into our framework. Thus
the reader may wish to refer back to Section 5.4 after reading the comparison that
follows.

2 For descriptive (e.g., asset pricing) applications, see [21], [1] and [19]. Normative applications
are typically to optimal monetary policy in a setting where the monetary authority does not
know precisely the true model describing the environment; see, for example, [19], [25] and [26].

2 For example, we use discrete rather than continuous time, we exclude time nonseparabilities
due to habit formation and we refer to the natural extension of their model from the domain of
consumption processes to our domain H.
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6.1. Utility Specification

We are interested in the collection {>;,} of conditional preferences, with repre-
senting utility functions {V;(-,w)}, implied by the robust control model. Fix a
‘reference model’ P, a measure in A (£, Fr), and a set of ‘possible models’ (or
priors) P5® C A (2, Fr), containing P. Utility at time 0 is given by

Vo(h) = m7ipnb /ET>0 BT u(h:)dm, heH, (6.1)
mePi°

for some 8 and u as in our theorem. Here the time 0 set of priors P;° has the

parametric form (5.4) for radius r = ry.

To define subsequent utility functions V;(-,w), specify an updating rule for the
set of priors. This is done by first fixing an act h*; for example, Hansen and
Sargent take h* to be optimal relative to = in a planning problem of interest,
having time 0 feasible set Y. Let Q* be a minimizing measure in (6.1) when
h = h*, and let r;(w) denote the relative entropy between Q* and the reference
measure conditional on time ¢ information, that is,?

ri(w) = d(Q*(- [ Fi)(w), P(- | Fi)(w)) - (6.2)
Finally, define
Vi(h,w) = min /ZTZt B u(h,)dm, heH, (6.3)
meProt(w)

for the updated set of measures Pr*’ (w) given by

P (w) = {Q( | F)(w) : Q € Py™, d(Q(- | F)(w), P(-| F)(w)) < rfw)} -
(6.4)
This completes our outline of the utility specification.?

At one level, the difference between the robust control and recursive multiple-
priors models is a matter of alternative restrictions on initial sets of priors and
on updating rules. Our model delivers rectangular sets of priors that are up-
dated prior-by-prior, while robust control delivers sets of priors constrained by
relative entropy and updated by (6.4). In what follows, we clarify the behavioral
significance of these formal differences.

25 As in (5.4), d denotes relative entropy.

2When A = h*in (6.1) and (6.3), the minimizations over measures can be characterized
via Lagrangeans and deliver the multipliers 6y and 0 (w). Under the specification described,
0y (w) = B for all t and w, a fact that plays an important role in the discussion and empirical
implementation of the robust control model.
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6.2. Discussion

For any given h* or T, it is immediate that in common with recursive multiple-
priors, axioms CP, MP and RP are satisfied. A difference between the models is
that the robust control model violates DC. However, its construction delivers the
following weaker form of dynamic consistency:

Axiom 6 (h*-DC). For every t and w and for every act h, if h;(w) = hi(w) for
all T <t and if h >41, h* for all ', then h =, h*; and the latter ranking is
strict if the former ranking is strict at every w’ in a > ,-nonnull event.

The difference from DC is that here only comparisons with the given h* are
considered. Under h*-DC, if h* is optimal at time 0 in the feasible set YT, then it
will be carried out in (almost) all future contingencies. Under DC, the ranking of
any two acts is time consistent.

Which set of assumptions on preferences is appropriate will typically depend
on the application. In many descriptive modeling contexts, we want to describe
an agent who solves a single intertemporal optimization problem. A typical ex-
ample is consumption-savings decisions for given prices. Both axioms DC and
h*-DC permit the interpretation that a plan that the agent would choose ex ante
under commitment would in fact be carried out ex post under discretion. One
might argue that the stronger axiom DC is not needed if one is interested only in
rationalizing h* as an optimum in T.

However, rationalization of a single optimum cannot be the entire point. If it
were, then there would be no need to deviate from the Bayesian model since, if the
specification (6.1)-(6.3) rationalizes h*, then so does the Bayesian model where
the decision-maker uses the single prior @Q*. In fact, given alternative models
that rationalize a given set of data, or here h*, it is standard practice to evaluate
them based also on how they accord with behavior in other settings (Ellsberg-type
behavior, for example) or even with introspection, say about concern with model
misspecification. These auxiliary criteria support the non-Bayesian alternative,
whether robust control or recursive multiple-priors.

To distinguish between these two models, consider comparative statics pre-
dictions which provide another litmus test that extends beyond the framework of
the particular planning problem of interest. To illustrate, consider consumption-
savings models. Let the planning problem of prime interest be associated with
the feasible set T corresponding to the time 0 budget constraint

E [Egﬁtﬁtct] < %,
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where the expectation is with respect to a reference measure P, (7;) is the state-
price density process, mg = 1 and where y, denotes initial wealth. Preferences are
as in the robust control model with the added assumption that the utility index
u is a power function, u(c) = ¢*/a, 0 # a < 1. Consider now a change to
feasible set Y', where 7, = m; for all ¢ > 1, but where y; and 7} may differ from
their counterparts in Y. To simplify, suppose that the filtration is such that F;
corresponds to the binary partition { Fi,, F15}, where each component has positive
probability under P, and that state prices differ only in period 1 and then only
in event Fy:

T = (T T)» T = (T1a, M), Ty = T1a and 7y, 7 T

Let ¢ and ¢’ be the corresponding optimal plans. Suppose finally that y; has been
chosen so that?’

yi Ey6_06:y0—00 = Y.

Then, as shown at the end of this subsection, the two optimal plans satisfy
P {w € Fi,: (Cll(w)7 ) Cgl“(‘”)) 7é (Cl(w)7 ) CT(w))} > 07 (65)

that is, continuations from time 1 and event Fj, differ. Because in each case
the time 0 optimal plan is carried out under discretion, the decision-maker when
reoptimizing at time 1 and event Fj, will make different choices across the two
situations. This is so in spite of the fact that the two time 1 optimization problems
share common initial wealth levels (y; = 1) and common state price processes
for the relevant horizon, that is, they have identical feasible sets.

The formal reason for the differing behavior across the two continuation prob-
lems is that, according to the robust control model, the agent has different utility
functions in these two situations; more particularly, the updated set of priors (6.4)
differs at time 1 and event Fj, across the two situations. It remains to under-
stand ‘why’ this is the case and ultimately ‘why’ choices differ even though it is
the ‘same decision-maker’ in either case.?® Admittedly, past consumption levels
¢f, and ¢, differ, but time nonseparabilities (e.g., habit formation) are ruled out
in the robust control model that we are employing. The other way in which the
two histories at ¢ = 1 differ is in the preceding time 0 plans contingent on the

27By the homotheticity of preference, ¢ is a linearly homogeneous function of y{ and thus
one can rescale y to ensure the equality.

28]t is not the case that the two situations feature different information and therefore ‘natu-
rally’ different conditional beliefs. The same event tree applies in both cases.
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unrealized event I}, or alternatively, in the state prices that would have applied
had the event Fi, been realized. The bottom line is that, according to the ro-
bust control model, behavior at any time-event pair depends on what might have
happened in unrealized parts of the tree.

This feature of the robust control model is apparent directly from the speci-
fication (6.2) and (6.4) for updating at (¢,w). Because Q* depends on the entire
process h* and not just on values of h* realized along the path leading to (¢,w),
conditional preference >, depends also on what might have happened ex ante.

Finally, we sketch a proof of (6.5): Suppose the contrary and let Q* and
(Q** be minimizing measures given ¢ and ¢ respectively. The key point is that
even though ¢’ and ¢ agree in their continuations beyond F},, the corresponding
supporting measures, conditioned on F},, differ. (This is because the Lagrange
multipliers for the two minimizations are distinct.) However, the noted eventwise
conditionals Q* (- | F1,) and Q** (- | Fi,) are minimizing for the continuations of
¢ and c. Since the latter are identical by hypothesis, it follows that

Q*('|F1a) = Q**('lFm),

which is a contradiction.

6.3. A Related Model

Finally, consider the model in [31]. Suitably translated into our framework, their
model of dynamic preferences {>,,} satisfies CP, RP and DC. It differs from
recursive multiple-priors in its violation of MP; indeed, >=;, violates MP even
restricted to acts that are F;,i-measurable. A rough unifying perspective on
both models is provided by [15] that provides a general approach for integrating
alternative theories of atemporal decision-making into a dynamic setting. That
approach was based on recursivity and the use of a ‘certainty equivalent’ functional
as the vehicle for incorporating the relevant theory of one-shot choice. From this
perspective, the models differ only in their underlying theories of one-shot choice
- recursive multiple-priors adopts the Gilboa-Schmeidler model, while Uppal and
Wang adopt an alternative specification that has not yet been axiomatized.

Though there are superficial similarities with the robust control approach,
at the substantive behavioral level, Uppal-Wang differs from the robust control
model both by violating MP and by satisfying DC.
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7. CONCLUDING REMARKS

We have specified an axiomatic model of dynamic preference that extends the
Gilboa-Schmeidler atemporal model. The model delivers dynamic consistency
and permits a rich variety of dynamics and model uncertainty. Further, it permits
the next logical step in modeling behavior under ambiguity, namely learning. Be-
cause rectangular sets of priors are equivalently specified through a process { P;™}
of conditional 1-step-ahead correspondences, a theory of learning amounts to a
specification of this process, that is, to a description of how histories are mapped
into views about the next step and ultimately about the entire future trajectory.
Our general model imposes no restrictions on how the decision-maker responds to
data. However, intuitively plausible forms of response can be described, leading
to a model of learning that is as well-founded as the Bayesian one [13].

A related normative application of recursive multiple-priors is to econometric
estimation and forecasting. Chamberlain [6] describes a minimax approach and
cites Gilboa and Schmeidler for foundations. To our knowledge recursive multiple-
priors is the only available axiomatic model that is appropriate when the relevant
statistical decision problem is sequential.

A. APPENDIX: Proof of Theorem
Only the direction (a) = (b) is nontrivial.

Lemma A.1. There exist 0 < 3, u : Ay(C) — R mixture linear and non-
constant, and P, : Q0 ~ A(Q,Fr) that is convex-valued, closed-valued and Fi-
measurable, such that for each t and w,

p(Fi(w)) =1 forallpe P, (w) (A.1)

and =, is represented by

Vi(h,w) = Mminmep,(w) / (Zr> 87 " u(hy)) dm. (A.2)

Moreover, each Py(w) is unique and u is unique up to a positive linear transfor-
mation.

Proof. The Gilboa-Schmeidler theorem does not apply directly because our
domain H is not formulated as the set of all measurable maps from €2 into the set

26



of lotteries over some outcome set, which is the structure they assume for their
domain. However, we can reformulate H in such a way as to make their theorem
applicable.

Define 7 = {0,1,...,T}. Each h in H can be viewed as the mapping from
7 x Q into A, (C) that takes (t,w’) into hi(w’). Further the adapted nature of h
corresponds to measurability of the above map with respect to 3, where ¥ is the
o-algebra on 7 x  generated by all sets of the form {¢t} x E, where E lies in F;.
Thus ‘H consists of all ¥-measurable maps from the expanded state space 7 x (2
into A, (C).

Moreover, by MP each =, satisfies the Gilboa-Schmeidler axioms on this
domain. Focus first on the ordering =y at time 0. Then, by [16, Theorem 1],
there exists v : A;(C) — R!, mixture linear and nonconstant, and a convex
and closed set Q@ C A (7 x ,3), such that = is represented by

Vo (h) = mingeo / v (h(r, o)) dg(r, o). (A.3)

We argue now that Q has more structure than stated above. The point is
that our axiom MP is stronger than what is required to deliver the preceding
representation. The issue is the relevant notion of a ‘constant act’. In the ab-
stract framework with (expanded) state space 7 x (2, there is nothing that distin-
guishes between the two components of the state. Thus constant acts are maps
h that are constant on 7 x ). Consequently, direct translation of the Gilboa-
Schmeidler analysis assumes MP(ii) only for lottery acts ¢ for which ¢, = /g
for all 7. Similarly, their analysis adopts the weakening of (iv) whereby: if for
every (7,w'), the act that delivers h(w') in every time and state is weakly pre-
ferred to the corresponding act constructed from h, then h' = h. To clarify, our
version of Monotonicity states, in contrast, that if for every ', the lottery act
(ht(w'), ..., Afn(w')) is weakly preferred to the corresponding act derived from h,
then A’ =¢ h.

Our strengthening of these Gilboa-Schmeidler axioms is intuitive once one
recognizes that there is a clear conceptual distinction between the two components
of the expanded state (7,w’). For example, Gilboa and Schmeidler suggest that
in a general mixture ah + (1 — a))g, g may hedge the variation across states in h,
thus reducing ambiguity and leading to violations of Independence. However, no
such hedging occurs if g is a constant act, which justifies Certainty Independence.
In our setting, it is plausible to assume that hedging across time is not of value,
which justifies our stronger axiom MP(ii).
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Turn now to the added implications of our stronger axiom MP. By (ii), =¢
satisfies the independence axiom on the set of lottery acts where it is represented
by

Vo (£) = mingeo / v (L (W) dg(T,0') = Minmemrgro / v (€y) dm(T),

where mrg7Q denotes the set of all 7-marginals of measures in Q. Therefore,
mrgr Q must be a singleton, that is, all measures in Q induce the identical prob-
ability measure, denoted A, on 7. Consequently, for any h,

Vo(h) = mingeg Xy {)\T / v (h(7,w")) dg(u" | 7')} . (A.4)
Q
Monotonicity in the form MP(iv) implies that
Vo(h') = Vo(h) whenever ;A\ v (W' (7,-)) = 3. A v (h(T,")). (A.5)

Deduce that

Vo(h) = minpep, /Q [X: Ar v (h(7,0"))] dp(w'), for all h, (A.6)

for some closed and convex Py C A (Q, Fr).

(Argue as follows:* Define X = v (A, (C)) and consider the domain D of all
Anscombe-Aumann acts on (2, Fr) with elementary outcomes in X. For generic
element 1, denote by Ev)(w) the mean of the lottery ¢)(w) on X; thus w — E(w)
is a Savage-style act with outcomes in X. Define U : D — R! by

U(y) = Vo(h), for any h satisfying Ey(-) = v (X; Ar h(7,-)).

Then U is well-defined by (A.5), and its induced preference satisfies the axioms in
[16, Theorem 1]. Thus, U admits a multiple-priors representation, perhaps after
a monotonic transformation . Because risk linearity was built into U, deduce
that

e(Vo(h)) = min/v(ZT A h(T,w")) dp(w'),

pePo

for some Py C A(Q, Fr).

29We suspect that a shorter argument is possible, but we have not been able to find one.
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Consider next the ranking of acts in D;, the set of all acts h € H such that
h(t,-) =m* € A;(C), for all 7 # t, where v(m*) = 0; the existence of such m* is
wlog. Then on Dy,

o(Vo(h)) = min / M v (h(t,o)) dp(e),

pEPR

while from (A.4),

Vo(h) = mingeo [/Q At v (h(t, W) dg(w' | t)

From the uniqueness of the set of priors in the multiple-priors representation,
conclude that Q, = {q(- | t) : ¢ € Q}and B coincide when viewed as measures
on F;. This is true for any t. Finally, therefore, (A.4) implies (A.6).)

Argue similarly for each conditional ordering >, to conclude that it is repre-
sented by

Vi(h,w) = minp,w) / Ui(ho, ..., hr;w) dp

where Uy (-, w) : (A4(C))" — R is mixture linear and has the form
Ut(& w) = ZTZt )‘T(t7 w) Ut (E.,-, w) = ZTZt Ut r (67-; w) .

Condition (A.1) follows from CP. By RP, U,(-;w) and U;(-;w’) are ordinally
equivalent for every w and ', with t fixed. Since both are mixture linear, they
must be equal (after suitable affine transformations). Thus we can write

Ut (6) = ZTZt Ut r (g-,-) . (A7)
RP implies further that the ordering on A4(C) x A4(C) that is represented
by
(P, 0) = v (p) + Vira (P)

is the same for all ¢ and 7 such that t < 7 < T — 1. In particular, for fixed ¢,
the above ranking does not depend on 7 in the indicated range. This is a form
of stationarity and it implies, by familiar arguments ([23] or [27, pp. 162-3], for
example) and after suitable cardinal transformations, that

Vir = (bt)Tft Vgt
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for some b; > 0. Because the noted ordering is invariant also with respect to ¢,
conclude that b; is independent of ¢ and hence that v;, = gt v Once again,
the invariance yields (after suitable cardinal transformations) that v,;, = vpo = u
for all ¢. This establishes

Ut (6) = ETZt ﬁﬂritu (KT) (AS)
and hence also (A.2). H

From the Lemma,
Vi(h,w) = u(hy) + Bminmep,(w) /(Er>t+157_t_1 u(hT)) dm.
= u(h) + BWi(h,w).
For each ¢, w and lottery /¢;, define

Dta%gt = {(‘/15+1(h7 Wl))w’e]—'t(w) che H, hy = et}

Then we can view Dy, 4, as a subset of RV (F;(w), Fiy1), the set of F1-measurable
(real-valued) random variablesdefined on F;(w). Below, by Viii(h,-) we mean
such a random variable, that is, the restriction of the second argument to F;(w)
is understood even where not stated explicitly.

Define ® : Dy ,, o, — R! by

DC implies that ® is well-defined and increasing on D; ¢, in the sense that
Vier(F,2) 2 Viaa (b, ) on Fo(w) = B(Via () = ®(Viaa (). (A.10)

Lemma A.2. There exists Q C A(F(w), Fir1), convex and closed, such that

O(x) = miél / xdq, forall x € Dygy,. (A.11)
q€

Proof. Adapt the arguments in [16, pp. 146-7].

(i) @ is homogenous on Dy, »,: Let Vi1 (R, ) = aViqi(h, ) on F (w) for 0 < a <
1. We need to show that

Wi(h,w) = aWi(h,w).
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Let RI(-) = ah.(-) + (1 — a)f* for 7 > t and = ¢; and defined arbitrarily for
7 < t. Then h" lies in Dy g, u (R)(1)) = au(h:(+)) + (1—a)u(l*) = au(h. ("))
for 7 > ¢, Wy(h",w) = aW,(h,w) and
Vi (B",2) = aVia(h,) = Veu(l',-) on Fy (w).
By DC, conclude that W,(h',w) = W (h",w) = aW,(h,w).
(ii) Extend ® by homogeneity to RViimpie(Fi(w), Fir1): Because
{U(h()) he ft+1} - Dt,w,ﬁta

deduce that RVimpre(Fi(w), Fir1) = Urert (ADiwy,). (We can assume wlog that
3¢, and ly with u(¢;) < —1 and u(f2) > 1.) Thus a unique extension exists.
Then @ satisfies homogeneity there and the following form of monotonicity:

() > z() = o) > D(2). (A.12)
(iii) ® satisfies Certainty Additivity: On D, , argue as follows. For all lotteries
Le (A(C)™, @(aVi(h, ) + (1 = a)Vina (4,7) = @(Visa(ah + (1 - a)t,-)) =
Wilah + (1 — a)l,w) = aWi(h,w) + (1 — )Wi(l,w) = a®(Vigi(h,-)) + (1 —
a)q)(‘/t+1(€7 ))7 that is,
O(aVia(h, ) + (1= a)Vina(l,0) = a®(Via(h,+)) + (1= a)@(Visa (L, -)).
On RViimpie(Fi(w), Fiy1), argue as in [16, pp. 146-7].

(iv) @ is superadditive: Prove first that

O (SVia () + SVia(h, ) > 20 (Vi (W, ) + 58 (Visa(h, )

= WM, w) + 3 Wi(h,w).
Suppose that Wi (h',w) = Wy(h,w). Then because of the definition of W;(-,w),
Wi (30 + Thow) > Wi(hw) = LW(R,w) + IWi(h,w).
Proceed as in [16, p. 147]. W

The remainder of the proof is subdivided into a sequence of steps.
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Step 1: Show that @ = P;"'(w), the set of restrictions to F;,; of measures in
P,(w), that is, the set of 1-period ahead marginals. Apply (A.9) and the preceding
lemmas to conclude that for any F;;i-measurable h in Dy, ¢,,

min /(ETZtHﬁTtlu(hT)) dp; = min /(ETZtHﬁTtlu(hT)) dp

preP H(w) pEP;(w)

Wi(h,w) = min / Vier (h,) dg
q€Q
_ : T—t—1 .
= iy [ (S 57l () da
Thus uniqueness of the representing set of priors [16, Theorem 1] delivers the

desired result since both P;™(w) and @ are convex and closed.

Step 2: The measures in P, (w) are mutually absolutely continuous. The strict
ranking component in DC implies that, for any A" and h in D, 4,, if Vii1(R',-) >
Viti(h,-) and if B = {&' € F(w) : i(h, ") > Vi(h,w')} is Vi(-,w)-nonnull,
then V,(h,w) > Vi(h,w), or equivalently, W;(h',w) > W;(h,w). Because V;(-,w)
satisfies MP, the noted nonnullity is equivalent to

p(E) > 0 for some p in P(w).
Because E is in F;,1, there is a further equivalence with
q(E) > 0 for some ¢ in P,"(w).
From Step 1 and (A.9), conclude that
By | Vo> iy, [ Vot

if Viy1(h',-) > Vigi(h,-) with strict inequality on an event having positive g-
probability for some ¢ in Pt“(w). In particular, for any F;,i-measurable k' and
h n Dt,u),&a

min )/ (ET2t+1 ﬁrftflu(h;(.))) dg > min / (ET2t+1 ﬁpt’lu(hr('))) dq

qePH (w qeP ()

if (Sroe 87 u(h(4)) > (Srsee1 B u(he (1)) with strict inequality on an
event having positive ¢g-probability for some ¢ in Pt+1(w). Apply the preceding to
the acts having, for 7 > t,

W, = (¢ if B;£*if E°) and hy = (€ if E; 07 if E%),

32



where the lotteries ¢’ and ¢ are such that u(¢') > u(¢) > u(¢*). Conclude that
maxpii(,) M(E) > 0 = minp, m(E) > 0.

(w

Step 3: If p(-) = [ pey1(w)(-) dm(w') for some measurable piiq : (2, Frp1) —
A (Q, Fii0) such that pi1(-) € Piyi(+) and m € P (w), then

p(-)=m(-) on Fi1, and (A.13)

pe(W)() = p( [ Frur) (@) aefp]. (A.14)

Because F;,1 corresponds to a finite partition, then by (A.1),

po [0 HENFa(W) =0
prp1(W)(E) = { 1 ifED}E:;l(w')-

In particular, if £ € F;,1, then the above two cases are exhaustive and
p(E) =/ Pt (W) (E) dm(w’) = m ({Fa (W) : Fi(w') C E}) = m(E),
Q
proving (A.13). Further,

p(E) = m(Fr1 (W) pea (W) (E) for any E C Fiya (W),

E not necessarily in F;y;. Take also E' = F1(w). Then pryq (W) (Fria (@) = 1
and hence

P(Fira (W) = m(Frp(w)).
Thus if p(Fiy1(w')) # 0, or equivalently if m(F;1(w’)) # 0, then

no__ p(Emf;H-l(w/))
p(E | Fip) (W) = 2(Forr (@)

= pre1(W)(E).
This proves (A.14).

Step 4: From (A.9) and Step 1,

min / (ETZH-l ﬁT_t_1U(h~r)) dp = Wt (h7w) =

peP(w)

min / Vior (b o) dm(w') =

mEPtJrl (w)
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min / { min / (Zroer1 87 u(hy) dpm} dm(w')

mGP;Ll(w) Pe+1€ Py (W)

= min /(27>t+157t1u(h7)) dp, where

pEP;(w)

Piw) = {p<-> = [ @) dmsme PR, pia() € Pl } . (A15)

Thus P;(w) and P;(w) represent the same preference order. They must coincide
because each is convex and closed.

It is immediate that P;(w) is closed. To see that it is convex, let [ pyq1(w')(-) dm
and [ p,,,(w')(:) dm' lie in P;(w). Then the §/1 mixture equals [ p,,(w')(-) dm”,
e () P @)() + /() Pl () ()

Pl (@)() = T T

sm(w) + %m’(w’)

if the denominator is positive and equal to any measure in P, (w’) otherwise, (in
such way that pf(w’)(-) is the same for all w"’s in the same component of the F;4
partition), and where

m’() = gm(:) + 3m'().
For each w, pf {(w')(-) lies in P,;1(w') because the latter is convex; convexity of
mrgP,(w) implies that it contains m/(-). Thus [ pf,,(w')(-) dm” lies in P(w).
Similarly for other mixtures.

Step 5: Axiom F'S implies that every measure in P has full support on Fr. From
Step 4,

Pw) = {p<-> = [ b)) dm i € PP, pal) € P } ,

for every t and w. Use the full support observation and Step 3, particularly the
appropriate version of (A.14), to prove by induction that for every ¢ and w: (i)
Pi(w) equals the set of all Bayesian F;-updates of measures in FPy; and (ii) each
measure in P (w) has full support on F;(w).

Finally, define P = F,. W
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B. APPENDIX: Infinite Horizon

For reasons given in Section 4.2, this appendix axiomatizes an infinite horizon
version of recursive multiple-priors. Thus set T' = oo and interpret the formalism
surrounding our axioms and the definition of rectangularity in the obvious way.
Assume that Fr = F, = 0 (UPF:). Though we continue to assume that each
F; corresponds to a finite partition of €2, that is not the case for the limiting o-
algebra F,. Measures in A (2, F) are required to be finitely (but not necessarily
countably) additive. On A (2, F« ), adopt the weak topology induced by the set of
all bounded measurable real-valued functions. Say that a measure p in A (Q, F)
has full local support if

p(A) > 0 for every 0 # A € U2 F,.

We are given preferences {=,} = {=i.: (t,w) € T x Q} on the domain H,
defined as above. Continue to adopt axioms CP, MP, RP, DC and FS.

Though the range of any h; is finite for any act h in H, the range of h, viewed
as a mapping from 7 x 2 into A (C'), need not be finite given that T' = oco. To
handle the complications caused by this infinity, assume the existence of best and
worst lotteries in the following sense.*

Axiom 7 (Best-Worst - BW). For each (t,w) € T x (), there exist lotteries
p* and p** in A, (C) such that (p*)y” =iw (P)g =tw (P™)g for all p in A, (C).

In addition, impose a form of impatience whereby the distant future receives
little weight in each conditional preference order.

Axiom 8 (Impatience -IMP). For any (t,w) in T x Q, p in A;(C) and acts
h, h* and h** in 'H, if h* <4, h <i» B and h™ = (ho,..., hn,p,D,...), then
h* <iw h" <t. h* for all sufficiently large n.

Theorem B.1. Let T' = oo and let {=;,} be a collection of binary relations on
‘H. The following statements are equivalent:

(a) {1} satisfy CP, MP, RP, DC, FS, BW and IMP on H.

(b) There exists P C A (Q, F), closed, convex and {F;}-rectangular, with
all measures in P having full local support, 0 < 3 < 1 and a mixture linear

30Relaxation of BW is possible by more efficient application of [16, Proposition 4.1] than
below.
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and nonconstant u : Ay(C) — R!, where maxa, ¢y v and mina, o) u exist, such
that: for every t and w, =, is represented on ‘H by V,(-,w), where

Vi(h,w) = min /ET>t B" u(hy) dm.
mePy(w) -

Moreover, ( and P are unique and u is unique up to a positive linear transforma-

tion.

Proof. Necessity of the axioms is routine. To verify IMP, note that ¥,>; 37 " u(h®)

Y.t 37 "u(h;) in the sup norm topology, while the Maximum Theorem implies
that the mapping X ~— miny,ep [ X dm, from the space of bounded F.-
measurable functions into the reals, is sup-norm continuous.

To prove sufficiency, adapt the proof of Theorem 4.2 above. Gilboa and
Schmeidler’s central representation result (Theorem 1) does not apply directly
to ‘H as in the finite horizon case. That is because it deals only with the domain
of finite-ranged acts, which in our setting equals the proper subset of H consist-
ing of acts h that have finite range when viewed as mappings from 7 x §2 to
A (C). However, because of BW, their extension result Proposition 4.1 delivers
a multiple-priors representation on ‘H for =, .

Now proceed as in the proof of Theorem 4.2 to deliver the asserted represen-
tation in terms of P, # and u. One needs IMP to complete the counterpart of
Lemma A.1, for example (A.8). BW implies that V;(-) is bounded above and
below. Because u is not constant, conclude that 3 < 1. Existence of the noted
maximum and minimum for u follows from BW. W
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