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Abstract

For the problem of adjudicating conflicting claims, a rule is consis-
tent if the choice it makes for each problem is always in agreement with
the choice it makes for each “reduced problem” obtained by imagining
that some claimants leave with their awards and reassessing the sit-
uation from the viewpoint of the remaining claimants. We develop a
general technique to determine whether a given two-claimant rule ad-
mits a consistent extension to general populations, and to identify this
extension if it exists. We apply the technique to a succession of exam-
ples. One application is to a one-parameter family of rules that offer
a compromise between the constrained equal awards and constrained
equal losses rules. We show that a consistent extension of such a rule
exists only if all the weight is placed on the former or all the weight is
placed on the latter. Another application is to a family of rules that
provide a compromise between the constrained equal awards and pro-
portional rules, and a dual family that provide a compromise between
the constrained equal losses and proportional rules. In each case, we
identify the restrictions implied by consistency.
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strained equal awards rule; constrained equal losses rule.
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1 Introduction

A group of agents have claims on a resource adding up to more than what
is available. How should the resource be divided? For instance, a firm goes
bankrupt and its liquidation value has to be allocated among its creditors.
How much should each of them receive? The literature on the adjudication of
conflicting claims is concerned with the identification of well-behaved general
methods, or “rules”, of performing such divisions. A rule is “consistent” if the
awards vector it recommends for each “claims problem” is in agreement with
the awards vector it recommends for each “reduced problem” obtained by
imagining that an arbitrary subgroup of claimants leave with their awards:
the requirement is that in the reduced problem, each remaining claimant
should be awarded the same amount as he was awarded initially. Consistency
is a widely applicable principle that has played a central role in a large
number of recent axiomatic studies.1 Our objective is to contribute to the
understanding of its implications for the adjudication of conflicting claims,
and specifically to develop a technique to determine when a two-claimant
rule has a “consistent extension” to arbitrary populations.

Our intuition is stronger in the two-agent case. Indeed the often delicate
conceptual issue of how to take coalitions into account does not arise. Also,
less sophisticated mathematics are required (e.g. the intermediate value the-
orem sometimes suffices when fixed point theorems are otherwise needed).
Thus, it is natural, and it has been a standard research strategy in various
areas, to attempt to solve allocation problems involving an arbitrary number
of agents by extending a rule chosen in the two-agent case. Consistency has
been key in implementing this strategy.

A result is available that helps considerably in this regard. It additionally
involves the property of “converse consistency” of rules: consider a problem
and an alternative that is admissible for it. Suppose that this alternative is
such that for each two-agent subgroup of the agents the problem involves, its
restriction to that subgroup is the choice the rule makes for the associated

1The literature, surveyed in Thomson (2006b), now counts several hundred items. A
few representative applications are to coalitional games (Davis and Maschler, 1965; Peleg
(1985), bargaining theory (Lensberg, 1988), apportionment (Balinski and Young, 1982),
various models of resource allocation including the adjudication of conflicting claims (Au-
mann and Maschler, 1985; Young (1987), classical economies (Thomson, 1988), economies
with indivisible goods (Tadenuma and Thomson, 1991), and matching (Sasaki and Toda,
1992).
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reduced problem involving these two agents. Then, the requirement is that
it should be the choice for the entire group of agents. Now, the “Elevator
Lemma” asserts that if a rule is consistent and coincides with a conversely
consistent rule for two agents, then it coincides with it for any number of
agents. In the context of the adjudication of conflicting claims, converse
consistency is generally satisfied by consistent rules, so it is not much of an
additional restriction, but to apply the lemma, one needs to have guessed
the extension to more than two claimants of the two-claimant rule that is
the point of departure.

In some cases, the definition of the two-claimant rule is suggestive of
the extension. The proportional rule, which assigns awards proportional to
claims, is an obvious example. In other cases, the two-claimant rule has sev-
eral natural extensions to general populations, one of them being consistent,
but the consistent one is easily singled out. An illustration here is “concede-
and-divide” (Aumann and Maschler, 1985)2. This two-claimant rule first
assigns to each claimant the difference between the amount to divide and
the other agent’s claim (or 0 if this difference is negative); then, it divides
what remains, the part that is truly contested, equally. Several well-known
rules happen to coincide with concede-and-divide in the two-claimant case.
One was proposed to rationalize certain numerical examples in the Talmud,
the “Talmud rule” (Aumann and Maschler, 1985);3 another, also inspired
by ancient literature, is the “minimal overlap rule” (O’Neill, 1982), and a
third is the “random arrival rule” (O’Neill, 1982).4 There are others yet,
and among all of these rules, one is consistent, namely the Talmud rule,
as a simple calculation reveals. In fact, it is the only consistent extension of
concede-and-divide. The reason is that if a rule is “resource monotonic”, that
is, when the amount to divide increases, no claimant ever receives less—and
concede-and-divide does satisfy this property—it has at most one consistent
extension (Aumann and Maschler, 1985).5

Difficult cases are when a two-claimant rule has no obvious extension
to general populations, or when a definition seems particularly natural but

2The name is proposed by Thomson, (2003).
3For that reason concede-and-divide is often referred to as the “contested garment

rule”. The name concede-and-divide is suggested by Thomson (2003). For references
to the ancient literature, see O’Neill (1982), Aumann and Maschler (1985), and Dagan
(1996).

4Since these rules do not play an essential role here, we omit their formal definitions.
5The phrase appears in Thomson (1994) with a different meaning.
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fails consistency. How do we go about finding a consistent extension if one
exists, or prove that none does if that is the case? Our goal is to develop
a general technique to resolve such issues. We proceed by means of a series
of examples of increasing complexity, some of which are already understood,
and we provide new applications.

The case of “strictly resource monotonic” rules—each claimant whose
claim is positive always receives more when the amount to divide increases—
is particularly simple and we discuss it first (Example 1). Next, we consider
rules that are resource monotonic but perhaps not strictly so. Some viola-
tions of strict monotonicity are immaterial (Example 2), but others create
complications (Example 3).

To gain further familiarity with our construction, we then apply it to two
important rules for which we already know the answer to the extension ques-
tion. First are the “weighted constrained equal awards rules”. The (equal
weights) “constrained equal awards rule” has been discussed for centuries
(it appears in Maimonides), and it is central to recent theoretical work. It
assigns to all claimants equal amounts subject to no one receiving more than
his claim. In the fixed-population model, a weighted version is defined by
selecting a vector of positive weights for claimants, and for each problem,
assigning to all claimants amounts that, when divided by their respective
weights, are equal, subject to no one receiving more than his claim. In
the variable-population model, we need to specify a weight vector for each
group of claimants and apply the definition just given. These vectors could
in principle be chosen independently for each population. However, and
not surprisingly, for a consistent extension of a two-claimant weighted con-
strained equal awards rule to exist, the weight vectors chosen for the various
two-claimant populations should be related, and these relations come out of
our construction (Example 4); the weights for general populations are also
determined.

Next, we explain how someone unaware of the Talmud rule would be
able to rediscover it as the consistent extension of concede-and-divide (Ex-
ample 5). The argument is more delicate but its logic is the same.

For our next application, we consider a family of rules that offer a com-
promise between the constrained equal awards rule and another rule also
discussed in medieval literature, the “constrained equal losses rule”. This
rule divides the amount available in such a way that all claimants experience
equal losses subject to no one receiving a negative amount. The constrained
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equal awards and constrained equal losses rules provide somewhat extreme
and opposite ways of reconciling conflicting claims, the former obviously fa-
voring the agents whose claims are the smallest, and the latter favoring the
agents whose claims are the largest.6 To compromise between the rules, and
proceeding in a manner that is standard in game theory and the theory of
resource allocation, we propose to average them, considering a flexible for-
mulation in which the weights placed on each of them can be freely chosen.7

Unfortunately, this operation, which preserves most of the properties the
two rules enjoy, does not preserve their consistency.8 In fact, no weighted
average of the rules is consistent, as we first show, unless all the weight
is placed on one, or all the weight is placed on the other. This lack of
consistency of averages of the constrained equal awards and constrained equal
losses rules, however, could simply be a reflection of the fact that their two-
claimant versions have not been appropriately extended. If one starts with
a certain weighted average of two rules in the two-claimant case, it seems
natural enough to consider as an extension to the n-claimant case a weighted
average of these same rules and to use the same weights. But there are
other options. To begin with, instead of placing the same weights on the two
component rules independently of how many claimants are present, nothing
precludes making these weights depend on the number of claimants. But
then, what form should this dependence take? Moreover, averaging may
not be the right operation for more than two claimants. But if not, what is?
Hence the question: do the weighted averages of the two-claimant constrained
equal awards and constrained equal losses rules have consistent extensions?
Again, since each of these two rules is resource monotonic, so is any weighted
average of them, and such an extension, if it exists, is unique.

What is different about this situation as compared to the previous ones is
that we do not have access to a list of candidate rules, one of them being the
sought-after extension. If we had this luxury, we would check the consistency
of these candidates, a (usually) simple operation. When no obvious candidate
consistent extension of a two-claimant rule is available, how does one prove
that none exists if that is the case, or uncover one otherwise? The techniques

6This informal description of how the two rules differ can be made precise in several
ways, as shown by Schummer and Thomson (1997).

7By contrast to some of our previous examples, weights are placed on rules here, not
on claimants.

8For a general study of the “convexity operator” and of the properties it preserves or
fails to preserve, see Thomson and Yeh (2001).
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we develop here allow us to give constructive answers to such questions.
The answer to the one concerning the weighted averages of the constrained

equal awards and constrained equal losses rules is essentially negative. We
show that for such a rule to have a consistent extension, all the weight should
be placed on the constrained equal awards rule, or all the weight should be
placed on the constrained equal losses rule. This is true even if in the two-
claimant case, the weights placed on the two rules are allowed to depend on
the identity of the two claimants.

Our final application concerns a family of two-claimant rules that offer
a compromise between the constrained equal awards and proportional rules.
For each two-claimant population and each claims vector, as the amount
to divide increases, we first choose equal division, and when some critical
point is reached, we choose awards proportional to the difference between
the claims vector and that point, allowing the switch of regime to depend on
the claims vector. A rule in the family is indexed by a list of functions, one for
each two-claimant population, specifying where the switch of regimes occurs.
We show that if such a rule has a consistent extension, the critical point
should essentially be independent of the claims vector and that the mixture
of equality and proportionality assumed in the two-claimant case extends to
general populations as follows: there is a non-negative real number such that
for each population of claimants and each claims vector, the rule follows the
constrained equal awards rule until all claimants whose claims are at least
that number have received that number, and it continues in a linear way to
the claims vector. We also obtain a characterization of the class of rules that
offer a symmetric compromise between the constrained equal losses rule and
the proportional rule, and are consistent.

This application is the most interesting because this time, the question of
existence of a consistent extension has a non-trivial positive answer provided
certain restrictions are met—these restrictions come out of the analysis—and
the rules that emerge are certainly not ones known from previous work—they
too come out of the construction.

2 Other applications

The techniques we develop here have proved very useful in other studies.
One asks whether there exists a consistent extension to the two-claimant

rule obtained from the proportional rule by truncating claims at the amount
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to divide. Dagan and Volij (1997) provide a negative answer. The question
can also be solved by our geometric method (Thomson, 2006a).

A similar question concerns the existence of a consistent extension to a
two-claimant rule obtained by recursively imposing a certain lower bound on
awards. Here too, the answer is no (Dominguez and Thomson, 2006).

Another study addresses the question of the existence of generalizations
of the Talmud rule that do not necessarily satisfy “equal treatment of equals”
but retain its consistency. In the two-claimant case, a definition is available,
and a characterization can be obtained along the lines of Dagan (1996)’s char-
acterization of the original symmetric version by dropping equal treatment of
equals and adding “homogeneity”, (which says that the awards vector chosen
for a problem obtained by multiplying all the data of some initial problem
by some number should be obtained from the awards vector chosen for that
problem by the same multiplication). When do these weighted versions of
the two-claimant Talmud rule have consistent extensions? The answer is that
the set of potential claimants has to be partitioned into priority classes to
be handled in succession—one can say that equal treatment is “maximally
violated” between classes—and otherwise, unequal treatment of equals is an
option only within two-claimant classes (Hokari and Thomson, 2003). Within
classes with three or more claimants, equal treatment of equals has to prevail.

In the next application, the starting point is a rich family of two-claimant
rules characterized on the basis of certain invariance requirements. For a
consistent extension to exist, here too, the set of potential claimants should be
partitioned into priority classes. For two-claimant classes, consistency imply
no further restriction, but within each class with three or more claimants,
it forces a considerable reduction in the family of acceptable rules (Moulin,
2000). Our techniques permit developing an alternative proof of this result
(Thomson, 2001).

The final application is to the identification of the consistent members of a
family of rules proposed by Thomson (2002) under the name of “ICI family”.
This abbreviation of “Increasing-Constant-Increasing” is a reference to the
evolution of a claimant’s award as the amount to divide varies from 0 to the
sum of the claims. Each member of the family is defined by specifying for
each claims vector, the values of the amount to divide at which claimants
stop receiving additional compensation and at which they reenter the picture.
This family can be understood as a generalization of the Talmud rule. Its
richness comes from the freedom in selecting these breakpoints as a function
of the claims vector, and in a variable population framework, as a function
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of the population. The existence of consistent selections from this family is
addressed by Thomson (2002). The subfamily of the rules can be completely
described.

3 The problem of adjudicating conflicting claims

Since our central requirement involves comparing the recommendations made
for problems involving different populations of claimants, we need to cast
our analysis in a sufficiently general framework for such comparisons to be
possible.

There is an infinite set of “potential” claimants indexed by the natural
numbers, N. However, at any given time, only a finite number of them are
present. Let N be the class of nonempty and finite subsets of N. A claims
problem, or simply a problem, is a pair (c, E) ∈ RN

+ × R+, where N ∈ N ,
such that

∑
N ci ≥ E:9 each agent i ∈ N has a claim ci over an amount to

divide E ∈ R+, and this amount is insufficient to honor all of the claims.
Let CN be the class of all problems. A division rule, or simply a rule, is
a function defined on

⋃
N∈N CN , which associates with each N ∈ N and

each (c, E) ∈ CN a point x of RN
+ . This point should satisfy the inequalities

0 5 x 5 c and its coordinates should add up to E, a condition to which we
refer as “efficiency”. Any such point is an awards vector for (c, E). Let
S be our generic notation for rules. The path of awards of a rule for a
claims vector is the locus of the awards vector it selects as the amount to
divide varies from 0 to the sum of the claims.

The segment connecting two points x and y is denoted seg[x, y], and the
broken segment connecting x, y, and z is denoted bro.seg[x, y, z].

The most prominent rule in practice as well as in the theoretical litera-
ture makes awards proportional to claims. Another important rule assigns
equal amounts to all claimants subject to no one receiving more than his
claim (Figure 1a). A third rule selects the awards vector at which the losses
experienced by all claimants are equal subject to no one receiving a negative
amount (Figure 1b). The formal definitions are as follows:

Proportional rule, P : For each N ∈ N and each (c, E) ∈ CN , P (c, E) ≡
λc, where λ ∈ R+ is chosen so as to achieve efficiency.

9By the notation RN we mean the Cartesian product of |N | copies of R indexed by the
members of N . Vector inequalities: x = y, x ≥ y, and x > y.
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Figure 1: The constrained equal awards and constrained equal losses
rules, and concede-and-divide. Their paths of awards are depicted here for a
claims vector c ∈ RN

+ , where N ≡ {1, 2}, such that c1 < c2.

Constrained equal awards rule, CEA: For each N ∈ N , each (c, E) ∈
CN , and each i ∈ N , CEAi(c, E) ≡ min{ci, λ}, where λ ∈ R+ is chosen so as
to achieve efficiency.

Constrained equal losses rule, CEL: For each N ∈ N , each (c, E) ∈ CN ,
and each i ∈ N , CELi(c, E) ≡ max{0, ci − λ}, where λ ∈ R+ is chosen so as
to achieve efficiency.

The following two rules will also play a role in our analysis. The first one
is defined only for the two-claimant case (Figure 1c):

Concede-and-divide, CD: For |N | = 2. For each (c, E) ∈ CN and each

i ∈ N , CDi(c, E) ≡ max{E − cj, 0}+
E−∑

N max{E−ck,0}
2

.

The next rule can be understood as a hybrid of the constrained equal
awards and constrained equal losses rules. In the two-claimant case, it coin-
cides with concede-and-divide:

Talmud rule, T : For each N ∈ N , each (c, E) ∈ CN , and each i ∈ N ,

Ti(c, E) ≡
{

min{ ci

2
, λ} if E ≤ ∑

ci

2
,

ci −min{ ci

2
, λ} otherwise,

where in each case, λ ∈ R+ is chosen so as to achieve efficiency.

Finally are weighted versions of the constrained equal awards rule de-
signed to inflect the choice in favor of claimants who are perceived as more
deserving. For each i ∈ N, let wi ∈ R++ be claimant i’s weight, and
w ≡ (wi)i∈N.
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Weighted constrained equal awards rule with weights w ∈ RN++,

CEAw: For each N ∈ N , each (c, E) ∈ CN , and each i ∈ N , CEAw
i (c, E) ≡

min{ci, wiλ}, where λ is chosen so as to achieve efficiency.

Many tests have been devised for the evaluation of rules.10 Our focus
is on one that has been important not only in our current context, but in
virtually all of the various models of game theory and the theory of resource
allocation that have been the object of recent axiomatic analysis. Here, it
involves checking whether, when some claimants leave with their awards and
the situation is re-evaluated at that point, the rule recommends for each of
the remaining claimants the same award as initially. The requirement is that
equality of initial and final awards should always hold for them.11

Consistency: For each N ∈ N , each (c, E) ∈ CN , and each N ′ ⊂ N , if
x ≡ S(c, E), then xN ′ = S(cN ′ ,

∑
N ′ xi).

12

A variant of consistency that is often considered, bilateral consistency,
is obtained by requiring that there be only two remaining claimants.

Many rules are consistent, the proportional, constrained equal awards,
constrained equal losses, and Talmud rules being among them.

We will also refer to the requirements that a rule should assign equal
amounts to two claimants with equal claims, and more generally, that it
should be invariant under renamings of claimants; finally, that it should
assigns amounts that are non-decreasing functions of the amount to divide:

Equal treatment of equals: For each N ∈ N , each (c, E) ∈ CN , and each
pair {i, j} ⊆ N , if ci = cj, then Si(c, E) = Sj(c, E).

Anonymity: For each N ∈ N , each (c, E) ∈ CN , each π ∈ ΠN , and each
i ∈ N , Sπ(i)((cπ(j))j∈N , E) = Si(c, E).

Resource monotonicity: For each N ∈ N , each (c, E) ∈ CN , and each
E ′ > E, if

∑
ci ≥ E ′, then S(c, E ′) = S(c, E).

10See Thomson (2003) for a survey of this literature.
11Its first applications to claims resolution are due to Aumann and Maschler (1995) and

Young (1987).
12Note that since we require rules to be such that for each i ∈ N , 0 ≤ xi ≤ ci, then the

sum of the claims of the remaining claimants is still at most as large as the amount that
remains to divide, and therefore the problem (cN ′ ,

∑
N ′ xi) is well-defined.
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4 General technique

As noted in the introduction, the logic underlying our argument bears some
familiarity to reasoning encountered in the axiomatic theory of bargaining in
connection with the formulation of generalizations of the so-called “egalitar-
ian solution”. A brief discussion will be useful. A bargaining game with
player set N is a compact, convex, and comprehensive13 subset of utility
space RN

+ . A bargaining solution selects for each game a point of it. A
monotone path solution is defined by means of a continuous and mono-
tone path emanating from the origin and unbounded above. The path is
fixed in advance and the solution selects for each game its maximal undom-
inated point in the path.14 In the variable population context, a monotone
path should be selected for each population of players, and this list of paths
should be such that for each population N ∈ N and each subpopulation
N ′ ⊂ N , the projection of the path for N onto the utility space pertaining to
N ′ is a subset of the path for N ′. This requirement on the projections is what
is needed to guarantee certain properties such as “population-monotonicity”
and a form of “consistency”.15

Now, returning to our problem of claims resolution, the consistency of
a rule says that for each population of claimants N ∈ N and each claims
vector c ∈ RN

+ , the path of awards of the rule for c, when projected onto the
coordinate subspace relative to any N ′ ⊂ N should be a subset of its path of
awards for cN ′ . If a rule is resource monotonic in the two-claimant case, that
is, if for each claims vector, it assigns to each claimant an amount that is a
nowhere decreasing function of the amount to divide, and if it is consistent,
then it is resource monotonic for any number of claimants (Dagan and Volij,
1997; Hokari and Thomson, 2000): if the paths of awards are monotone in
the two-claimant case, they are monotone for any population of claimants.

13This means that for each pair x, y of elements of RN , if 0 5 y 5 x, and x is in the set,
then so is y.

14See Thomson and Myerson (1980).
15A bargaining solution is population monotonic if for each population of players N , for

each game this population may face, and each subpopulation N ′ of N , it selects a payoff
vector that is weakly dominated by the payoff vector it selects for the projection of this
game onto the subspace relative to N ′. It is consistent if for each population of players N ,
each game this population may face, and each subpopulation N ′ of N , the payoff vector it
selects for the reduced game associated with N ′ and the payoff vector chosen for the game
is the restriction to that subpopulation of that payoff vector. See Thomson and Lensberg
(1989) for details.
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Then, for each profile of claims indexed by the potential claimants, the list
of the paths of awards indexed by all finite subpopulations of the set of
potential claimants almost defines a monotone path solution as in bargaining
theory. We write “almost” because there are two differences. First, in our
present context, paths are not unbounded: by definition of a claims problem,
the amount to divide is never greater than the sum of the claims, so the
path for each claims vector is bounded above by this vector. Second, if the
amount to divide is equal to the sum of the claims, every claimant should be
fully compensated. Altogether then, and since the two-claimant rules that
we consider are resource monotonic, the projection of the path relative to
any population of claimants onto the subspace relative to any subpopulation
coincides with the path for that subpopulation, as opposed to simply being
a subset.

Conversely, and supposing that the paths of awards of a consistent rule are
given for the two-claimant case, how does one construct its paths of awards for
larger populations? Our main purpose is to develop a geometric construction
to answer such questions. To explain its logic, it is enough to limit our
attention to situations in which there are only three potential claimants,
indexed by i ∈ N ≡ {1, 2, 3}. Let S be a rule defined on

⋃
N ′⊆N CN ′

. Let

c ∈ RN
+ . Let Π3 be the path of S for c{1,2}, Π2 its path for c{1,3}, and

Π1 its path for c{2,3}. To construct its path for c, denoted Π, let for each
t ≥ 0, H(t) be the plane of equation x1 = t. Let us identify the point(s) of
intersection of H(t) with Π3 and its point(s) of intersection with Π2, and then
the point(s) of RN whose projections on R{1,2} and R{1,3} are these points
of intersection. The path Π has to include a subset of these points for its
projections on R{1,2} and R{1,3} to be Π3 and Π2. We then let t increase
from 0 to c1, causing the plane H(t) to move parallel to, and away from,
the {2, 3}-coordinate subspace. Depending on the multiplicities of the points
of intersection of H(t) with Π3 and Π2, which depend on the monotonicity
properties of these paths, Π may or may not be determined at this stage.
If not, we turn to its projection onto R{2,3}. This projection should be Π1.
Note that in the process just described, the three coordinates do not play
the same role, but we could have just as well started with a plane moving
parallel to R{1,3} or R{1,2}.

Example 1 The paths Π3 and Π2 are strictly monotone (Figure 2).

Then, Π can be entirely recovered from Π3 and Π2. Figure 2a shows the three
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Figure 2: Constructing the consistent extension of a strictly resource
monotonic two-claimant rule (Example 1). (a) The paths Π3, Π2, and Π1, from
which the three-dimensional path for c, Π, is to be constructed. (b) Constructing
Π from Π3 and Π2. (c) Projecting Π onto R{2,3}. (d) The four paths defining the
rule for c and its projections.
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Figure 3: Constructing the consistent extension of a resource mono-
tonic (but not strictly resource monotonic) two-claimant rule (Exam-
ple 2). (a) The path Π contains seg[m1,m2]. (b) Completion of the construction
of Π. Its projection onto R{2,3} is Π1.

two-dimensional paths. Figure 2b shows the plane H(t) and its intersections
with Π3 and Π2 for t = t1 and t = t2. These intersections are singletons.
For t = t1, they are the points labelled k1 and `1. The point in RN whose
projections onto R{1,2} and R{1,3} are these two points is called m1. It has to
be in Π and H(t1) should contain no other point of Π. For t = t2, we obtain
the points k2 and `2, and then m2. This point too has to be in Π, and again,
H(t2) should contain no other point of Π. As t ranges from 0 to c1, we trace
out Π in its entirety. Figure 2c shows that the projection of Π onto R{2,3} is
Π1 and Figure 2d shows the four paths for c and its three projections on the
three two-dimensional subspaces.

Example 2 The path Π3 is not strictly monotone but Π2 is (Figure 3).

The path Π3 contains a segment parallel to R{2}, seg[k1, k2] ⊂ H(t1) for
some t1. Since Π2 is strictly monotone, the intersection of H(t1) with Π2

is a singleton. Thus, we deduce the existence of a segment in Π parallel to
R{2}—seg[m1, m2]—and then, the existence of a segment in the projection
of Π onto R{2,3}—seg[n1, n2] (Figure 3a). (This implies that both Π and Π1

also fail strict monotonicity.) What is interesting about this example is that
the lack of strict monotonicity of Π3 in H(t1) does not prevent recovering Π
from the two paths (Figure 3b).
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Figure 4: Constructing the consistent extension of a resource mono-
tonic (but not strictly resource monotonic) two-claimant rule (Exam-
ple 3). (a) Here, Π3 contains a segment parallel to R{2}, seg[k1, k2], and Π2

contains a segment parallel to R{3}, seg[`1, `2]. The projection of Π onto R{2,3} is
contained in the shaded rectangle in R{2,3}. This projection connects n1 to n2, the
projections of m1 and m2. (b) To complete Π in the shaded rectangle in H(t1),
we use the fact that its projection on R{2,3} is Π1. The part of Π that lies in the
shaded rectangle in H(t1) will simply be a translate of the part of Π1 that lies in
the shaded rectangle lying in R{2,3} (this section of Π1 is not represented).
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Example 3 The paths Π3 and Π2 contain non-degenerate segments that
belong to a plane parallel to R{2,3} (Figure 4).

The paths Π3 and Π2 contain non-degenerate segments, seg[k1, k2] and
seg[`1, `2], both of which belong to H(t1) for some t1. Then Π cannot be
constructed from Π3 and Π2 alone. Indeed, for Π to satisfy the projection
requirements on R{1,2} and R{1,3}, it suffices that it contains any continuous
curve in H(t1) connecting m1 and m2. By resource monotonicity, the curve
should be weakly monotone, so it should lie in the rectangle in that plane
that we have shaded. However, there is one more requirement: the projection
of Π onto R{2,3} should be Π1. This requirement determines the shape of Π in
the shaded rectangle of H(t1). Since Π3 and Π2 fail strict monotonicity only
in the plane of equation x1 = t1, the construction of Π is otherwise uniquely
defined (as in Example 1).

The case of rules whose paths of awards are piece-wise linear is particu-
larly interesting because in applications it is very frequent, as shown by our
remaining examples as well as the other applications mentioned earlier. To
illustrate, and still supposing that N ≡ {1, 2, 3}, let c ∈ RN

+ . If the path
for c{1,2} has n3 kinks and the path for c{1,3} has n2 kinks, the path for cN

has at most n3 + n2 kinks, and by projection on R{2,3}, so does the path for
c{2,3}. If the paths were in general position, the number of kinks in Π would
actually be n3 + n2, and so would the number of kinks in its projection on
R{2,3}. However, there are two reasons why this sum may only be an upper
bound. First, a kink in Π3 and a kink in Π2 may have equal first coordinates.
Second, the projections of the first two kinks of Π onto R{2,3} may be lined
up with the origin, or the projections of three of its successive kinks may
be lined up. These possibilities are illustrated by the weighted constrained
equal awards and Talmud rules, discussed next.

Example 4 Weighted constrained equal awards rules (Figure 5).

To specify such a rule, we need a positive weight vector for each two-claimant
population. For a consistent extension to exist, the weights have to be “con-
sistent”, and our construction brings out these requirements. Again, let
N ≡ {1, 2, 3}. Then the ratio of (i) the ratio of the weights assigned to
claimants 1 and 2 by the component of the rule pertaining to C{1,2}, and
(ii) the ratio of the weights assigned to claimants 2 and 3 by the component
of the rule pertaining to C{2,3} should be equal to the ratio of the weights as-
signed to claimants 1 and 3 by the component of the rule pertaining to C{1,3}.

15



-

6

®

x1

x2

x3

c

c{1,2}

c{2,3}
k1

`1

m1n1

Π3

Π2

Π1

Π

6H(c1)

®
H(c1)

(a)

-

6

®

x1

x2

x3

c

c{1,2}

`2 = c{1,3}

c{2,3}

m1

k2

m2
n2

Π3

Π2

Π1

Π

6H(c1)

®
H(c1)

(b)

Figure 5: Constructing the consistent extension of two-claimant
weighted constrained equal awards rules (Example 4). (a) The path Π
is determined from the origin to the point m1 at which it reaches H(c1) by its
projections onto R{1,2} and R{1,3}. (b) From m1 on, it could continue to c in some
arbitrary fashion in the shaded rectangle in H(c1) to meet the projection require-
ments on these spaces. However, its projection onto R{2,3} should be Π1, and this
determines the continuation uniquely.

The slope of the initial segment of Π3, seg[0, k1], is given by the weights as-
signed to claimants 1 and 2 in solving problems in C{1,2}. The slope of the
initial segment of Π2, seg[0, `1], is given by the weights assigned to claimants 1
and 3 by the component of the rule pertaining to C{1,3}. The point m1 is the
point of Π whose projections onto R{1,2} and R{1,3} are k1 and `1. Since its
projection onto R{2,3}, n1, is a point of Π1, we deduce the weights assigned
to claimants 2 and 3 by the component of the rule pertaining to C{2,3}. The
continuation of Π is determined from the knowledge that its projection on
R{2,3} is Π1.

Weighted constrained equal losses rules can be handled in a similar man-
ner.

Example 5 Talmud rule (Figure 6).

By examining its projections on R{1,2} and R{1,3}, we can determine Π un-
til the point m1 where it reaches H( c1

2
). The continuation of Π is determined

from the knowledge that its projection on R{2,3} is Π1. We only indicate
its continuation up to c

2
. The construction yields the path of awards of the
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Figure 6: Constructing the consistent extension of concede-and-divide.
Example 5: Talmud rule. As this simplifies the figure somewhat, we only indicate
the construction of Π up to c

2 . (a) Its initial segment, seg[0,m1], is determined by
looking at its projections Π3 and Π2 onto R{1,2} and R{1,3}. (b) It is completed
by looking at its projection Π1 onto R{2,3}.
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Figure 7: Three weighted averages of the constrained equal awards and
constrained equal losses rules. (a) The weight placed on the constrained equal
awards rule is greater than that placed on the constrained equal losses rule: λ1 = 4

5 .
(b) Equal weights are placed on the two rules. (c) A greater weight is placed on the
constrained equal losses rule than on the constrained equal awards rule: λ2 = 1

4 .

constrained equal awards rule when the claims vector is c
2
. The rest of Π is

obtained by concatenating to it the path of awards of the constrained equal
losses rule, also for c

2
.

5 A compromise between the constrained equal

awards and constrained equal losses rules

In our next application, we turn to a compromise between the constrained
equal awards and constrained equal losses rules. The compromise is defined
by averaging them. Given λ ∈ [0, 1], let Aλ ≡ λCEA + (1− λ)CEL denote
their weighted average with weights λ and 1−λ.16 The typical path of awards
of Aλ is shown in Figure 7 for three choices of λ, including the symmetric
case, when λ = 1

2
.

First, we assert that no weighted average of these two rules is consistent
unless all the weight is placed on one or all the weight is placed on the other.
This is shown by the following example: Let N ≡ {1, 2, 3} and (c, E) ∈ CN

16By this notation, we mean the rule that selects for each N ∈ N and each (c, E) ∈ CN

the award vector λCEA(c, E) + (1− λ)CEL(c, E).
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be defined by (c1, c2, c3, E) ≡ (10, 20, 30; 24). Then, Aλ(c, E) = λ(8, 8, 8) +
(1 − λ)(0, 7, 17) = (8λ, 7 + λ, 17 − 9λ). Now, let N ′ ≡ {1, 2}. To calculate
y ≡ Aλ(10, 20; 8λ + 7 + λ), we distinguish two cases. If λ ≤ 1

3
, then y =

λ(7+9λ
2

, 7+9λ
2

) + (1 − λ)(0, 7 + 9λ). Claimant 1’s award, λ(7+9λ
2

), is equal to
8λ, as required by consistency, only if λ = 0, but then Aλ = CEL. If λ > 1

3
,

then y = λ(7+9λ
2

, 7+9λ
2

)+ (1−λ)(9λ−3
2

, 10+ 9λ−3
2

). Claimant 1’s award, 19λ−3
2

,
is equal to 8λ only if λ = 1, but then Aλ = CEA.

Although no weighted average of the constrained equal awards and con-
strained equal losses rules is consistent unless the weights are always 0 or
always 1, the two-claimant version of such a rule may have a consistent ex-
tension for weights other than 0 or 1. However, we show below that this is
not the case, and that in fact allowing the weight to depend on the identity
of the two claimants does not help. For each N ∈ N with |N | = 2, let λN be
the weight placed on the constrained equal awards rule for that population
(and therefore 1 − λN is the weight placed on the constrained equal losses
rule). Note that anonymity is violated across two-claimant populations, but
is satisfied within each such population.

Theorem 1 There is no consistent extension of any weighted average of
the two-claimant constrained equal awards and constrained equal losses rules,
unless for each two-claimant population, all the weight is placed on the former
or all the weight is placed on the latter. In the first case, the constrained equal
awards rule is applied for each two-claimant population and the extension is
the constrained equal awards rule. In the second case, it is the constrained
equal losses that comes out.

Proof: For each N ∈ N with |N | = 2, let λN ∈ [0, 1]. Let us suppose
that there is a consistent rule S such that for each N ∈ N with |N | = 2,
S = AλN

. We will show that this is possible only if for each N ∈ N with
|N | = 2, λN = 1, or for each N ∈ N with |N | = 2, λN = 0. We will do so by
considering the population of claimants N ≡ {1, 2, 3} when their claims are
c ≡ (2, 4, 6).

Since, for each N ∈ N with |N | = 2, S = AλN
, we know the paths of

awards of S for (c1, c2), (c1, c3), and (c2, c3). They are illustrated in Figure 8
for λ{1,2} = λ{1,3} = λ{2,3} = .8. Using notation that reflects their dependence
on the weights, they are:

• Π3(λ
{1,2}) = bro.seg[(0, 0), a(λ{1,2}), b(λ{1,2}), (c1, c2)]
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• Π2(λ
{1,3}) = bro.seg[(0, 0), d(λ{1,3}), (c1, c3)]

• Π1(λ
{2,3}) = bro.seg[(0, 0), e(λ{2,3}), f(λ{2,3}), (c2, c3)]

Let us call Π the path of awards of S for c and Π′
1 its projection onto

R{2,3}.

(i) λ{1,2} = 0 and λ{1,3} > 0. The plane H(0) = R{1,2} contains seg[(0, 0), (0, 2)],
the first segment of the path for (c1, c2), and it intersects the path for (c1, c3)
only at the origin. Thus, the path for c starts with seg[(0, 0, 0), (0, 2, 0)] and
its projection onto R{2,3} starts with seg[(0, 0), (2, 0)] (in Figure 9a, these
three segments coincide, and in our previous notation, k1 = m1 = n1). This
is in violation of what we know of the path for (c2, c3) (the situation is similar
to that encountered in Example 2).

(ii) λ{1,2} > 0 and λ{1,3} = 0. The plane H(0) = R{1,2} intersects the
path for (c1, c2) only at the origin, and it contains seg[(0, 0), (0, 4)], the
first segment of the path for (c1, c3). Thus, the path for c starts with
seg[(0, 0, 0), (0, 0, 4)] and its projection onto R{2,3} starts with seg[(0, 0), (0, 4)]
(in Figure 9b, these three segments coincide, and in our previous notation,
`1 = m1 = n1). This is in violation of what we know of the path for (c2, c3).

(iii) λ{1,2} = λ{1,3} = 0. This assumption means that S = CEL for prob-
lems involving either {1, 2} or {1, 3}. Analysis similar to that of Example 4
leads us to S = CEL.

(iv) λ{1,2} > 0 and λ{1,3} > 0. Figure 10a shows the case when λ{1,3} is
“not too small” in relation to λ{1,2}, so that the kink reached first by H(t), as
t increases from 0, belongs to Π(λ{1,2}). For λ{1,3} sufficiently small in relation
to λ{1,2}, the kink reached first would be in Π(λ{1,3}). As t increases from 0,
the plane H(t) intersects Π3(λ

{1,2}) and Π2(λ
{1,3}) at points that first belong

to seg[0, k1] and seg[0, `1] in Figure 10a. If in fact, λ{1,2} = λ{1,3}, Π begins
with a segment that lies in the plane of equation x2 = x3 (seg[(0, 0, 0),m1]
in the figure), and its projection onto R{2,3} also begins with a segment of
slope 1. If λ{1,2} < λ{1,3}, this projection lies between the 45◦ line in R{2,3} and
the second axis, but is not contained in the 45◦ line. However, since c3 > c2,
for each λ{2,3}, the first segment of the path of S for (c2, c3) lies between
the 45◦ line in R{2,3} and the third axis. Thus, λ{1,2} ≥ λ{1,3}. Figure 10b
shows that the slope of the first segment of the projection Π′

1 of Π onto R{2,3}

has moved in the right direction (towards R{3})by choosing λ{1,2} > λ{1,3}.
By considering the claims vector (2, 6, 4), we conclude in a similar way that
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Figure 8: Proof of Theorem 1. Paths of awards for c{1,2}, c{1,3}, and
c{2,3}. In these illustrations, λ{1,2} = λ{1,3} = λ{2,3} = .8. Panel (a) shows the
path of Aλ{1,2}

for c{1,2}, panel (b) the path of Aλ{1,3}
for c{1,3}, and panel (c) the

path of Aλ{2,3}
for c{2,3}.
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Figure 9: Proof of Theorem 1; construction of the first segment of Π.
(a) This panel shows the case λ{1,2} = 0 and λ{1,3} > 0. (b) This panel shows the
case λ{1,2} > 0 and λ{1,3} = 0.
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Figure 10: Proof of Theorem 1; construction of the first segment of Π.
(a) This panel shows the construction if λ{1,2} = λ{1,3} > 0 (we use λ for both).
The projection of the first segment of Π onto R{2,3} (the first segment of Π′1) is
different from the first segment of Π1(λ{2,3}) (not represented). (b) This panel
shows the case λ{1,2} > λ{1,3} > 0, the points `1, m1, and n1 being replaced by
the points `1′ , m1′ , and n1′ (k1′ is actually equal to k1). We use the notation
a ≡ λ{1,2} 2−λ{1,3}

λ{1,3} .
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λ{1,2} ≤ λ{1,3}. Thus, λ{1,2} = λ{1,3}. Then, as already noted, Π begins with
a segment in the plane of equation x2 = x3 and its projection on R{2,3} has
slope 1. This implies that the first segment of the path for (c2, c3) has slope 1.
This is possible only if λ{2,3} = 1. This argument can be applied to deduce
that λN = 1 for each other N ∈ N with |N | = 2. Indeed, all three weights
are positive, and any two of them being positive implies that the third one
is 1. Now, the analysis of Example 4 can be invoked. We conclude that
S = CEA. ¤

6 A compromise between the constrained equal

awards and proportional rules, and a com-

promise between the constrained equal losses

and proportional rule

For our final application, we consider a family of two-claimant rules that offer
a compromise between equality and proportionality (to claims). Equality of
awards is natural if there is little to divide—differences in claims seem irrel-
evant then—but at some point, when the amount to divide is large enough,
one should start recognizing these differences, and proportionality comes to
mind. The first component of our definition is also part of the justification
offered by Aumann and Maschler (1985) for the Talmud rule. Another ingre-
dient to these authors’ definition is duality, whereas here, our second main
ingredient is proportionality. The question is where the switch should occur
from equality to proportionality. We propose a flexible definition that allows
to vary the emphasis on one or the other of the principles.

Given N ∈ N , let eN be the vector of all ones in RN . Let N ∈ N be given
with |N | = 2. For each c ∈ RN

+ , let a(c) ∈ R+ be such that 0 ≤ a(c) ≤ min ci.
Then, let the path of awards for c be bro.seg[(0, 0), a(c)eN , c] (Figure 11a).
To each function a : RN

+ → R+ satisfying the inequalities stated above is
associated a rule on CN . Note that if the two coordinates of c are equal, for
each a(c) ∈ [0, min ci], the path of awards for c is seg[(0, 0), c]. Let AN be
the family of rules so defined.

Of course, one could imagine a smoother way of passing from equality to
proportionality, but the two-regime feature of our definition has the merit
of simplicity. Also, it produces two important rules as special cases, the
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proportional rule if, for each c ∈ RN
+ , a(c) = 0, and the constrained equal

awards rule if, for each c ∈ RN
+ , a(c) = min ci. Finally, it corresponds to the

intuition of some experimental subjects.17

We also offer a symmetric way of compromising between the proportional
and constrained equal losses rules. Again, let N ∈ N with |N | = 2. For
each c ∈ RN

+ , let a(c) ∈ R+ be such that 0 ≤ a(c) ≤ min ci. Then, let the
path of awards for c be bro.seg[(0, 0), c − a(c)eN , c] (Figure 11b). To each
function a : RN

+ → R+ satisfying the inequalities stated above is associated
a rule on CN . Here too, if the two coordinates of c are equal, for each
a(c) ∈ [0, min ci], the path of awards for c is seg[(0, 0), c]. Let BN be the
family of rules so defined. We obtain as special cases the proportional rule if,
for each c ∈ RN

+ , a(c) = 0, and the constrained equal losses rule if, for each
c ∈ RN

+ , a(c) = min ci.
An alternative way to reach this second definition is through the concept

of duality alluded to earlier. The dual of a rule S divides what is available
in the manner in which S divides “what is missing” (the difference between
the sum of the claims and the amount available).

Dual of rule S, Sd: For each (c, E) ∈ CN , Sd(c, E) ≡ c− S(c,
∑

ci − E).

It is easy to see that for each a : RN
+ → R+ such that for each c ∈ RN

+ ,
a(c) ∈ [0, min ci], the member of AN associated with a and the member of
BN associated with a are dual.

We will show that if a rule coincides, for each N ∈ N such that |N | = 2,
with a member of AN , and is consistent, then for each two-claimant popu-
lation, the function giving the breakpoints (the function a of the definition)
takes a very simple form, as it depends on a single parameter chosen in
R̄ ≡ R ∪∞; that this parameter is the same for each of these populations—
let us call it α; and finally, that for arbitrarily many claimants, a path of
awards first follows the path of the constrained equal awards rule until all
agents whose claims are at least α have received α, and it concludes with a
segment to the claims vector.

17Carmen Bevia reported to me that several students in an undergraduate class in which
she had presented the subject made a proposal in that spirit. The family we define is a
special case of a definition according to which paths of awards consist of two segments.
Another special case of the two-segment definition is a family defined and characterized
by Moulin (2000) (Also, see Thomson, 2001). However, we have no axiomatic justification
for the general two-segment family, nor for the definition discussed here.
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Figure 11: Two ways of compromising between the constrained equal
awards and proportional rules. (a) To each claims vector c ∈ RN

+ is as-
sociated a number a(c) ∈ [0, min ci] such that the path of awards for c is
bro.seg[(0, 0), a(c)eN , c]. (b) Here, to each c ∈ RN

+ is associated a(c) ∈ [0, min ci]
such that the path for c is bro.seg[(0, 0), c− a(c)eN , c]

Rule Sα associated with α ∈ R̄: For each N ∈ N and each c ∈ RN
+ , the

path of awards of Sα for c is the path of the constrained equal awards rule
until all claimants whose claims are at least α have received α. It concludes
with a segment to c (if no agent’s claim is greater than α, this second segment
is degenerate).

Let S ≡ {Sα : α ∈ R̄}. Clearly, S0 = P and S∞ = CEA.

By duality, we obtain the following family:

Rule Rα associated with α ∈ R̄: For each N ∈ N and each c ∈ RN
+ ,

the path of awards of Rα for c, followed down from c, is the path of the
constrained equal losses rule until all claimants whose claims are at least α
have experienced a loss of α. It concludes with a segment to the origin (if no
agent’s claim is greater than α, this second segment is degenerate).

Let R ≡ {Rα : α ∈ R̄}. Here, R0 = P and R∞ = CEL.

Our next theorem spells out when the consistent extension question has
a positive answer for the first family of two-claimant rules. We obtain the
members of S:

Theorem 2 A rule coincides, for each two-claimant population N , with a
member of AN , and is consistent, if and only if it is a member of S.

Proof: First, it is clear that all rules in S satisfy the two requirements of
the theorem. Conversely, let S be a rule satisfying the requirements. We
show that there is α ∈ R̄ such that S = Sα.
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Figure 12: Proof of Theorem 2: Identifying the parameter α associated
with a member of the family A (Case 2, Step 1, Substep 1-1). (a) Here, (i)
holds: β ≡ a(c̄1, c3) = 0. (b) Here, (ii) holds: 0 < β < c̄1.
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Figure 13: Proof of Theorem 2: Identifying the parameter α associated
with a member of the family A (Case 2). (a) Substep 1-1 when (iii) holds:
β = c̄1. (b) Substep 1-2: paths of awards for c and c{2,3} when α = β. Each
consists of two segments.
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Case 1: For each N ∈ N with |N | = 2 and each c ∈ RN
+ , a(c) =

min ci. Then, S coincides with the constrained equal awards rule in the
two-claimant case. Applying the analysis for Example 4 to the special case
when the weights are equal, we conclude that S = CEA in general, that is,
S = S∞.

Case 2: There is N̄ ∈ N with |N̄ | = 2 and c̄ ∈ RN̄
+ such that a(c̄) <

min c̄i. Let α ≡ a(c̄). To simplify notation, suppose that N̄ = {1, 2}.
Step 1: For each N ∈ N with |N | = 2 and each c ∈ RN

+ with
α ≤ min ci, a(c) = α.

We introduce agent 3 and prove the following limited version of Step 1:

Substep 1-1: for each c3 ∈ R+ such that c3 ≥ α and c3 6= c̄1, a(c̄1, c3) =
α (recall that if c3 = c̄1, we can choose a(c̄1, c3) arbitrarily in [0, c̄1]. Then,
we are done.)

Let N ′ ≡ {1, 2, 3}, and c′ ≡ (c̄, c3) ∈ RN ′
+ . Let β ≡ a(c̄1, c3). We show

that β = α. Suppose by contradiction that β 6= α. Since the path of S for c̄
is strictly monotone, we can determine in a unique manner its path for c′.
Figures 12 and 13 illustrate the argument for c̄1 < c̄2 and c3 > c̄1. This time,
we do not show Π.

(i) β = 0 (Figure 12a). The path for (c̄1, c3) is seg[(0, 0), (c̄1, c3)], a
segment whose slope is not 1. The path for c′ consists of two segments,
the first one of which does not lie in the plane of equation x2 = x3. Its
projection onto R{2,3} consists of two segments, the first one of which has a
slope different from 1. (There is one critical position of the moving plane,
H(α)).

(ii) 0 < β < c̄1 (Figure 12b). The path for c′ consists of three segments.
Its projection onto R{2,3} also does. (There are two critical positions of the
moving plane, H(α) and H(β)).

(iii) β = c̄1 (Figure 13a). A similar conclusion to that reached in (ii)
is obtained (the main difference in the geometry is that the third segment
in the path for c′ is parallel to the third axis, and that is also the case for
the path for its projection onto R{2,3}). (There is one critical position of the
moving plane, H(α)).

In any of the three cases, the projection of the path for c′ onto R{2,3} does
not coincide with the path for (c̄2, c3), in violation of consistency.
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If c3 < c̄1, the inequalities defining case (ii) are replaced by 0 < β < c3

and the equality defining case (iii) is replaced by β = c3, but the analysis is
otherwise the same.

Thus, Substep 1-1 is proved.

Substep 1-2: remaining cases. Instead of starting from (c̄1, c̄2) ∈ R{1,2}
+

and introducing claimant 3, we start from (c̄1, c3) ∈ R{1,3}
+ , c3 being arbitrarily

subject to c3 ≥ α, and introduce claimant 2. The same argument tells us
that for each c2 ∈ R+ such that c2 ≥ α and c2 6= c3, a(c̄1, c2) = α. At
the same time, we deduce that the path for (c̄1, c2, c3), constructed from the
paths for (c̄1, c2) and (c̄1, c3), is bro.seg[(0, 0, 0), αeN ′ , (c̄1, c2, c3)], and that
its projection on R{2,3} is bro.seg[(0, 0), αe{2,3}, (c2, c3)], so that a(c2, c3) = α
(Figure 13b). Thus, we have established Step 1 for N = {2, 3}.

Instead of adding claimant 3 to the population N̄ , we could have added
any j ∈ N \ N̄ and then have substituted any claimant k for claimant 2,
thereby establishing Step 1 for each N ∈ N with |N | = 2. (Alternatively,
we could extend the conclusion reached for {2, 3} to each other two-claimant
population by exploiting the fact that equal treatment of equals and consis-
tency imply anonymity.)

Step 2: For each N ∈ N with |N | = 2 and each c ∈ RN
+ with

min ci < α, a(c) = min ci. Suppose by contradiction that the statement
fails for some N∗ ∈ N : there is c∗ ∈ RN∗

+ with min c∗i < α such that β ≡
a(c∗) < min c∗i . Then, by Step 1, we deduce that for each c ∈ RN∗

+ such that
β ≤ min ci, and in particular for each c ∈ RN∗

+ such that α ≤ min ci, a(c) = β.
However, any such c is also covered by Step 1, which gives us a(c) = α. These
two conclusions are in contradiction if c has unequal coordinates.

We have now shown that S coincides with Sα on
⋃

N∈N ,|N |=2 CN .

Step 3: S = Sα. Reasoning analogously as in Example 4, we conclude
that, for each N ∈ N and each c ∈ RN

+ , the path of S for c follows the path
of the constrained equal awards rule until each claimant i ∈ N has received
min{ci, α} and continues in a linear way to c. This is what Sα recommends.

¤

By duality, we obtain a parallel characterization of the family R.

Theorem 3 A rule S coincides, for each two-claimant population N , with
a member of BN , and is consistent, if and only if it is a member of R.
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Figure 14: Parametric representations of the members of A and B as-
sociated with α ∈ R+. (a) We choose λ̄ > α and select, for each c0 ∈ R+, the
function fα(c0, .) whose graph follows the 45◦ line up to min{c0, α} and continues
in a linear way to (λ̄, c0). (b) If α < ∞, we choose λ̄ > α and select, for each
c0 ∈ R+, the function gα(c0, .) whose graph is the line segment from the origin to
(λ̄ − c0, 0) if c0 ≤ α and to (λ̄ − α, c0 − α) otherwise, and the segment (its slope
is 1) to (λ̄, c0).

We conclude by giving an alternative description of the members of S and
R. A rule S has a parametric representation (Young, 1987) if there is
a function f : [λ, λ̄] × R+ → R+, where λ, λ̄ ∈ R̄, such that for each c0 ≥ 0,
f(c0, .) is continuous and nowhere decreasing, f(c0, λ) = 0 and f(c0, λ̄) = c0,
and for each N ∈ N and each (c, E) ∈ CN , the awards vector S selects is
(f(ci, λ))i∈N , where λ ∈ [λ, λ̄] solves

∑
N f(ci, λ) = E. Any rule satisfying

equal treatment of equals, continuity (the requirement that small changes in
the data of the problem should not lead to large changes in the awards vector
that is selected), and consistency has a parametric representation (Young,
1987). Since the rules in A and B satisfy these axioms, they have parametric
representations.

Rule Sα can be given the representation fα defined as follows: let λ = 0
and λ̄ > α, and for each c0 ≥ 0, let fα(c0, .) be the function whose do-
main is [λ, λ̄] and whose graph is bro.seg[(0, 0), (c0, c0), (λ̄, c0)] if c0 ≤ α and
bro.seg[(0, 0), (α, α), (λ̄, c0)] otherwise (Figure 14a).

Rule Rα can be given the representation gα defined as follows: let λ = 0,
λ̄ > α, and for each c0 ≥ 0, let gα(c0, .) be the function whose domain
is [λ, λ̄] and whose graph is bro.seg[(0, 0), (λ̄ − c0, 0), (λ̄, c0)] if c0 ≤ α and
bro.seg[(0, 0), (λ̄− α, c0 − α), (λ̄, c0)] otherwise (Figure 14b).

The most delicate part of the proof of Theorem 2 is identifying the pa-
rameter α that characterizes each admissible rule. Once this parameter is
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identified, and once these representations are available, one can conclude by
appealing to the Elevator Lemma.

7 Concluding comments

1. Dagan and Volij (1997) observe that the projection implication of con-
sistency that is our point of departure can be described as transitivity of a
binary relation attached to each awards vector as follows (Kaminski, 2000,
2006, follows the same approach). Let S be a rule. Let N ∈ N and c ∈ RN

+

and let x be an awards vector of (c, E). Say that “agent i is treated too well
in relation to agent j at x” if for the problem (ci, cj, xi +xj), S assigns less to
agent i than xi (and therefore more to agent j than xj). Geometrically, this
means that (xi, xj) lies between the path of S for (ci, cj) and the i-th axis.
Now, if S is consistent and at x, (i) agent i is treated too well in relation
to agent j and (ii) agent j is treated too well in relation to agent k, then
(iii) agent i is treated too well in relation to agent k. Thus, the relation “to
be treated too well in relation to” attached to x is transitive. Conversely, if
S is not consistent, there is an awards vector x whose projection on R{i,j}
falls between its path for (ci, cj) and the i-th axis, whose projection on R{j,k}
falls between its path for (cj, ck) and the j-th axis, but whose projection on
R{i,k} does not fall between its path for (ci, ck) and the i-th axis. The goal
of our geometric technique is to constructively determine when these projec-
tions requirements are met, or how to specify rules in the two-claimant case
when several choices are available, for the projection requirements to be met.
A by-product of our analysis are vectors whose associated relations are not
transitive when no consistent extension exists.

2. When a two-claimant rule has no consistent extension, one can ask
whether it can be extended so as to satisfy some weaker notion of consistency.
Such a notion is proposed by Dagan and Volij (1997): a rule is average
consistent if for each population of claimants, each problem this population
may face, and each claimant in the population, the award it recommends
for this claimant is equal to the average of the awards it recommends for
the claimant in the associated two-claimant reduced problems relative to all
the subpopulations to which he belongs.18 Dagan and Volij show that if

18This idea is initially proposed for coalitional games by Maschler and Owen (1989).
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a rule is resource monotonic,19 it has an average consistent extension and
this extension is unique. Since weighted averages of the constrained equal
awards and constrained equal losses rules satisfy this property, this result
applies to them. In the light of the negative result we presented for the
weighted average of the constrained equal awards and constrained equal losses
rules, this extension can therefore be seen as the best means of compromising
between the ideas expressed by the two rules while preserving some measure
of consistency. The observation also applies to the other negative results
that we have obtained.

Also, if a two-claimant rule does have a consistent extension, average con-
sistency provides in principle another route to finding it. Indeed, the average
consistent extension of the rule would in fact coincide with its consistent ex-
tension. If not, the average consistent extension would violate consistency,
which we would find by exhibiting a counterexample. A difficulty in imple-
menting this strategy however is that calculating an average consistent ex-
tension may not be a trivial matter. Also, the method we developed has the
advantage of addressing directly the issue at hand, namely whether certain
projections requirements can be met. Nevertheless, it would be worthwhile
exploring whether the passage through average consistency might sometimes
lead to answers to the consistent extension question.

19Their main theorem is stated with the additional requirement of anonymity but they
observe later that it holds without it.
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