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AMBIGUITY, RISK AND ASSET RETURNS IN
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Zengjing Chen Larry Epstein*
July 2000

Abstract

Existing models of utility in stochastic continuous-time settings assume that beliefs
are represented by a probability measure. As illustrated by the Ellsberg Paradox,
this feature rules out a priori any concern with ambiguity. This paper formulates
a continuous-time intertemporal version of multiple-priors utility, where aversion to
ambiguity is admissible. When applied to a representative agent asset market setting,
the model delivers restrictions on excess returns that admit interpretations reflecting
a premium for risk and a separate premium for ambiguity.

1. INTRODUCTION

1.1. Outline

It is intuitive that many choice situations feature ‘Knightian uncertainty’ or ‘ambiguity’
and that these are distinct from ‘risk’. The Ellsberg Paradox and related evidence have
demonstrated that such a distinction is behaviorally meaningful. However, the distinction
is not permitted within the subjective expected utility framework, or even more broadly,
if preference is ‘based on probabilities’ in the precise formal sense of (a slight variation of)
probabilistic sophistication [37]. Because continuous-time modeling has universally assumed
that preference is probabilistically sophisticated, it has focussed on risk and risk aversion as
the important characteristics of choice situations, to the exclusion of a role for ambiguity.
This paper presents a formulation of utility in continuous-time that permits a distinction
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was visiting the HKUST and U. Paris-Dauphine and while Chen was visiting INRIA; the hospitality of these
institutions is gratefully acknowledged. Financial support was provided by the National Natural Science
Foundation of China, the Young Foundation of Shandong U. and by the NSF (grant SES-9972442). We
have benefitted from discussions with Rose-Anne Dana, Nicole El Karoui, Lars Hansen, Xing Jin, Massimo
Marinacci, Angelo Melino, Jianjun Miao, Werner Ploberger, Martin Schneider, Nizar Touzi, Tan Wang and
especially Shige Peng. We are grateful also for the suggestions of two referees and Drew Fudenberg,.



between risk aversion and ambiguity aversion, as well as a further distinction between these
and the willingness to substitute intertemporally. This three-way distinction is accomplished
through an extension of stochastic differential utility [14] whereby the usual single prior is
replaced by a set of priors, as in the atemporal model of Gilboa and Schmeidler [28]. We
call the resulting model recursive multiple-priors utility.!

Our model of utility is the continuous-time counterpart of that in [23, 24].> A small part
of the value-added here is that, by exploiting recent advances in understanding the precise
behavioral meaning of ambiguity (aversion), we are able to provide firmer foundations for
claims regarding the role of ambiguity in utility and implied behavior.? For example, there
is no counterpart in [23, 24] of Theorems 4.1 or 4.4, the latter of which formalizes the noted
three-way separation and justifies our use of terms such as ‘ambiguity premium’.

However, the main value-added relative to discrete-time models is in tractability for ap-
plications. It is well known that continuous-time modeling affords considerable analytical
advantages, which is the reason that it is the dominant framework in finance. These analyt-
ical advantages are manifested here in our application of recursive multiple-priors utility to
a representative agent asset pricing setting to study the effects of the ambiguity associated
with asset returns. We show (Section 5) that excess returns for a security can be expressed
as a sum of a risk premium and an ambiguity premium. We elaborate shortly (Section 1.3)
on the potential usefulness of such a result and more generally, of admitting that security
returns embody both risk and ambiguity, for addressing two long-standing empirical puzzles.
At this point, we wish to emphasize that none of the asset pricing results and potential ap-
plications discussed in this paper are discussed in [23, 24]. Their focus is on the connection
between ambiguity and the indeterminacy of equilibrium. In particular, a decomposition
of excess returns into risk and ambiguity premia is not presented, nor is it apparent in the
discrete-time framework, though it jumps off the page in the continuous-time setting.*

In the rest of this introduction, we revisit the Ellsberg Paradox, elaborate on potential
asset market applications and then discuss a related model of robust decision-making. In
Section 2, we proceed to the specification of recursive multiple-priors utility. This is accom-
plished in stages, beginning with an outline of the essential ingredients of the atemporal
model. Section 3 provides several examples. Properties of the utility function are examined
in Section 4. The application to asset pricing is provided in Section 5. Proofs are collected
in appendices.

ITo explain this nomenclature, note that stochastic differential utility is the continuous-time counterpart
of recursive utility [26].

2A formal demonstration that the present continuous-time model is a suitable limit of the Epstein-Wang
discrete-time model is the subject of work in progress [22].

3These recent advances include [19], [25] and [27].

4The potential applications of recursive multiple-priors utility are not limited to asset pricing; see Section

1.4.



1.2. Ellsberg Revisited

Though the Ellsberg Paradox is likely familiar to many readers, it may be useful to translate
it into our intertemporal setting. Consider, therefore, the following scenario: An investor
with horizon [0, 7] faces primitive uncertainty represented by a 2-dimensional state process
W, = (W}, W2). Consider four consumption programs {c’}4 ;. All have the structure

“T) ¢ fr<t<T,

where 0 < 7 < T and the random variables ¢ are given by

&= 1oy = Liwica, € = Lavzaa), & = Linzea-

In particular, for each consumption process all uncertainty is resolved at 7. Consider the
following rankings:

N A R (1.1)

A possible interpretation is that W' describes the state of the ‘home’ economy (measured
by the level of the Dow Jones, for example) and W2 describes the state of the ‘foreign’
economy (measured by the Hong Kong Hang Seng index). The investor feels that W’ is as
likely to exceed a; as to fall short of it. At the same time, as an American, she is more
familiar with the NYSE, which leads her to prefer either bet on the Dow Jones to either
bet on the Hang Seng index. These preferences are impossible, (assuming that each event
{W" = a;} is viewed as null), if rankings are based on probabilities. That is because then
¢t ~ ¢ and ¢ ~ ¢* imply that each of the above 4 events has probability 1/2 which leaves
no room for a distinction between betting on the home stock index versus the foreign index.
The general point is that while a probability measure can represent likelihood assessment,
it cannot model also the other dimensions of beliefs emphasized by Knight [34] and Keynes
[33], namely, confidence in that likelihood assessment or the weight of supporting evidence.
We follow Ellsberg in using ‘ambiguity’ and ‘ambiguity aversion’ in referring to this added
dimension. We have more to say below on the precise meaning of these terms (Section 4).

The standard expected additive utility function in continuous-time specifies time ¢ utility

by

t

T
Vi = E l/ e F D (e ds | F (1.2)

where ¢ is a consumption process, F; denotes information available at time ¢ and the ex-
pectation is computed with respect to the probability measure that represents beliefs. The
representation of beliefs through a single probability measure imposes a priori the decision-
maker’s indifference to ambiguity. Many generalizations of (1.2) have been studied and ap-
plied, where intertemporal nonseparabilities are introduced in order to accommodate habit
formation, learning-by-doing or a distinction between risk aversion and intertemporal sub-
stitution [14], for example. However, all of these models are probabilistically sophisticated
(in the sense of Section 4.1) and thus exhibit indifference to ambiguity as an a priori feature.
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1.3. Ambiguity in Asset Markets

The importance of the Ellsberg Paradox is that it is strongly suggestive of the importance
of ambiguity also in nonexperimental settings. Asset markets provide an obvious instance.
The risk-based models that constitute the paradigm in this literature have well documented
empirical failures; and introspection suggests (at least to us) that ‘ambiguity’ is at least as
prominent as risk in making investment decisions. An illustration of the potential usefulness
of recognizing the presence of ambiguity is provided by the equity premium puzzle [41] - the
failure of the representative agent model to fit historical averages of the equity premium and
the risk-free rate. One aspect of the puzzle is that an implausible degree of risk aversion is
needed to rationalize the observed equity premium. Naturally, the equity premium is viewed
as a premium for the greater riskiness of equity. The alternative view that is suggested by
our analysis is that part of the premium is due to the greater ambiguity associated with the
return to equity, which reduces the required degree of risk aversion.

Another potential role for ambiguity is in addressing the home-bias puzzle, whereby
investors in many countries invest ‘too little’ in foreign securities. Naturally, ‘too little’
is from the perspective of a model where securities are differentiated only via their risk
characteristics. However, if foreign securities are more ambiguous than domestic ones, much
as 1llustrated by the above Ellsberg-type example, then admitting this possibility into the
model may help to resolve the puzzle. This approach has been developed, with some success,
in [21].°

To provide some perspective on our modeling approach based on ambiguity, consider two
issues that may have already occurred to readers, namely, (i) observational equivalence and
(ii) learning.

For (i), consider the alternative deviation {rom rational expectations modeling whereby
we continue to assume probabilistic sophistication (a single prior) but relax the rational
expectations hypothesis that the agent knows and employs the true probability law. This
approach is adopted in [1] and [8] in order to address the equity premium puzzle. Our model
ultimately delivers a ‘distorted probability measure’, selected endogenously from the agent’s
set of priors, that would deliver the identical representative agent equilibrium were it adopted
as a primitive specification of beliefs. In spite of this form of observational equivalence, our
approach has several advantages.

First, there is an appeal to basing an explanation of asset market behavior on a phe-
nomenon, namely ambiguity aversion, that is plausibly important in a variety of settings,
rather than on a particular and invariably ad hoc specification of erroneous beliefs. Second,
an agent using the wrong probability measure may plausibly be aware of this possibility and
thus be led to seek robust decisions. Such self-awareness and a desire for robust decisions
lead naturally to consideration of sets of priors.

Finally, while it is true that any excess return that can be generated by our model could
also be delivered by a model in which equity is viewed exclusively as risky but where perceived
riskiness is relative to erroneous beliefs, the latter story would still require a large degree of

®Once again, continuous-time plays an important role.



risk aversion and thus would not resolve the puzzle as posed by Mehra and Prescott. Put
another way, the puzzle concerns not only the historical equity premium but also behavior
in other settings and introspection regarding plausible choices between hypothetical lotteries
- these are used to determine the range of plausible risk aversion. Implicit is that the
prospects involved in all these settings are purely risky, justifying the transfer of preference
parameters across settings. Our working hypothesis is that prospects faced in asset market
are qualitatively different than hypothetical lotteries where prizes are determined by the
outcome of a coin flip, for example.

The second natural question concerning our model is “would ambiguity not disappear
eventually as the agent learns about her environment?” For example, given an Ellsberg urn
containing balls of various colors in unknown proportions, it is intuitive that the true color
composition would be learned asymptotically if there is repeated sampling (with replacement)
from the urn. However, intuition is different for the modified setting where there is a sequence
of ambiguous Ellsberg urns, each containing balls of various colors in unknown proportions,
and where sampling is such that with the n'* draw is made from the n'® urn. Suppose
further that the agent views the urns as ‘identical and independent’.® Given such a prior
view, one would not expect ambiguity to vanish. Indeed, Marinacci [38] proves a LLN
result appropriate for beliefs represented by a set of priors in which the connection between
empirical frequencies and asymptotic beliefs is weakened to a degree that depends on the
extent of ambiguity in prior beliefs. Asymptotically, the decision-maker believes that the
limit frequency of any given color lies in an interval, where the interval collapses to a point if
there is no ambiguity in prior beliefs but not more generally. While Marinacci’s framework
does not accommodate our continuous-time setting, his analysis is nevertheless strongly
suggestive, with the increments {dW; : t > 0} of the driving state process (W;) constituting
the counterpart of the set of Ellsberg urns.” (See the end of Section 2.4 for further discussion
of learning.)

1.4. Robustness

A related and independently developed model, with similar motivation, is described in [3].
In describing motivation for their surrounding research agenda, Hansen and Sargent [30]
translate Ellsberg-type phenomena and speak in terms of agents (consumer/investors or
macroeconomic policy makers) facing model uncertainty and therefore secking to make de-
cisions that are robust to this uncertainty. Though their model bears some relation to the
Gilboa-Schmeidler multiple-priors model and to ours, that relation is more one of spirit rather
than precise form as it is here (they have no counterpart of (3.6), for example). Nevertheless,

6Given a set P of priors on a state space I1Y_, 2, denote by P, the set of marginals on ©,. Following
[28, p. 150], say that the €),’s are independent under P if P coincides with the closed convex hull of
P1®...Qpy : Py € Py, all n}. For an infinite Cartesian product, require the above property to hold
for TIY_,Q,, for all N. Marinacci [38, pp. 157-8] adopts a weaker notion of independence. Finally, define
‘identical’ in the obvious way, namely by P, = P,, for all n and m.

"The assumption that increments are ‘identical and independent’ is satisfied in the special case of our
model called IID ambiguity (Section 3.4); see also Theorem 4.5.



the commonality in motivation and spirit with our model suggests that the macroeconomic
applications discussed by these authors (see also [5]) are potential applications of our model
as well.

We will not discuss the substantial differences in formal details but there is an important
difference in emphasis between the two approaches that we would like to mention. The
approach in the cited papers, and also in the related discrete-time model [31], has its roots
in robust control theory rather than in decision theory. As a result, these authors give
less weight to behavioral foundations, for example, in order to justify interpretations for
utility parameters. These interpretations are based instead on what seems natural given
the functional form or on common practice in the robust control literature. However, if
the functional form is observable only indirectly through behavior, then to be empirically
meaningful, a notion of robust decision-making must be expressed in terms of observable (at
least in principle) choice behavior.® Corresponding behavioral foundations for our model are
provided by [25] and [27], which underly our Theorems 4.1, 4.3, 4.4 and 4.5, all of which play
a role in supporting the interpretations we suggest for our utility function and subsequent
analysis.

To illustrate the importance of focussing on behavior, note that, as emphasized in [3],
the model proposed there is formally a special case of stochastic differential utility, which,
as has already been observed, is probabilistically sophisticated. It follows that the model
of robust decision-making is inconsistent with the typical Ellsberg choices (1.1). However,
if it does not correspond to Ellsberg-type behavior, then what is ‘robust decision-making’?
It may very well be possible to provide a satisfactory answer to this question; our point is
simply that it is not addressed in [3] and the related literature.

2. MULTTPLE-PRIORS UTILITY

2.1. Atemporal Model

Consider an atemporal or one-shot choice setting where uncertainty is represented by the
measurable state space (2, F). The decision-maker ranks uncertain prospects or acts, maps
from Q into an outcome set X. According to the multiple-priors model, the utility U(f) of
any act f has the form:’

U(f) = min / u(f)dQ, (2.1)

QeP

8 A pertinent analogy is that in the vNM theory of preferences over lotteries, risk aversion is defined as
a property of preference - that any lottery F' is ranked below the lottery that delivers the mean of F' with
certainty. Concavity of the vINM index is a characterization of risk aversion, rather than its definition, and
it has significance only because it characterizes a property of preference.

9The set P is required to be weakly compact (the weak topology is that induced by the set of bounded
measurable functions) and convex. Because P and its closed convex hull generate the identical utility
function, closedness and convexity are normalizations that ensure uniqueness. See [28] for further details.
Note, however, that probability measures are assumed there to be only finitely additive, while we assume
countable additivity.



where u : X — R! is a von Neumann-Morgenstern utility index and P is a subjective set
of probability measures on (2, F). The subjective expected utility model is obtained when
the set of priors P is a singleton. Intuitively, the multiplicity of priors in the general case
models the ambiguity of the likelihoods of events and the infimum delivers aversion to such
ambiguity.

In anticipation of the technical requirements of continuous time, consider a specialization
of the multiple-priors model for which all priors in P are uniformly absolutely continuous
with respect to some P in P.!° Then P may be identified with its set I of densities with
respect to P, where H C L% (Q, F, P) is weakly compact. The identification is via

P = {hdP: h € H}.

For further details and behavioral implications of this added structure see [24, Section 2] and

[39).

2.2. Continuous Time
Consider a finite horizon model, where time t varies over [0, 7]. Other primitives include:
e a probability space (2, F, P)
e a standard d-dimensional Brownian motion W, = (W} ... W) " defined on (Q, F, P)

e the Brownian filtration {F;}o<i<r, where F; is generated by o(Wy : s < t) and the
P-null sets of F, Fpr = F.

The measure P is part of our description of the consumer’s preference and, for that purpose,
it is significant only for defining null sets; any equivalent (mutually absolutely continuous)
measure would do as well. In particular, P is not necessarily the ‘true’ measure (with the
exception of Section 5).

Consumption processes ¢ take values in C, a convex subset of R*.} Our objective is
to formulate a utility function on the domain D of C-valued consumption processes. It is
natural to consider a process of utility values (V}) for each ¢, where V; is the utility of the
continuation (¢g)s>¢ and Vg is the utility of the entire process c.

In the case of risk, where P represents the consumer’s assessment of likelihoods, Duffie
and Epstein [14] define stochastic differential utility (SDU). For any given ¢ in D, the SDU
process (V) is defined as the solution to the integral equation

T
vi= B[ e vhds| R, (2:2)
t

0P is uniformly absolutely continuous with respect to P if for every ¢ > 0 there exists § > 0 such that
E € F and P(F) < § imply Q(F) < &, VQ € P.

'1n this paper, z = (z;) denotes a process, by which we mean that it is: (i) progressively measurable,
that is, (for each t) @ : [0,¢] x (2,F;) — R’ is product measurable, and (ii) square integrable, that
is, K fOT |xs|2ds < 00. The set of all such processes is a Hilbert space under the obvious inner product.

Inequalities in random variables are understood to hold P a.e., while those involving stochastic processes are
understood to hold di @ dP a.e.



Here the function f is a primitive of the specification, called an aggregator. The standard
expected utility specification (1.2) is obtained in the special case f(c,v) = u(c) — Po.

The limitation of SDU from the present perspective is that because all expectations
are taken with respect to the single probability measure P, the consumer is indifferent to
ambiguity. In the next three sections, we describe a generalization of SDU in which the
consumer uses a set P of measures as in the atemporal multiple-priors model.

2.3. Density Generators

Our construction of the set P of measures on (€, Fr) begins here. To understand the nature
of the construction, think of a discrete-time event tree [12, p. 104], where nature determines
motion through the tree and where Fr describes the set of terminal states or events. Fix
a reference probability measure P on Fr. At each time and state in the tree, the decision-
maker’s conditional beliefs about the state to be reached next period are represented by a set
of densities with respect to the conditional measure induced by P. The set of densities deter-
mines a set of conditional probability measures over the state next period. Finally, the sets
of conditional-one-step-ahead measures for all time-state pairs can be combined in the usual
probability calculus way to deliver a set P of measures on Fr. (In this construction, admit
all possible selections of a conditional measure at each time-state pair.) In the corresponding
continuous-time construction, the process that delivers the counterpart of the (logarithm of)
a conditional-one-step-ahead density for each time and state is called a density generator; it
is defined formally below. The reason for restricting attention to sets of priors P constructed
in this way is explained following Theorem 2.3.

Turn to the formal details. A density generator is an R%-valued process 6 = (6,) satislying

1 (T 9
E |exp 5/]85]ds
0

The latter condition ensures [13, p. 288] that the process (z¢) is a P-martingale, where

< oo0. (2.3)

dzf = =220, - dW,, 25 =1, that is,

1 gt ¢
20 = expl—= |0, % ds — O,- dWyps, 0<t<T.
¢ 2 Jo 0

Because 1 = 2§ = F {zﬂ, 28 is a P-density on Fr. Consequently, 0 generates a probability

measure Q¢ on (2, F) that is equivalent to P, where
Q"(A) = E[1424], forall Ain Fr.
In other words,

o’ dQy

= Zp; more generally, —— = 2z, lor each 1. .
T A lly, —5 Y f h 2.4

T



In the special case where 0; = 0 for all ¢, then 2/ = 1 and QY = P. In order to permit
the decision-maker to have a nonsingleton set of priors (containing P), we specify a set © of
density generators (containing 0). As explained following Theorem 2.3, a central feature of

our model is that we specify © by beginning with a set {©;}ic01) of correspondences from
Q into R%. Thus, for each ¢, let
0,: O ~ R%L

Assume the following properties:

Uniform Boundedness There is a compact subset K in R? such that ©, : Q ~» K for
each t.

Compact-Convex FEach ©; is compact-valued and convex-valued.

Measurability The correspondence (t,w) +—— ©;(w), when restricted to [0,s] x Q, is
B([0, s]) x Fs-measurable for any 0 < s < T.!2

Normalization 0 € O,(w) dt ©® dP a.e.
Define the set of density generators by'?
© = {(0): O(w) € Ow) dt@dP a.e.}. (2.5)

Roughly speaking, (2.5) restricts © to equal the Cartesian product of its projections and
thus we refer to any © constructed in this way as being rectangular. An example of a set ©
that is excluded thereby is

© = {(0) : EVOT 10, ” ds

where ¢ > 0 is a parameter.

< /4, (2.6)

We proceed to describe the implied properties of © that will be used later. Say that ©
is stochastically convex if for any real-valued process (A;) with 0 < A, < 1,

0 and 0" in © implies that (M0, + (1 — \)0}) € ©.
Abbreviate L™ ([0,T] x Q, B([0,T]) @ Fr, dt @ dP) by L> ([0,T] x Q) and similarly for L.

Lemma 2.1. The set of density generators © satisfies:
(a) 0 € © and sup {|| 0 | r~qomx0): 0 € O} < oo,
(b) For any R%-valued process (o), there exists (07) € © such that

07 -0y =max 0;-0, = max vy oy. 2.7
t 0cO ye Oy Y (2.7)

(c) © is stochastically convex and weakly compact in L' ([0,T] x Q).

L2That is, {(t,w) € [0,8] x Q: O:(w) N K # 0} € B([0,s]) x F; for each compact K C K. See [2, section
14.12].
13 Uniform Boundedness ensures that (2.3) is satisfied by any # € © and hence that each Q is well-defined.
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Part (a) describes a normalization and also the norm-boundedness of ©. Though the exis-
tence of maxyce,(w) ¥ - 0+ is apparent for each (¢,w) pair, (b) ensures that the maximizers
07 (w) can be chosen to satisfy the measurability needed in order that " = (0}) constitute
a process. Then the single process 0" achieves the first maximum in (2.7) for every ¢ and
there is equality between the two maximizations shown.

The primitive {©;} can be represented in an alternative way that is sometimes more
convenient. Because each Oy is convex-valued, we can use the theory of support functions to
provide a reformulation of the preceding structure. Define

e(r) (w) = max y-x, xR (2.8)

ye@t(w)
Occasionally, we suppress the state and write simply et(a:). (In this notation, each of the
expressions in (2.7) is equal to e;(0¢).) It is well-known that, for each (¢,w), e:()(w) provides
a complete description of @t(w) in that the latter can be recovered from et(-)(w). Charac-
terizing properties of et(-)(w) include (Lipschitz) continuity, convexity, linear homogeneity

and non-negativity (because of Normalization).!* Further, by [2, Theorem 14.96], the above
Measurability assumption is equivalent to:

(t,w) — e(x)(w) is B(]0, s]) x Fs-measurable on [0, s] x Q for all (s,z) € (0,7] x R%

We use the support function primarily in the special case described in Section 3.4, where
e:(+)(w) is independent of both time and the state.

2.4. The Set of Priors

Given a set of density generators ©, the corresponding set of priors is
PO = {Q?: 0 €0 and @’ is defined by (2.4) }.

The set of priors inherits the following properties, many of which are counterparts of those
mentioned in Section 2.1 in the context of the atemporal multiple-priors model.

Theorem 2.2. The set of priors P© satisfies:
(a) P € Pe.
b) P€ is uniformly absolutely continuous with respect to P and each measure in P® is
34 34 P
equivalent to P.
( c) P is convex.
d) P® C cal (Q,Fr) is compact in the weak topology.'®
+ 35 P POLOZY.

" The proof of Lipschitz continuity is contained in the proof of Theorem 2.3.

LLet ba (2, Fr) denote the normed space of finitely additive real-valued functions on Fr with the total
variation norm. The weak topology on ba (£2, Fr) is that induced by the set B (2, Fr) of all bounded mea-
surable real-valued functions. cai (Q, Fr) denotes the subset of (countably additive) probability measures;
it inherits the above weak topology. Weak compactness is a stronger property than compactness in the
induced weak*-topology.

10



(e) For every £ € L? (Q, Fr, P), there exists Q* € P® such that

EQ*[S ’ ft] = min EQ[S ’ ft], OStST
QepP®
(f) For every deterministic 7 € [0,T] and every B € F;,
PO = {Q() = /{Q1< ’ f7>1B + Q2< ’ fT)lBC:| dQ?— {Ql}le - P®}7 (29>
where Q2 denotes the restriction of Q3 to F,.

Parts (a)-(d) are self-explanatory. By (d), mingepe Fgé exists for any £ in L' (Q, Fr, P),
a fortiori in L? (Q, Fr, P). Part (e) extends the existence of a minimum to the process of
conditional expectations.

Finally, consider (f), which is due to the rectangularity of ©, as defined by (2.5). The
direction ‘C’ is trivial, because any ) in P® can be represented as an element of the set
on the right by choosing each Q' equal to () and then applying the ordinary calculus for
combining marginals and conditionals of a given measure. The essential content of (f) is
the reverse direction ‘D’, whereby suitable combinations of marginals and conditionals of
different measures in P® yield another measure in P®. In this sense, P® is suitably large.
Part (f) can be strengthened in the obvious way to f{initely many stopping times rather than
the single deterministic time 7 as stated.

It is natural to ask which properties characterize the sets of priors that can be generated
via sets of density generators satisfying our regularity conditions. We provide only a partial
response.

A related question is how the process ¢ underlying some measure () can be derived from
Q) (reversing the direction of the argument surrounding (2.4)). The argument in [13, p.
289] may be adopted in response: Let () be any measure equivalent to P. Denote by &
its Radon-Nikodym density and define the martingale z; = FE[¢ | F;]. By the Martingale
Representation Theorem, there exists an R%valued process a; such that dz, = o - dW,.
Because @ is equivalent to P, (z) is a strictly positive process. Take 6y = —a;/z.. Then @
is generated from @ as in (2.4). Expressed alternatively, the process 6 underlying ) satisfies

4(dQ./dP) | (dQu/dP) = —0,-dW,, (2.10)

where @, is the restriction of @ to F; and dQ;/dP is its density with respect to P.
Consequently, if we begin with a set P of equivalent measures containing P, and define
© as the set of all processes # obtained in the way just described, then © is a candidate to
satisfy P = P®. It remains only to examine whether © is consistent with the construction
(2.5) and the preceding assumptions regarding the underlying primitive correspondences ©.
Because (2.10) permits one to recover © from P, one could determine restrictions on P
that would deliver the required properties for ©. However, the restrictions obtained in this
way, beyond those expressed in the Theorem, are not very illuminating and thus we do not
describe them. We content ourselves with pointing out that if P satisfies the appropriate

11



form of (2.9), then O satisfies the following condition related to the structure embodied in

.0): For each T, € /S an ‘-: C O, then (6;) € ©, where
2.5): F h 7, B€ F, and {#"}2_, C O, then (6;) € ©, wh

0, = (1{t27}><3 9% + 1{t27}><BC 8?) + 9? 1{t<7}'

Finally, consider again the issue of learning. As suggested in the previous section, ©; (w)
can be thought of as the set of conditional one-step-ahead densities (in logarithm) at (¢,w).
Because this set depends on data (through w), our general model permits learning. On the
other hand, the responsiveness to data permitted by our model is very general and we do not
yet have any compelling structure to add, for example, in order to illustrate the response of
ambiguity to observation. Thus our principle examples below (Sections 3.3 and 3.4) exclude
learning.

It may be useful to translate the preceding into the single-prior (and discrete-time) con-
text. Typically, the prior is over the full state space and learning amounts to Bayes Rule.
However, the Savage theory does not restrict this prior and its conditional one-step-ahead
updates are similarly unrestricted. We adopt the equivalent approach of beginning with
the updates and using them to construct the prior. In saying that we do not yet have an
interesting structure to suggest for conditional one-step-ahead updates, we are simply ac-
knowledging the widely recognized fact that there is no decision theory available that serves
to pin down the prior.

2.5. Definition and Existence of Utility

Let © and P® be as above. In addition and in common with SDU (see (2.2)), another
primitive component of the specification of utility is an aggregator f : C x R — R
Assume the following:

e [ is Borel measurable.

e Uniform Lipschitz in utility: There exists a positive constant k such that

|f(c,v) — fle,w)] < k|v—w|, forall(c,v,w) e C xR
e Growth condition in consumption: F {fOT 1?(e,0) dt} < oo forallece D.
We wish to generalize SDU by allowing the agent to employ the set P© of priors rather
than the single measure . On purely formal grounds, one is led to consider the following
structure: Fix a consumption process ¢ in 1. Then for each measure @) in P®, denote by

(V;Q) the SDU utility process for ¢ computed relative to beliefs given by @), that is, (V;Q) is
the unique solution (ensured by [14]) to

T
Ve — 1, V fles, V@)ds | F|, 0<t<T. (2.11)
t
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The structure of the atemporal multiple-priors model suggests defining utility as the lower
envelope

Vi = min V¥, 0<t<T. (2.12)
QePe
We will show shortly that (2.13) admits a unique solution (V;) for each ¢ in D. Thus
we can vary ¢ and obtain the utility function Vy(+), or simply V(-) or V. When we wish to
emphasize the underlying consumption process, we write (V(c)).
There are at least two important concerns regarding such a definition. First, it seems ad
hoc. For example, on purely formal grounds, one might adopt instead of (2.12) the following
alternative generalization of SDU:!®

T

Vi = min Ly l/ fles, Vi) ds | ft], 0<t<T. (2.13)
QeP® t

In fact, we show shortly that this alternative yields an equivalent definition of utility. Section

3.2 demonstrates further that this definition delivers the natural extension of the atemporal

multiple-priors model to a temporal setting.

A more practical concern regarding the above definition of utility is tractability, beginning
with dynamic consistency of (V;(+)).!” The next theorem shows that dynamic consistency
is satisfied. This is done in the usual fashion, namely by showing that the utility process
satisfies a recursive relation. Not surprisingly, the way to exploit fully the analytical power
afforded by continuous-time (both in order to prove dynamic consistency and for subsequent
analysis) is to express the recursive relation in differential terms. Accordingly, we show that
the utility process defined by (2.12) can be characterized alternatively as the unique solution
to a backward stochastic differential equation (BSDE).'®

To illustrate, notice that the SDU process (V;7) defined by (2.2) can be expressed alter-
natively as the unique solution to the BSDE

dvil = —f(c,, VEYdt + of - dW,, VI =0. (2.14)

In fact, because the volatility ¢! is endogenous and is part of the complete solution to the
BSDE, it is more accurate to say that “ (V' of) is a (unique) solution”. However, as
our focus is on the utility component of the solution, we abbreviate and write “ (V') is a
(unique) solution”; similar abbreviated terminology is adopted for most other BSDE’s that
arise in the paper. To see that the BSDE characterization follows from (2.2), observe that,
by the latter,

t T
v [ e =g | [T e as) 7.

L¥Note that (2.12) can be restated as V; = mingepe Fo UtT flcs, VR)ds | ft}.

1"Dynamic consistency, defined as in [14, p. 373], is the requirement that for all stopping times 7 and all
consumption processes ¢ and ¢’ satisfying ¢/ = ¢ on [0,7], P (V-(c) > V;(¢)) = 1 = W(d) = Vole),
with strict inequality holding if P (V,(c') > V:(¢)) > 0.

18See Appendix A for a brief outline and [18] for a comprehensive guide to the theory of BSDE’s, as well
as to previous applications to utility theory and derivative security pricing.
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which is a martingale under P. Thus the Martingale Representation Theorem delivers (2.14)
for a suitable process (0f) (that depends on ¢). This argument is readily reversed, using the
fact that fot of . dW, is a martingale, to establish that (2.14) implies (2.2).

A similar reformulation is possible for the SDU process (V;Q) defined in (2.11) and cor-
responding to an agent with probabilistic beliefs given by @ in P°. If Q = Q7 (see (2.4)),
then the Girsanov Theorem implies that (V;Q) solves the BSDE

4V = [~f(en Vi) + 0,-0F] di + of -, VE =0, (215)

In comparison with (2.14), the drift is adjusted by the addition of ¢, - o2 in order to account
for the fact that (W;) is not a Brownian motion under Q.
We are now ready to state our main theorem.

Theorem 2.3. Let © and f satisfy the preceding assumptions. Fix ¢ in D. Then:
(a) There exists a unique (continuous) process (V;) solving the BSDE

AV = |=f(er, Vi) + max O;- 0| dt + oy -dWs, Vi =0. (2.16)

(b) For each Q = Q° € P®, denote by (VtQ) the unique solution to (2.11), or equivalently to
(2.15). Then (V};) defined in (a) is the unique solution to (2.12) and there exists Q" € P®such
that .

V, =V, 0<t<T. (2.17)

(¢) The process (V;) is the unique solution to Vp = 0 and

m:minEQ[/ flesViyds + Vi | Bl 0<t<r<T. (2.18)
QcP® t

Part (b) refers to the initial definition (2.12). Part (a) is the BSDE characterization that
is the counterpart to (2.14). Setting 7 = T in (2.18) delivers (2.13) and thus the promised
equivalence between (2.12) and (2.13). More generally, (c¢) makes explicit the recursivity of
utility and justifies the name recursive multiple-priors utility for our model of utility.

Comparison of (2.16) and (2.13) yields some insight into our construction. If the volatility
of utility were denoted by —o; rather than oy, then the essential supremum in (2.16) would
be replaced by an essential infimum, paralleling (2.13). With this change of notation in
mind, the integral and differential characterizations reveal an equivalence between the global
minimization over P® and the continual instantaneous optimization over ©.

This equivalence is due to our construction of © via (2.5) as rectangular. It is easy to
understand the importance of (2.5). By (2.7), the maximum in (2.16) is equal to maxy,ce, Y-
0, the solution of which at every ¢ and w in general permits the optimizer more freedom

19The Girsanov Theorem and the Martingale Representation Theorem are the key tools that we employ
from stochastic calculus. They are standard in finance - see [13], for example. Section 4.2 explains further
the role of the Girsanov Theorem in our model.
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than does the global optimization problem in (2.12), where a single measure, or equivalently,
a single 6, must be chosen at time 0. Thus if one begins with a general nonrectangular set
© of density generators, local and global optimization would yield different results. There is
equivalence here because (2.5) imposes that © is the Cartesian product of its projections.

Given a nonrectangular ©, such as (2.6), then parts (a) and (b) of Theorem 2.3 would
yield distinct definitions of utility. Adopting the BSDE definition in (a) would deliver recur-
sivity and hence dynamic consistency, but not the multiple-priors form (2.12). Alternatively,
choosing the latter by defining utility via (b) would violate recursivity. Though either option
may be worth pursuing, we have chosen to construct a model having both properties and to
opt for greater specificity rather than generality.

The coming sections illustrate, interpret and apply the recursive multiple-priors model of
utility. First, we mention some extensions. The assumption of a Brownian filtration can be
relaxed along the lines indicated in [18, Section 5.1]. The terminal value of 0 in (2.16) can
be generalized and utility can be well-defined without the Lipschitz hypothesis [35]. Finally,
we suspect that the extension from a finite horizon to an infinite horizon can be carried out
in much the same way as it is done in [14] for stochastic differential utility. Related results
for BSDE’s defined on an infinite horizon may be found in [9] and [42].

Finally, we note that BSDE’s have been used to price securities in markets that feature

20 These lead to nonlinear

incompleteness, short-sale constraints or other imperfections.
BSDE’s characterizing (upper or lower) prices that are formally very similar to the BSDE
(2.16) used here to define intertemporal utility. The similarity is suggested by the fact that,
with imperfect markets, no-arbitrage delivers a nonsingleton set of equivalent martingale
measures. In our setting, the multiplicity of measures arises at the level of utility and is due

to ambiguity rather than features of the market.

3. EXAMPLES

3.1. Deterministic and Risky Consumption Processes

It is important to keep in mind that o; is endogenous in the BSDE (2.16). To illustrate
this endogeneity and the consequent dependence of g4 on the consumption process, consider
(2.16) for two particular consumption processes. First, suppose that ¢ is deterministic. Then
o, = 0 and utility is given by the ordinary differential equation

dVy = —fle, Vi) dt, Vi =0.
This is the model of recursive utility for deterministic consumption processes proposed in

[20].

For the second example, let

R={i:1<i<d, (Qi)zO for all @ in ©} and (3.1)

20See [18] for some references.
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ff:o(wjzz‘eR,sgt). (3.2)

Then all measures in P® agree with P for events that are FX-measurable and it is natural to
view such events as unambiguous or purely risky. We elaborate upon this interpretation in
Section 4.2. Here we wish merely to clarify the mechanics of the BSDE (2.16). Accordingly,
let ¢ be adapted to the filtration {Ff}. Then of = 0 for i ¢ R and maxg 0, -0, = 0,
implying that the SDU utility process V,” defined in (2.14) is the solution to (2.16). That is
because the consumption process ¢ just described is viewed by the consumer as being purely
risky.

3.2. Standard Aggregator
The aggregator underlying the expected additive utility model (1.2) is

fle,v) = u(c) — pv, B>0. (3.3)

For this aggregator, there exists a closed-form representation for recursive multiple-priors
utility, as we now show (assuming the appropriate measurability for u). By Theorem 2.3(b),
it is enough to have a representation for V¢ for each @ in P°. However, from (2.11),

T
Ve = Eg l/ e P D y(ce,)ds | ft] :
¢

Conclude that .
V, = min Eg l /t e P Dy(c,)ds | ft] : (3.4)
which is the desired closed-form expression.

Two polar opposite reactions to this functional form seem possible. Some readers may
find it to be the ‘obvious’ way to formulate a multiple-priors extension of the usual model
(1.2), perhaps with P® generalized to some set of priors P, and therefore may wonder
why this paper is so long and complicated. Other readers may feel that the utility process
delivered by (3.4) will be of limited use because it violates dynamic consistency. Neither
view is accurate for reasons given in the discussion of the equivalence of parts (a) and (b) of
Theorem 2.3. It may be useful to elaborate slightly on that discussion in the context of the
specific functional form available here.

While (3.4) is a natural guess as to what might work, dynamic consistency is a concern.
In the usual model, one can apply additivity of the expectations operator E|-| to deduce the
recursive relation

Vi=F [/ e P (e ds + e PTOV | F

t

t<T.

?

Dynamic consistency follows immediately. In contrast, the operation of taking an infimum
(over a set of measures) of expected values is not additive, leading one to suspect that
dynamic consistency may be violated by (3.4). In fact, the corresponding recursive relation

, 1< T

?

V, = min E /T 850 () d BNV | R
¢ = min Q[t e u(cs)ds + e | Fy
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is valid (by Theorem 2.3(c)) and this is sufficient for dynamic consistency. However, this
recursivity is due to the specific sets of priors P© that we have defined; it is not true more
generally.

Finally, the explicit expression (3.4) for utility clarifies the connection between our model
of intertemporal utility and the atemporal multiple-priors model. First, because intertem-
poral utility equals a lower envelope of a collection of expected utility functions, there is a
more direct parallel to the atemporal model (2.1) than is possible for general aggregators.
At the more important level of behavioral content, consider consumption processes ¢ of the

form
T ir<t
= { ¢ ifr >t (3:5)

where T is the deterministic and constant consumption level on [0,¢] and £ € L*(Q, F;, P)
describes the constant consumption level on the interval [t,T]. If ¢’ is another such process,
corresponding to the same ¢ and T but different £, then

Vo(d) > Vole) <= min Egu(¢') > min Egu(§). (3.6)

QePpe Qep®

Thus the behavioral properties of the atemporal multiple-priors model apply also to the
ranking of such pairs of consumption processes.?! A similar statement is valid for a general
aggregator f, though the utility index u must be replaced by a suitable function derived
from f.2

The remaining examples are concerned primarily with illustrative specifications for ©.
3.3. k-Ignorance
Fix a parameter k = (K1, ..., kq) in R% and take
() = {y € R :| y; | < k; for all i}.

Then ‘
S :{(Qt): sup{| 0} |: 0<t<T} < Ky, izl,...,d}.

The following notation will be useful. Denote by | o; | the d-dimensional vector with "
component | ¢ |; similarly for other d-dimensional vectors. Use the notation

sgn(z) = { ’033’ [z 270 (3.7)

otherwise,

and Kk @ sgn(o;) = (/ﬁsgn(ai), - /{dsgn(af)).

2LSee [7] for an exhaustive set of behavioral implications, that is, for an axiomatization. The axiomatization
in [28] is formulated in the context of the Anscombe-Aumann domain of two-stage acts and thus is not readily
translated to our setting.

2With ¢ and T fixed, define U(z) = ¢(0) where ¢(T) = 0 and dyp(s)/ds = —f(z,(s)) on [¢,T] and
= —f(Z,¢(s)) on [0,7]. Then (3.6) is valid if u is replaced by U.
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Then

max 0, -0y = 0] -0, = k- |0y |, where
9cO

07 = k@ sgn(oy), that is,

0 otherwise.

Q:i:{’{ilgt’/gt if o} #£0 (3.8)

Consequently, the utility process solves
d% = [—f<Ct,‘/;g) + K- ’ O¢ Hdt + o0 - th, VT = 0. (39>

Though it is customary to think of a volatility such as o, as tied to risk, the above BSDE
cannot be delivered within the risk framework of [14]. We interpret the term k- | oy | as
modeling ambiguity aversion rather than risk aversion (see Section 4.3). The connection
between k and ambiguity aversion is illustrated informally by referring back to the Ellsberg-
type rankings in (1.1). They can be accommodated within the present model by taking
k1 = 0 and k9 > 0.

3.4. IID Ambiguity

For a generalization of k-ignorance, let K C R? be a compact and convex set containing the
origin and define

©:-) = K forall t.

Recalling the interpretation of ©;(w) as the set of one-step-ahead conditionals, the constancy
of this set indicates the lack of learning from data. As described in the introduction, there are
situations in which some features of the environment remain ambiguous even asymptotically.
The current specification models the agent after he has learned all that he can. The label
‘IID ambiguity’ is natural given the analogy with the case of a single-prior that induces one-
step-ahead conditionals that are constant across time and states; further support is given in
Section 4.4.
The utility process generated by this specification for {©;} solves

dVy = [=f(ce, Vi) + e(or)]dt + oy - dWy, Vp =0,
where e(+) is the support function for K defined by

e(r) =maxy-z, z€R (3.10)
ye K
corresponding to a special case of (2.8) where the support function is independent of both
time and the state.
By the theory of support functions [46], the process 0" asserted by Theorem 2.3(b) is
given by
07 € de(oy) for every t, (3.11)
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where de(x) denotes the set of subgradients of e at z. This relation generalizes (3.8).

Denote by K* the projection of K onto the i co-ordinate direction and let d; denote
both {1 < i < d: K" # {0}} and its cardinality. We can decompose K into a product
{044, } X Ky, where K; C R%. It will be convenient to add the assumption that

04, €nt (K;) C R™. (3.12)

In words, for those processes (W});cq, for which there is not complete confidence that P
describes the underlying distribution, then P is not on the ‘boundary’ of the set of alternative
conceivable measures. The corresponding property of e is that, for all z € R4,%

e(x) = 0 = x; =0 for all i such that K; # {0}. (3.13)

The assumption (3.12) is included in any reference below to IID ambiguity.
The special case K = {y € R? :| y; |< &; all i} delivers s-ignorance. An alternative
special case has

K = {yeR": S oph; ' |5 <1}, (3.14)

where k = (K1, ..., k) > 0, leading to e(x) = (k-22)/?; 22 denotes the d-dimensional vector
with i component z2.

By restricting the aggregator f, we can compute utility explicitly for consumption processes
of the form

degfey = pSdt + s©dWy, (3.15)

where p° and s® are constant. Suppose the aggregator is given by

P — ﬂ(ow)”/o‘

f(C,U) = W, (316>
for some 3 > 0 and nonzero p, a < 1.** This is the continuous-time version of the so-
called Kreps-Porteus functional form [14, p. 367]. It is attractive because the degree of
intertemporal substitution and risk aversion are modeled by the separate parameters p and
« respectively. The homothetic version of the standard aggregator (3.3), withu(c) = ¢* /o,
is obtained when o = p.

The corresponding utility process can be computed explicitly by verifying the trial solu-
tion

W = AtC?/Oé,

where

A/ = (1 ),

Be(r) = 0iffy- 2 <0 for all y € K. Suppose there exists i such that K* # {0}. (Otherwise, (3.13) is
obvious.) Then it follows from (3.12) that x; = 0. (The reverse implication in (3.13) is evidently also true.)
Alternatively, (3.12) is equivalent to the assumption that the polar of K is {0}.

24This aggregator violates the Lipschitz condition for Theorem 2.3 and thus existence of utility is not
ensured. See further discussion in Section 5.2.

19



A= B—p (= (1—a)s" - 5°/2 — e(s))
The associated volatility is

oy = Ay 8- (3.17)

Evidently the utility of the given consumption process is increasing in initial consumption
and in (p° — (1 —a)s®- s°/2 — e(s)), the mean growth rate adjusted both for risk (via the
second term) and ambiguity (via the third term). Support for the latter interpretation will
follow in Section 4.3 from the interpretation provided there for v and e(+). Observe that the
risk premium is quadratic in the consumption volatility s°, whereas the ambiguity premium
is linearly homogeneous in s¢. The ambiguity premium is - | s° | in the case of k-ignorance.

For further interpretation of e(-) see Lemma A.2.

4. PROPERTIES of UTILITY

Under suitable assumptions, the utility function we have defined has a number of classical
properties, such as monotonicity, concavity and continuity. They can be proven as in [14] or
[18, Proposition 3.5]. As noted prior to Theorem 2.3, dynamic consistency is an immediate
consequence of the recursive construction of utility via (2.16).%

In the sequel, we focus primarily on properties of preference related to ambiguity.

4.1. Behaviorally Distinct from SDU

We have referred to our model of utility as accommodating ambiguity aversion and as distinct
from SDU and all other models of (continuous-time) intertemporal utility. Here and in the
next two sections we examine these claims more carefully.

Consider the comparison with SDU. Though the defining BSDE’s (2.14) and (2.16) appear
different, how do we know that the latter could not be generated by the SDU model? The
argument to the contrary would be that the utility process V;, or at least some monotonic
transform V; = #(V2), could alternatively be generated by some aggregator g different from
f, and by the singleton set ® = {0} of density generators. In that case, utility would
be an instance of the SDU model, in which only risk matters, refuting the suggestion that
ambiguity aversion is necessarily introduced via a nonsingleton ©. However, it is easily seen
via Ito’s Lemma that if ¢ is twice continuously differentiable, then V; does not solve a BSDE
of the form (2.16). A (smooth) monotonic transformation does not introduce into the drift
a term that is linearly homogeneous in 0, which is a noteworthy and distinguishing feature
of (2.16).%

An alternative and more satisfactory comparison would demonstrate that recursive multiple-
priors utility and SDU are behaviorally distinct. The Ellsberg-type rankings in (1.1) illustrate

25More precisely, it follows from the Comparison Theorem A.1 for BSDE’s stated in Appendix A.

26See [14, Section 3.3] for the relation between a smooth monotonic transformation of utility and the gener-
ating BSDE. For utility transformations that are not smooth but are convex, the corresponding generalization
of Tto’s Lemma involves the notion of “local time”, and thus also fails to duplicate (2.16).
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such a distinction; these rankings are consistent with some multiple-priors utility functions
(see Section 3.3, for example) but not with any SDU functions. We would like to generalize
from this example and to broaden the comparison to include utility functions other than
SDU.

A central feature of all continuous-time intertemporal utility functions in the current
literature is that they are ‘based on probabilities.” To give precise meaning to the latter
term, adopt a variation of probabilistic sophistication as defined by Machina and Schmeidler.
Denote by D, C D the set of consumption processes ¢ such that (i) ¢; is deterministic for
0 <7 < tand (i) ¢; is Fi-measurable for each t < 7 < T. Processes in D, are such that
all uncertainty is resolved at the single instant ¢ and thus we refer to elements in UL D, as
timeless prospects.’” Call the utility function V : D — R! probabilistically sophisticated for
timeless prospects if, for every 0 < ¢ < T, V restricted to D, is probabilistically sophisticated
in the sense of Machina and Schmeidler.

When applied to the utility function V on D, the Machina and Schmeidler notion requires
‘primarily’ that there exists a probability measure () on (Q, Fr) such that the utility of
any ¢ depends only on the probability distribution induced by ¢ : Q — R4l and Q.
However, it imposes also, through their adoption of the Savage axiom P3 or the associated
property of monotonicity with respect to ‘first-order stochastic dominance’, restrictions on
intertemporal aspects of preference that have nothing to do with probabilities. For example,
SDU is probabilistically sophisticated in their sense only in the special case of the standard
intertemporally additive expected utility function. The restriction to timeless prospects is
intended exactly to exclude such extraneous restrictions and to isolate the property that
preference is based on probabilities.

Our adoption of a weaker notion of probabilistic sophistication makes the points to follow
stronger. Also, the axiomatization in [37] may be adapted to deliver an axiomatization of
our modified notion. Thus probabilistic sophistication for timeless prospects is a meaningful
behavioral notion. Finally, it is satisfied by all existing models of continuous-time utility,
but typically not by the multiple-priors model, as we now show.

Theorem 4.1. Suppose that the recursive multiple-priors utility function V defined in The-
orem 2.3 is probabilistically sophisticated for timeless prospects. Suppose also that

0; = 0 forallin©; (4.1)

that is, all measures in P® agree with P on events in F+. Then © = {0} and thus V
conforms to the SDU model (2.11).

We suspect, but have not managed to prove, that the assumption (4.1) can be dropped.
Modulo this assumption, the theorem shows that probabilistic sophistication for timeless
prospects distinguishes previous models behaviorally from recursive multiple-priors utility.

2"The process defined in (3.5) is one example.
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4.2. Ambiguity

Begin with some informal remarks about the nature of the ambiguity modeled via recursive

multiple-priors utility. For any given @ in P®, we know from Girsanov’s Theorem applied
to (2.15) that Vi@ solves

dVi? = —f(cr, Vi¥)dt + o+ dWP, V2 =0, (4.2)

where W2 is a Brownian motion under (. Thus it is as though the consumer is certain
how to compute utility, namely by solving a BSDFE having the specific form indicated, but
is not certain which driving process W is correct. This uncertainty is evaluated through a
minimization over all ‘possible’ processes WtQ as () varies over P®. The primitive process
W, = W[ is but one of these. This interpretation can be pushed further because (by
Girsanov’s Theorem) if Q = @, then We =W, + fy04ds or

AW —dW, = 6,dt. (4.3)

Thus ambiguity concerns (and is limited to) the drift of the driving process. The fact that
ambiguity is limited to the drift may seem overly restrictive, but it is a consequence of the
Brownian environment and the assumption of absolute continuity.

Alternatively, one could think in terms of a fixed driving process (W;) and a multiplicity
of measures that determine alternative distributions for (W;). Only one of these measures,
namely P, makes the driving process a Brownian motion. Thus there is ambiguity about
whether (W;) is a Brownian motion.

We attempt now to treat ambiguity more formally. At a formal level, as argued in
[19] and [25], ambiguity (or unambiguity) is most naturally defined as a property of events
(elements of Fr). Consequently, ambiguity about whether (W;) is a Brownian motion would
be expressed in terms of ambiguity of events defined by the W;’s. Further, once the class
U C Fr of unambiguous events is given, consumption processes that are adapted to {UNF;}
are naturally viewed as unambiguous; remaining processes are ambiguous. The restriction
of utility V' to unambiguous consumption processes embodies attitudes towards risk. The
decision-maker’s attitude towards ambiguity, on the other hand, is reflected in the way in
which ambiguous processes are ranked relative to unambiguous ones (in a sense to be made
precise). In this way a conceptual distinction can be achieved between attitudes towards risk
and towards ambiguity. (See the next section.)

It remains to specify U. It is tempting to think of unambiguous events as those events
where all measures in P© agree, that is,

U= {Be Fr: Q(B) = P(B) for all Q in P°}. (4.4)

All other events would be called ambiguous.

While seemingly intuitive, (4.4) falls short as a definition of unambiguous events. Indeed,
because (4.4) amounts to a restriction on the functional form for utility, its interpretation
and intuitive appeal are unclear unless this restriction can be related to behavior. As argued
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in Section 1.4, to be satisfactory, a definition of unambiguous events must be expressed in
terms of observable (at least in principle) choice behavior.

Fortunately, there exist two behavioral or preference-based definitions in the literature
and we can check whether they deliver (4.4) as the characterization of unambiguous events
for the recursive multiple-priors utility function. The answer is immediately ‘yes’ for the
definition proposed by Ghirardato and Marinacci [27]. Our (subjectively) preferred definition
is the one proposed by Epstein and Zhang. Though we have not yet succeeded in constructing
a proof, we strongly suspect that (4.4) is valid also for this definition.”® We proceed on the
basis of the evidence and suspicions just described to accept (4.4) as the designation of the
class of unambiguous events.

It is convenient to have a further characterization in terms of the primitive set of density
generators. To express it, let

© =1{0"=(0):0c0}, i=1,..4d.

Denote by {F/} the filtration generated by the i*" driving process (W}). For IID ambiguity,
we can prove:

Lemma 4.2. Let © correspond to IID ambiguity. Then for any F' € Fr, all measures in
PO agree on F (that is, Q(F) = P(F) for all Q in P®) if and only if: For each 1,

©' = {0} or P(F | FL) = 0 or 1. (4.5)
Consequently, we obtain
U= {Fe€Fr: foreachi,0 = {0} or P(F | F-) = Oor1}.

To illustrate, in the k-ignorance model let Ky = 0 and k; > 0 for ¢ > 1. Then events
that are determined by the first driving process (W) are unambiguous; all other events are
ambiguous.

4.3. Risk and Ambiguity Aversion

Given the preceding designation of unambiguous events, we can proceed as outlined in the
previous section. The approach advocated in [19] and [25] is adopted to define the distinct
notions of ambiguity aversion and risk aversion. Further details and an expanded discussion
may be found in these papers.

First, define ¢ to be an unambiguous consumption process if ¢; is U-measurable for each
t < T. When it is important to make explicit the underlying utility function, refer to c as
V-unambiguous.

If U is defined as in [25], then ‘D’ in (4.4) is easily verified. For the converse, we have a proof (available on
request ) that, under k-ignorance and for a ‘large class’ BB of events, if B in B is unambiguous, then all measures
in P© agree on B. The class B includes all events B of the form B = {w € Q: ¢ (Wy,,...,Ws,) > a} where
a € R™ and ¢ : R — R™ is continuous and strictly increasing.
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Given utility functions V' and V* with corresponding classes 4 and U* of unambiguous
events, say that V* is more ambiguity averse than V if both

U DO U* and (4.6)

V(") > (>)V(e) = V(") > (>) Vo), (4.7)

for all consumption processes ¢ and ¢*?, the latter V*-unambiguous. The interpretation is
that if V' prefers the V*-unambiguous process ¢*“, which is also unambiguous for V', then
so should the more ambiguity averse V*. The nesting condition (4.6) ensures that the more
ambiguity averse decision-maker views more events as ambiguous. Of course, U and U* may
coincide.

Say that V* is more risk averse than V if both

U C U* and (4.8)

V(E) > >)V(c") = V@) > (>)V*("), (4.9)

for all V-unambiguous consumption processes c*® and deterministic processes ¢. Symmetric
with the prior definition, the more (risk) averse agent is assumed, via (4.8), to perceive more
risk. Implicit is the presumption that ‘unambiguous’ and ‘risky’ are synonymous and thus
that unambiguous consumption processes constitute the appropriate subdomain for exploring
risk attitudes. For comparative purposes, ‘unambiguous’ must apply to both utility functions
and hence mean ‘V-unambiguous’. Finally, the intuition for the definition is that any risky
process that is disliked by V' relative to a riskless ¢, should be disliked also by the more risk
averse V*.%
Consider an extreme case where

u = {0, Qj,

that is, all nontrivial events are ambiguous according to V*. Then V* is more risk averse than
V if and only if 4 = {0, Q} and V* and V agree in the ranking of deterministic processes.
This may seem odd at first glance, but is a natural consequence of the fact that there is no
risk according to either agent. Accordingly, differences in the ‘certainty equivalents’ assigned
to any consumption process by V and V* are attributed entirely to differences in ambiguity
aversion. In particular, in this case V* is more ambiguity averse than V' if and only if

V(e =2 (>3)Vie) = V(@) = (>) V(o)

for all ¢ and ¢, the latter deterministic. Similarly, ambiguity aversion is uninteresting at the
other extreme where U* = Fp, that is, there is no ambiguity.

The definitions are best clarified by application to canonical functional forms - Kreps-
Porteus aggregators (3.16) and k-ignorance for ©. The utility function V' generated by any

29 Absolute notions of ambiguity and risk aversion could be formulated as well, but they are less important
and are thus omitted in the interest of brevity.
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such pair (f,©) can be identified with a quartet of parameters (3, p, @, k). The temptation,
to which we have yielded above, is to interpret 3 and p as describing time preference and
willingness to substitute intertemporally given deterministic processes, a as a risk aversion
parameter and to view k as modeling ambiguity aversion. Partial support is provided by the
facts that the ranking of deterministic processes uniquely determines (3 and p and that it is
unaffected by a and k. Additional support for the above interpretations is described next.?

Theorem 4.3. (i) (57, p*, a*, k*) is more ambiguity averse than (3, p, o, k) if

(8", p*,a*) = (B,p,a) and kK* > k. The converse is true if kf = 0 for some i.
(ii) (67, p*, a*, k*) is more risk averse than (3, p, o, k) If (5%, p*) = (3,p), o* < « and
for each i, k; = 0 implies k! = 0. The converse is true if k; = 0 for some i.

Ambiguity aversion alone is increased by increasing the ignorance parameter, while risk
aversion alone is increased by reducing a. In this comparative sense these two aspects of
preference are modeled by separate parameters, and separately from properties of the ranking
of deterministic processes.?!

The above theorem generalizes in a straightforward way to general aggregators and IID
ambiguity.

Theorem 4.4. Consider aggregators [ and f* and let © and ©* correspond to IID ambiguity
with corresponding sets K and K* as described in Section 3.4. Then:
(i) (f*, K*) is more ambiguity averse than (f, K) if

f=f"and K* D K. (4.10)

The converse is true if K* = {0} for some i.

(ii) (f*, K*) is more risk averse than (f, K) if

[H(e b)) = I (@) f(e,v), (4.11)

for some transformation h with b’ > 0 and b’ < 0; and

for each i, K* = {0} implies K** = {0}.

The proof is similar to that of the preceding theorem, with reliance also on [14, Sections 3.3,
5.6 in order to deal with (4.11). We refer the reader to the just cited paper for clarification of
(4.11) and for an alternative to (4.11) that is more intuitive (but too involved to include here).
We merely note that the transformation in (4.11) implies that V* = h(V) when restricted
to deterministic consumption processes. Thus they rank such processes identically, which is
a necessary condition for their risk attitudes to be comparable.

30We continue to ignore the existence and uniqueness issues for the Kreps-Porteus aggregator.

311t is not possible to change the two forms of aversion simultaneously, because the change from a to a*
makes ambiguity attitudes noncomparable. This parallels the inability within the Kreps-Porteus functional
form to change simultaneously the elasticity of intertemporal substitution (1 — p)~! and the degree of risk
aversion; the change from p to p* makes risk attitudes noncomparable.
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The converse in (ii) is not true in general because of the presumption in (4.11) that the
function h relating V* and V is twice differentiable. However, if we restrict attention to this
case and if K* = {0} for some 4, implying that there is some nontrivial risk common to both
utility functions, then V* more risk averse than V' does imply the conditions stated in the
theorem.

We use the preceding theorems to justify the interpretation of various expressions as
capturing the effects of risk aversion or of ambiguity aversion. An example is the lognormal
consumption process described in Section 3.4, where we suggested that (1 — «)s® - s°/2
represents a premium for the riskiness of ¢ and that e(s®) represents a premium for its
ambiguity. A later example is a decomposition of the equity premium (5.19).

4.4. Aspects of the Temporal Structure of Preference

While any specification for © models ambiguity, it is desirable to understand precisely what
it 1s about the environment that is perceived as ambiguous or unambiguous. This section
provides an answer for ©’s conforming to IID ambiguity. A rationale for the latter term is
delivered as a by-product.

We begin with the following elementary observation: For each r in [0, 7],

¢,=con[rT]xQ = Vi(d)=Vic)on [r,T] xQ, (4.12)

confirming that V,(c) depends only on the continuation of ¢ beyond 7, that is, on "¢ =
(¢t)r<t<r. In particular, ambiguity does not introduce dependence on the past.

When we wish to vary the length T" of the horizon and want to make explicit the particular
horizon being discussed, we write Vg (-) for the utility function defined as in Theorem 2.3.

Theorem 4.5. Suppose that © is given by IID ambiguity (Section 3.4). For eachr in [0, 7],
let Gl =0 (Ws—W,:t>s>r) fort >r and = {0),Q} otherwise.

(a) If ¢ is adapted to the filtration {G; }, then (V;(c)) is deterministic for t < r.

(b) If  =c on [0,7) x Q, and both processes are adapted to {G;}, then

Vo () 2 V(o) = V7 (¢) > Vg (o). (4.13)
(c) If ¢, is o(Wy)-measurable for each t in [0,T], then so is Vi(c).

For interpretation, consider each of these statements when © = {0} and thus beliefs
are represented by the single prior P. Suppose as in (a) that consumption is deterministic
until time r and thereafter depends only on increments W, — W,.. Because (W;) is Brownian
motion relative to P, such increments are independent of F; for any ¢ < r. Thus the time ¢
conditional utility V;(c) is deterministic until 7. We are led to interpret (a) as expressing a
form of independence in beliefs about future increments even when © is a nonsingleton (but
conforms to the IID specification).

Part (b) implies that calendar time matters only because it implies a different length for
the remaining horizon. Under P, this is due to the stationarity of Brownian motion (the
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unconditional distribution of W, — W, is identical to that of W, ). Accordingly, we interpret
(b) as expressing a form of stationarity in beliefs even given IID ambiguity.

Finally, with regard to (c), let 7 > ¢. Then the Markov property of Brownian motion
implies that, under P, time ¢ conditional beliefs about W, and hence also conditional utility
at ¢t depend only on W;. Part (c¢) asserts that this Markov-type property is preserved under
IID ambiguity.

It merits emphasis that each of the properties in the theorem has behavioral significance.
The latter is explicit for (b). Given two consumption processes ¢ and ¢ as in part (c),
their conditional ranking at ¢ depends on time ¢ information only via W;. Similarly, for the
significance of (a).

In summary, the Theorem gives precise meaning to the statement that an IID specifica-
tion for © models the decision-maker as viewing the driving process (W;) as “Markov with
independent and identical increments”. This view is modeled also by the standard model
with singleton prior P, in that (a)-(c) are valid also then. The primary difference is that in
the standard model but not under IID ambiguity, the decision-maker views increments as
being normally distributed with the familiar means and variances. Complete confidence in
this aspect of the environment is relaxed via IID ambiguity.

Incomplete confidence in the other aspects noted above can be modeled by the more
general specifications for © that are permitted by (2.5), that is, by relaxing the assumption
made in the IID model that the correspondences ©; are constant. We do not elaborate
but the general point merits emphasis - our model permits determination of the behavioral
meaning of alternative specifications for ©.

The theorem may be illustrated as follows: Take IID ambiguity, the simple linear aggre-

gator with zero discounting (f(c,v) = ¢) and the consumption process
. a- (Ws—W,) ift>s
10 if t < s,

where 7 and s are fixed times, r < s, a € R% and where we allow negative consumption levels
for the sake of an explicit solution. Then (Vi(c)) solves

dVi(c) = [—c + e(oy)]dt + o¢-dWy, Vi(c) =0.

The unique solution is

o = a(l — s)l,4 (t), and

a (W, —W,) (T —t) fs<t<T
Vile) =3 a- (W, =W,)(I' = s) —e(a) (s —t), ifr<t<s
—e(a) (s — 1), ifo<t<r.

In particular, when r = 0, then
Vile) = a- Wi (T —s) — ea)(s—t), fort <s,

illustrating part (c) of the theorem.
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4.5. Supergradients

The asset pricing application to follow makes use of the notion of supergradients for utility.
A supergradient for V' at the consumption process ¢ is a process (7;) satislying

V() —V(e) < E

/OT 7 (¢ — ) dt] : (4.14)

for all ¢ in D. Denote by 9V (c¢) the set of supergradients at c.

Because V is a lower envelope of SDU functions V¥ (Theorem 2.3(b)), we can use a
suitable envelope theorem to relate OV (c) to supergradients of {V< : Q € P®}. For each
SDU function V@, the set of supergradients may be completely characterized under suitable
additional assumption (see [16]). The added assumption is that there exists k& > 0 such that

sup (| fo(z,v) |, f(2,0)]) <k (1+ |z |), for all (z,v) € C x R. (4.15)

The above reasoning leads immediately to the following characterization of 9V (c). It
uses the notation
O, ={0"€0:0; argmax y - oy all t},
YEO

for any ¢ € D, where (0y) is the (unique) volatility of utility defined by (2.16); recall (2.7).

Lemma 4.6. Suppose that f is continuously differentiable and that it satisfies (4.15) and
the assumptions of Theorem 2.3. Then: (a)

V() DIl = {7T : 30" € O, T, = exp </0t foles, Vi(e)) ds) felen, Vi(e) 27 all t} . (4.16)

(b) Suppose further that V' is concave and that ¢ lies in the interior of the domain D. Then
oV (c) =1I.

See Appendix E for a proof. The set II is alternatively expressed as
I = {8VQ<C) :Q=0Q" and 0" € @C},

the set of supergradients for the SDU functions V9 where Q* satisfies (2.17). Evidently,
OV (c¢) is a nonsingleton in general. For example, if ¢ is deterministic, then ©. = © because
the appropriate o; vanishes. Under the conditions in (b), the containment in (4.16) can be
strengthened to equality. The scope of (b) is limited, however, by the fact that the non-
negative orthant of the Hilbert space of square integrable processes has empty interior. Thus
the interiority assumption can be satisfied only if V' is well-defined for some processes where
consumption may be negative. We include (b) in order to show a sense in which divergence
between OV (¢) and II can be viewed as ‘pathological’. In the asset pricing application that
follows, we restrict attention to supergradients lying in II and thus possibly to a proper
subset of equilibria.
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5. ASSET RETURNS

5.1. The Environment

There is a representative agent with recursive multiple-priors utility. Otherwise, the environ-
ment is standard (see [13] for elaboration and supporting technical details). There is a single
consumption good, a riskless asset with return process r; and d risky securities, one for each
component of the Brownian motion W;. Returns R, to the risky securities are described by

th = btdt —I— Stth,

where s; is a d X d volatility matrix. Assume that markets are complete in the usual sense that
$¢ 1s invertible almost surely for every ¢. Market completeness delivers a (strictly positive)
state price process . Let

—dmy 7y = redt + - dW, o = 1, (5.1)

where 1, = s; 1(bt — 1) and is typically referred to as the market price of risk. We refer to
it as the market price of uncertainty to reflect the fact that security returns embody both
risk and ambiguity.

Denote time ¢ wealth by X, and the trading strategy by 1,, where 1/); is the proportion
of wealth invested in risky security i. Thus 1 — ¢, - 1 equals the proportion invested in the
riskless asset. The law of motion for wealth is

dX, = ([m ) (b — 1)) X, — ct) dt + X, s.dWy, Xo > 0 given. (5.2)

Budget feasible consumption processes may be characterized by the inequality

T
1) [/ TT¢Cy dt
0

First-order conditions for optimal consumption choice are expressed in the usual way in
terms of the supergradient of utility at the optimum ¢.?? In particular, ¢ is optimal if

< Xo. (5.3)

exp ( /t fv(cs,v;(c))ds> Folen, Vi) 27 = fulco, Vo),  for all ¢, (5.4)
0

for some process 0" in ©., where, as mentioned earlier, we are restricting attention to sup-
porting supergradients in the set II defined in (4.16). The multiple-priors model is reflected
in the presence of the factor z¢" on the left side; 20 is identically equal to 1 if beliefs are
represented by P.
Suppose for the moment that the aggregator is the standard one (3.3), implying the
first-order conditions
e Pl (cy) 2 = u(co)m, for all t. (5.5)

32See [16] (and also [48]) for details regarding first-order conditions and their connection to security pricing.
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A difficulty in fitting aggregate time-series data to this relation when 2" = 1, is that the
observed volatility of consumption is too small relative to that of state prices to be consistent
with this equation [29]. The presence of the factor z¢" has the potential to increase the
variability of the left side and thus come closer to fitting observed moments.

Alternatively, we could view the term 2/ as transforming state prices. That is, rewrite
the equation as

e Pl (¢;) = u(co) (ﬂt/zf*) = u'(co) Tt (5.6)

which comprise the first-order conditions for an expected additive utility maximizer, but one
who faces the ‘effective’ state price process 7y, rather than the original one 7;. For some
specifications, 7; is less variable than 7, permitting a closer fit to a smooth consumption
process.

It is convenient to write

dXt/Xt = bMdt —I— SM . th, (57>

where b™ is the mean return to the market portfolio and s is its (relative) volatility.

5.2. Ambiguity and Risk Premia

Let the consumer have a Kreps-Porteus aggregator (3.16), which affords a simple parametric
distinction between the effects of intertemporal substitution and risk aversion.??
Suppose that the optimal consumption process satisfies

degfey = pidt + 8§ - dWs. (5.8)

For the most part, we view consumption as a given endowment and we focus on characterizing
the risk-free rate and market price of uncertainty that support (in the sense of satisfying (5.4))
the endowment as an optimum or representative-agent equilibrium.

Let 6" be any process in O.. From (5.4), (5.1) and Ito’s Lemma, conclude that

1=p) ' (re—8) = pi— @_Tp)

9 c -1 -1 (9t
(=) <Oé%> [St T2 =) <onZ>
33Theorem 2.3 and Lemma 4.6 do not apply because, for example, the Lipschitz condition is violated.
We proceed assuming existence of an optimum and focus on its characterization. Schroder and Skiadas [48]
provide conditions for existence given a Kreps-Porteus aggregator and no ambiguity. It remains to be seen
how their analysis may be extended to accommodate ambiguity. In addition, the Kreps-Porteus aggregator
is concave in (c,v) if and only if @ > p. However, V is concave and first-order conditions are suflicient for

all admissible parameter values. Schroder and Skiadas prove this in the absence of ambiguity, while the
multiple-priors structure ‘adds concavity’.

sy-sf — 07 sy + (5.9)

and

A final point is that we have defined the Kreps-Porteus aggregator so as to exclude zero values for o or p.
However, it can be defined for those parameter values in the usual limiting fashion and some of the results
to follow remain valid in those cases.
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O¢
1—p)s; = (a— — — 0 5.10
(I =p)si = (a=p) <on;> + (0. = 0), (5.10)
where V; and o, are the level and volatility of utility along the optimal consumption process.
We can show that along an optimal path,3*

ou/ (Vi) = p st + (p—1)sf]. (5.11)

Substitution into (5.10) yields the following restriction for the market price of uncertainty:

ne=p " [a(l=p)si + (p—a)s)] + 6.

We have thus obtained the following model of excess returns:*

by—rl =sm, = p ! {a(l —p)se sy + (p— a)s, si\q + 5. 05. (5.12)

The right side expresses excess returns as the sum of a risk premium (the first term) and the
ambiguity premium s;0;. The risk premium consists of the two-factor model derived in [26]
and [15], according to which systematic risk of an asset is measured by a linear combination
of its covariation with consumption growth and with the market return.

For the ambiguity premium, observe that, using common notation,

st 07 = —con(dR:, d2 /20,

for each security i = 1,..., N, where s¢ denotes the i'" row of s; and 2/ is as in (5.4). Thus
the premium is positive if the asset’s return has negative instantaneous covariation with
dzl" /27", Recall from (2.4) that 2¢° = dQ;/dP, where Q} is the restriction of Q* = Q% to
Fr.

Alternatively, some insight into the ambiguity premium is provided by applying (5.11)
to deduce that 6} solves

1 M 1y e
max y - s+ (L=p ) sf]
This characterization of 0} is not completely satisfactory because though sf is exogenous in
our endowment economy model, the volatility of the market return is endogenous.® Thus
the next section describes alternative characterizations that are valid under suitable special-
izations of the endowment process and of ©.

34Multiply through (5.4) by ¢, and integrate over time and states, using dt ® dP, to obtain
B exp (Jy fules Va(@))ds) e0 fuler, Vi()) 2 dt| = foleo, Vo) B[ fy micedt] = fulco, Vo) Xo =

0571X0 (ono)(afp ) ?  where we use the Kreps-Porteus aggregator. Given the latter, utility is homogeneous
of degree «, that is, V(Ac) = A*V(¢) for all A > 0. Therefore, by a form of Euler’s Theorem, the LHS
above equals aVjy. Deduce that aly = (0571 Xo)o‘/p. In the same way, aV; = (0571 Xt)o‘/p for all t. Now
apply Ito’s Lemma to obtain the desired expression for the volatility of V.

35Whenever we refer to ‘expected returns’ or other moments, the intention is expectation with respect to
the reference measure P. When making connections to data, assume that P is the true probability measure.

36 A similar criticism applies to the risk premium in (5.12) if @ # p. See [6] and the references therein for
further discussion and for proposed solutions in risk-based models.
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Before specializing further, we offer a final comment on the general model (5.12). From
the Girsanov Theorem, we can write

th = (bt - stﬁf) dt + st th*, (513>

where (W}*) is a Brownian motion relative to @*. Thus the ambiguity premium s6; in
(5.12) equals the adjustment in the drift needed when P is replaced by Q*. More to the
point, our prediction for b; — 71 is identical to that obtained in a model where the agent
is indifferent to ambiguity and uses the ‘distorted’ single prior Q*. This is an instance of
the observational equivalence mentioned in the introduction. On the other hand, we would
argue that specifying (Q* as a primitive is likely to seem contrived and less natural than the
story provided here. Other advantages of our approach were described in Section 1.3.

5.3. Special Consumption Processes
We assume IID ambiguity throughout and consider three alternative specializations of the

endowment process.

Markov consumption process: Assume that the drift and volatility in (5.8) are of the form
py = pfeg,t) and s; = (e, t) (5.14)

for suitable functions fi and s. Then, under suitable restrictions, the corresponding utility
process has the form

W = H<Ct7t)7

for some function H .37 If H is differentiable in the consumption argument, then the volatility
of utility is simply o, = ¢; H.(ct,t) s§. In particular, if the noted derivative is everywhere
positive, (intertemporal utility is an increasing function of current consumption), we obtain
the following simple characterization:

0 solves max 0, - sy,
e K

where K C R? is the set corresponding to © as in Section 3.4. Under k-ignorance, if

spl 40 (5.15)
for each component j = 1,...,d, then (3.7) and (3.8) deliver the closed-form expression
0; = k@ sgn(sf). (5.16)

3T A detailed derivation could be based on the 4-step procedure from [36] applied to solve the FBSDE
consisting of (2.16), (5.8) and (5.14). Intuitively, the point is simply that because of IID ambiguity and the
Markov property for consumption, current consumption is the only state variable that is relevant for defining
the utility process for (c;).
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The implied model of mean excess returns is given by substitution into (5.12). We could
also use (5.9) to derive the implied risk-free rate. Such a derivation is described for the
following further specialization.

Geometric consumption process: Suppose that both pf and s§ are deterministic constants,
as in (3.15). (Deterministic time dependence is readily accommodated.) Then*

st = . (5.17)

Consequently, the market price of uncertainty satisfies
n, = (1—a)s; + 65. (5.18)

If (5.15) and k-ignorance are assumed for concreteness, then the expected excess return
for asset 7 equals
bp—ry = (1—a)s;- s; + k- (si@sgn(sg)).

Thus the ambiguity premium (represented by the second term) for asset 7 is large if s sgn(sg’j )
is large and positive for components j of the driving process W, that are very ambiguous in
the sense of having large ;. Because the premium depends on the endowment process only
via the signs of sg’j , 7 = 1,...,d, large ambiguity premia can occur even if consumption is
relatively smooth.

Of special interest is the excess return to the market portfolio given by

b —ry = (1—a)si s + k|8, (5.19)

providing a decomposition of the equity premium in terms of risk (the first term) and ambi-
guity (the second term).* The ambiguity premium for the market portfolio vanishes as s
approaches zero. However, because it is a first-order function of volatility, it dominates the
risk premium for small volatilities.

Combine the preceding to yield

1{\4 _Tt)v

(0 )si- st + w- (0 sG]

b —ry =
e (T—a)s’ - s + | s |

a variant of CAPM. Ambiguity leads to a large excess return for asset i if s/s/ > 0 for

components j of the Brownian motion for which &; is large. However, unlike the case for the

risk premium, the ambiguity premium depends only on the sign of each si\/[ 7 and not on its

magnitude.

38By the homogeneity of intertemporal utility, ¢; and wealth X, are related by ¢, = a,X; for some
deterministic a;. The claim follows by Ito’s Lemma.

39Much of what has been derived extends to IID ambiguity, in which case the ambiguity premium on the
right side of (5.19) is given by e(s°). See Lemma A.2 for an interpretation of e(-).
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To study the relation between the risk-free rate and the drift in consumption, substitute

(5.11) and (5.17) mnto (5.9) to obtaln

i = Gy s =0 = (L) = ). (5.20)
Under k-ignorance, we obtain the following expression for the risk-free rate:
(1-a)2-p)
-3 =(1- ¢ _ C.8 — k| S8 5.21
rn—p0=(1-p) (Nt 2(1—p) St 8¢ relsg ] ( )

which is decreasing in risk aversion (1 — «) and in ambiguity aversion .

Stochastic drift and volatility: (Generalize the Markov model by permitting more general
specifications for the stochastic nature of the drift and volatility of consumption growth.
Specifically, suppose that there exists an Rf-valued state variable w; such that the joint
process (¢, w;) is Markovian, that is, (using slightly abused but transparent notation)

degfey = py(ce,we) dt + s7(er,we) - dWy and

dw, = pi(en,we)dt + 87 (e, we) dWe.

The new twist in this model relative to the earlier one is that we exploit the auxiliary state
process (w¢) in order to model a situation in which there is ambiguity about the stochastic
evolution of the drift and volatility of consumption growth but not about its conditional
distribution. Formally, use the k-ignorance specification for © and assume that

kst =0, fori=1,..,d. (5.22)

This suggests the decomposition W, = (W, W) such that consumption growth is driven
by W{, wy is driven by both W/ and W and there is ambiguity only about the latter.

By arguments similar to those outlined for the Markov model, one can justify the following
expression for the utility of the endowment process:

Vi = Heg,we,t),
for a suitable H. If the latter is differentiable, Ito’s Lemma yields
oy = ¢y Ho(ep,we, t) s§ + H, (e, we, t) 85
Apply (5.22) to deduce that
0,00 =0y (H,(cr,wi,t)sy), 0€0.

If some components of H s are zero, then max,ce, ¥ - 0 has many solutions. Focus on that
given by (3.8) and on the corresponding equilibrium.
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The implied excess returns are obtained from the appropriate form of (5.12). For conve-
nience, we reproduce the result here in the special case a = p:

bl = (1—a)s, s + s, [5 @ sgn (H, s7)].

Three features of this result are noteworthy. First, in the standard expected utility risk-based
model, mean excess returns at any time and state of the world depend on the endowment
process only via its current volatility and hence via the associated conditional distribution
of consumption. In contrast, ambiguity aversion leads, through sy, to a dependence also on
the instantaneous change in the conditional distribution of consumption.

Second, observe that the ambiguity premium can be large even if sy is small in norm. For
example, take the case where w; is real-valued and suppose that H, is everywhere positive
(a globally negative sign would do as well). Then the ambiguity premium for the i asset
equals s+ [k @ sgn (s¥)], which depends on s¥ only through its sign.

Finally, the ambiguity premium undergoes discrete jumps at points where components of
H,s¢ change sign, even though the stochastic environment is Brownian and hence continuous.
For example, if ¢ = 1 and s¢ is constant, then 0} jumps wherever H,, changes sign and rates
of return follow a two-state switching model.*’

5.4. Optimal Portfolio

Turn to an examination of the optimal portfolio for a consumer facing an exogenous and de-
terministic risk-free rate and market price of uncertainty, taken for simplicity to be constants.
Then the optimal consumption process is geometric and from (5.18),

sgn(s”) = sgn (ni — /{isgn(sg’i)) for each 7.
Assume that ambiguity aversion is small in the sense that
0 < w; <|n}| foralli. (5.23)

Then ‘ ‘
s> (<)0 ifny > (<)0,

implying with (5.16) that 0] = k @ sgn(n,) and
(I—a)si =, — K@ sgn(n,).
Finally, it follows from (5.2) and (5.17) that the optimal portfolio of risky assets is given by
vy = (1—a) " (s))7" (0, — K@ sgn(n,)).

Evidently, the optimal portfolio is not instantaneously mean-variance efficient if P is used
to compute variance. Our interpretation is that this is due to ambiguity being present in

40Thus far we have been unable to find a parametric example where this endogenous regime-switching can
be demonstrated in closed-form.
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addition to risk.! The mutual fund separation property is valid if and only if x is common
to all agents. Though the composition of risky assets is independent of the risk aversion
parameter «, it depends on preferences through k.

A. APPENDIX: BSDE’s and Related Results

For the convenience of the reader, this appendix outlines informally some material regarding
BSDE’s. See [18] and [44] for further reading and formal details that are ignored here.

The stochastic environment (Q, {FAE, P) used throughout the paper is assumed.
Given ¢ € L*(Q, Fr, P) and a function g : R! x R* x Q x [0,7] — R!, consider the
problem of finding processes (y;) and (o) satisfying the BSDE

dye = g(yp, o, w, 1) dt + o dWy, yr =&, (A1)

The existence of a unique solution may be proven under Lipschitz and other technical condi-
tions for g [18, Theorem 2.1].#2 Our definition of intertemporal utility for a given consumption
process ¢ (Theorem 2.3) deals with the special case

9y, 0w, 1) = —f(e(w),y) + max fy(w) - o

The following result [18, Theorem 2.2] was referred to in the text and is used in the
sequel.

Theorem A.1l. (Comparison) Consider the BSDE above corresponding to (g,&) and that
associated with another pair (¢',£'). Let corresponding unique solutions be (y;,0:) and
(y;,0%). Suppose that

5/ Z 5 and g/<yt70_t7w7t) S g(yt,O_t,w,t) dt@dp a.c.

Then y, > y; for almost every t € [0,T]. Moreover, the comparison is strict in the sense that
if, in addition, y.. = vy, on the event A € F,, then £ = £ on A and

g (yt, 0,w,t) = glys, 00,w,1) on [1,T] x A dt @dP a.e.

41 Alternatively, mean-variance efficiency is optimal if variance is computed using the appropriate measure
Qe*, as provided by Theorem 2.3(b). However, Qe* depends on preferences through s and thus the meaning
of mean-variance efficiency is individual specific.

*2The analysis in [18] relies on the predictability of (w,t) — ¢(y,0,w,t). In our context, this would
require predictability of consumption processes. However, the arguments in [43]- [44] rely only on progressive
measurability of the above map for each fixed (y,0); recall that we have assumed progressive measurability
of all (including consumption) processes. Thus the key existence and comparison theorems (see below) are
valid for our setting.
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A further specialization of (A.1) has f =0, or

dyt = [15163(,;( g Ut] dt + oy - th, Yyr = 5 (A2>

For given © (satisfying our assumptions) and each ¢, the map £ —— y; defines a nonlinear
functional from L%*(Q, Fr, P) into F;-measurable random variables. Use the notation £[¢ |
Fi] for y;, suggesting a form of nonlinear conditional expectation [44]. In fact,

el¢| 7] = min, Fol¢ | 7l

Evidently, E[¢ | Fi] — €[ | F] is a form of premium due to ambiguity.

Lemma A.2. Consider a consumption process ¢ satisfying
dey = pgdt + s§ -dW,, 0<t<T, ¢y given, (A.3)

where (pf) and (s§) are continuous and bounded (adapted) processes. Let e(+) be as in (3.10).

Then
. E[CT’fT]_g[CT’fT]
lim

T——rT T—7r

where the limit is in the sense of L* (Q, Fr, P).

= e(s7);

The lemma provides the interpretation for e(-) promised at the end of Section 3.4 - it provides
an instantaneous, per unit time premium for ambiguity.

Proof. For any 0 < 7 < T, there exists a unique solution (¢, | F¢], 07) to
Eler | Fr] — er = —/tT e(oy)du — /tT oL dW,, 0<t<T. (A4)
For t = r we obtain, using also (A.3), that
Eler | F —/ (g, —e(o du—l—/ (sf,— o) dW,, 0<r<T.

By [4, Propn. 2.2], (see also [18, Propn. 2.1]), there exist constants # > 0 and v > 0 such
that*?

1 T
Bl [ st 7

(r—r) Jr

2

<

1 T U C C
T P el |

< B | [Mem g —e(s) P du | F

r (frT Ly du>2 < frT .’IJ% du.
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<20 o =) | i - 0 | 7]
r<ulT
It follows that
1 T
Bl [sg—olPau 7| — 0in D@7 P).
(T _ ’]") . U U T—rt

Because e(+) is Lipschitz continuous and (s¢) is a continuous process,

1 T
lim FE [ / le(st) — e(o]) | du | F»| =0 and
T—rt T—T Jr
tim 5 | [T elss) — e(s) 1P du | F] =0
e(sy,) — e(s U =
et T—1Jr “ !
also in L' (Q, Fr, P). Therefore, the triangle inequality implies that
1 T
lim B | Veon) = e(s0) [ du | 7| =0
dim B |—— [ e(ol) — els)) [P du | F

and hence also that

1

/TT e(ol)du — e(st) | frr =0,

once again in L' (Q, Fp, P). Conclude that F {ﬁ [T e(ol)du | .7:7,} converges to e(st) in
L2 (Q, Fr, P).

Finally, set ¢t = r in (A.4) and apply the conditional expectation E[- | F,] to both sides
to obtain

Eler | Frl — Eles | Fr _ _(T—T)*lE[/T e(ol)du | F,],

T—T r
which converges to —e(s%) in L? (Q, Fr, P). B

r

B. APPENDIX: Density Generators and the Set of Priors

Proof of Lemma 2.1: (b) The process 0" is delivered by the Measurable Maximum Theorem
[2, Theorem 14.91], which ensures that there exists a progressively measurable selection from
arg maxyce,(w) ¥ - ot(w). (To apply the Maximum Theorem, use the progressive o-field [45, p.
44] on [0,T] x €.) It ensures also that the value function for the latter problem is suitably
measurable.

(¢) Stochastic convexity is obvious. Weak compactness follows {rom [17, Theorems IV.8.9,
V.6.1. |

Proof of Theorem 2.2: (b) Fix A € Fr and QY € P®. By Girsanov’s Theorem, Q%(A |

Fi) = i, where (y;,0,) is the unique solution to

dyt :€t-0tdt—|—0t-th, yTzlA.
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By the bounding inequality in [18, p. 20] and Uniform Boundedness, there exists k > 0
such that )
(QU(A))" < kE(14) = k P(A),

where k is independent of #. This delivers uniform absolute continuity. Equivalence obtains
because 2§ > 0 for each 6.

(¢) For i = 1,2, let Q" be the measure corresponding to §° € © and the martingale z! as in
(2.4). Define 0 = (6,) by

(Oi2¢ +0,27)

2+

(Recall that z} and z? are strictly positive.) Then § € © and d(2}! +22) = — (2! +22)0,- dW,,
which implies that (25 + 2%)/2 is the density for (Q' + Q?) /2. Conclude that the latter lies
in P®. Similarly for other mixtures.

(d) Using the weak compactness of © (Lemma 2.1), one can show that Z = {z%.: § € O} is
norm-closed in L' (Q, Fr, P). (The argument is analogous to the proof of Lemma B.2 in [10].)

gt:

Because Z is convex, it is also weakly closed. Clearly, Z is norm-bounded (¥ (] P ]) =1
for all 0.) Thus, Z is weakly compact by the Alaoglu Theorem. Finally, Z is homeomorphic
to P® when weak topologies are used in both cases.
(e) Follows from Lemma 2.1(b). ‘
(f) For ‘C’, given Q in P®, let Q* = Q for all i. Turn to the nontrivial direction ‘2. Let 6*
and z° correspond to Q° as in (2.4). Define 6 € © by
0; = (1{t27}><B 0; + Lit>rixme 9?) + 07 Ligery

Let z be the martingale generated as in (2.4); it satisfies

2 ift <7

2w =12 2z /2 ft>1 weB
w2/ ft>T,wé B

Then, for any A in Fr,
Q) = [ QA F)ls + QX(A| Fo)lie] d@?
_/ YA| Fo)lp + QXA | Folge| 2P

/[ YA| F)ls + QA| Fo)lpe| z-dPy =

E[1A1321<T) ’ fq—] E[1A136Z2< ) ’ fq—] .

b l BT A B2 ] F ] -
ElL,«(T) | ] BlL.=(T)| )]

b ll ERT) | 7] T T ERD) | F ]‘

EE14z(T) | Fr]] = E[laz(T)),
where use has been made of B € F,, the martingale nature of (2;) and the law of iterated
expectations. Conclude that 27 = 2% is the density of Q and hence that Q € P°. B
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C. APPENDIX: Proof of Existence of Utility

Proof of Theorem 2.3: (a) First we prove Lipschitz continuity of the support function e
defined in (2.8). Let z and z’' be in R* and suppose that e,(z) = y-z and e,(a) = ¢ -z for
y and ¥ in Oy; the dependence on w has been suppressed notationally. Then

IA

e(e)—ale) < y-(a—o) <d|y|lz—2'| and

e(x) —e(2) >y (x—2) > —d |y ||z—2|.

Now use Uniform Boundedness (0;(w) C K and K compact.)

By the existence and uniqueness result in [43], there exist unique solutions (V;, o) and
(WQ,U?) to (2.16) and (2.15) respectively.
(b) The Comparison Theorem and 6; - x; < maxyce, ¥ - #; for any z;, imply that V; <
minge pe V;%. On the other hand, by Lemma 2.1(b), there exists 0" in © such that

dv, = [=fle, Vi) + 07 - o4] dbt + oy dW, Vi = 0; (C.1)
in other words, V; = Vth* 2 Mingepe V9, proving equality and hence (2.12). Uniqueness
is covered by the uniqueness results in [44].

(¢) Case 1: Suppose that f(c,-) is decreasing for each ¢ in C.
Let 7 = T. By Girsanov’s Theorem,

T
Ve = B [/ [(es, V) ds | f]
t
Thus V; = mingepe Ve =
<

T
in E / LV d
Jain, Qltf(c )ds | Fy

T
in E / ., min V@) ds | F,
Qeps Qlt Jeo, zoin Vi7) ds | t]

— min Fo VtT Fles, Vo) ds | ]-}] .

QeP®
On the other hand, (C.1) and Girsanov’s Theorem imply that

- _
V, = Eo / flea, Vi) ds | F,

QeP®

- _
> min Fqg / Fles, Va)ds | 7ol .
t
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For general 7, denote V; by . Then (V;, 0¢) is the unique solution to the BSDE (on [0, 7])

dv; = [—f(ct,‘/}) + Iglégi 0y - o4

dt + O'tth, ‘/;— = 5

The fact that the terminal value £ is nonzero is of no consequence for the preceding argu-
ments. In particular, (V;) solves

V= min Bo | [* flenVds + €| 7

Case 2: Let f be arbitrary. For the given process ¢, define
Ft,v) = —Kv+ X fe, e T,

where K is the Lipschitz constant for f. Then, F'(¢,-) is decreasing and thus by Claim 1,
(the time dependence is of no consequence), there exists a unique (V/) solving

T
V/ = mig EQU F(S,V;)dsyft]. (C.2)
Qepe t

For this fixed (V), define further the function
H(t,v) = —Kv + e f(ey, e 'V)).
Again by Claim 1, there exists a unique (Vt) solving

— T —
Comparison of (C.2) and (C.3) and the uniqueness of solutions yield the equality
‘/Z — Vt. (C4>
Furthermore, by (b), we have .
V,= min V2, (C.5)
QepP®

where (V;Q) solves the BSDE
dVi? = [H(t, Vi) + 00, dt + o dW,, VP =0.
This linear BSDE, has explicit solution
T
Ve Kt = [, l/ f(cs,eKSV;’)ds]]-}] . YQ € Pe.
t
Combine with (C.4) and (C.5) to deduce that
— T
Ve = Ve = uin V% X = min Fg [ | fe v as| 7|
implying that V; = Ve X! solves
T
Vi= min Bol [ fle,,V)ds| )
t

QeP®
Similarly for 7 <7T. R
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D. APPENDIX: Ambiguity

Proof of Lemma 4.2: Assume (4.5). Given Q¢ in P°, Q?(F) = yo where (y, o) is the
unique {F;}-adapted solution to the BSDE

dy, = 0y o¢dt + o4 - dW;, yr = 1p.

If F e Fp,then ot = 0if P(F| F:) = 0or 1. Thus 6, -0, = 0 and the BSDE reduces to
the one defining P(F'), namely where 6 = 0. Therefore, Q(F) = P(F).

For the converse, suppose that all measures agree on F'. Then yy = 1, where

dy, = max O; - oidt + o¢-dWy, yr = 1p.
S

dy, = Ienig O, - oy dt + oy - dWy, yr = 1p.
S

By the strict portion of the Comparison Theorem A.1,

0,.0., — min 0, - o
7 e o = pig 00
or, in terms of the support function (3.10), e(o;) = —e(—oy). By the non-negativity of e,

e(o;) = 0. Now apply (3.13) to conclude that if K* # {0}, then 0% = 0, which implies
P(F|F;) =0orl ®

Proof of Theorem 4.3:(i) <=: Because k} = 0 implies x; = 0, it follows from Lemma 4.2
that U* C U. The consumption processes that are unambiguous for V* are those that are
adapted to the filtration generated by {W}/ : k} = 0}. On such processes, V and V* coincide
with V| the Kreps-Porteus utility having measure P and parameters (3, p, ). That is,

V(Cua) — V*<Cua) — VP<Cua).

Therefore, it is enough to prove that V*(¢) < V() for all consumption processes ¢. This
follows from k* > k, (3.9) and the Comparison Theorem A.1.

—: The above argument is reversible. First, 4* C U implies that x; = 0 whenever k7 = 0.
From the definition of ‘more ambiguity averse’ it follows that V' and V* agree in the ranking
of V*-unambiguous consumption processes. These processes are deterministic if k* >> 0,
in which case we can conclude only that V and V* agree in the ranking of deterministic
processes and therefore that (5%, p*) = (3, p). However, under the assumption that x; = 0
for some i, there exist sufficiently many stochastic processes that are V*-unambiguous in
order to conclude that the risk aversion parameters o and a* must be equal. Finally, apply
(4.7), (3.9) and the Comparison Theorem to deduce that k* > k.

(ii) <: It follows from Lemma 4.2, that on V-unambiguous processes, V* agrees with
VPAEp%e") the Kreps-Porteus utility with measure P and parameters (8", p*,a*), while V
agrees with VE(@2%  defined similarly. Thus the comparative risk aversion statement follows
from [14]. The converse is similar to (i). W
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E. APPENDIX: Proofs of Properties of Utility

Proof of Theorem 4.1: Fix ¢ in [0, 7] and consider processes ¢ of the form (3.5) where &
is R -valued. Denote by D, the set of all such acts. Clearly D, C D, and is isomorphic to
the set of all R -valued and F;-measurable square integrable random variables on . The
restriction of V' to D is probabilistically sophisticated (in the sense of [37]) and the associated
probability measure is nonatomic. Finally, because of (4.1), all measures in P€ agree on an
event A in F; with common measure in (0,1); indeed, any A in F} with 0 < P(A4) < 1 will
do. Under these conditions, Marinacci [40] shows that all measures in P© agree on all of F;.
This argument applies for every t <7T'. W

Proof of Theorem 4.5:
(a) and (b): To make explicit the dependence on the driving process (W), write V' (c, W)
to denote the solution of

V(e W) = [ (e Ve W)~ elos(e)lds — [ aufe) -dW, (E.1)

Let Fy = 0 (Woyr —We i s <t) and Wy = Wy, =W, for 0 < t < T—r. Then (W,)o<i<r
is {F}-Brownian motion under P and (€)o<t<r—r = (Ct4r)o<t<r—r 18 {F}-adapted. Thus
there is a unique solution (V;' "(¢, W), o(?)) to

VOEW) = [ e VTTEW) - o@lds - [ o) dT., (B

where t varies over [0, T —r|. After the change of variables [ = ¢ +r, this can be rewritten as

T—r T—r

[ V@) = elou@)ds— [ ou@) -dW,, (B3

I—r

Ve W) = |

I—r

for r <1 <T. The further change v = s 4+ r yields
_ T _ T —
V@ T) = [ VI ET) — elowr@du— [ 0. s(@) -
! !

Because €, , = ¢, and dW,_, = dW,, deduce that (V;T;T(E, W),Ut,T(E))TStST solves (on
[r,T7)

T T

(e, V(e W) = elos(@)lds = [ au(e) - aw. (F.4)

t

Ve w)= [

t

That is, V,L,"(E, W) = VT (c, W) and o, ,(¢) = o4(c) for t € [r, T]. In particular, choosing
t =7, we have V' (e, W) = V' "(¢,W), which is deterministic.
Rewrite (F.4) as

V(e W) = Ve W) + [ (e VI (e, W) = eou(e))ds = [ au(c) - dW.,
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for 0 <t < r. By hypothesis, ¢; is deterministic for 0 < ¢ < r. By the unicity of solutions
and the fact that VT (¢, W) is deterministic, it follows that (V;*(c,W),0) is the solution of
the ODE .

VI eW) = Ve W) + [ e V(e W) ds,

for 0 <t < r, proving (a). Because a corresponding representation is valid for ¢, (b) follows
by the Comparison Theorem (restricted to ODEs).

(¢) Let r € [0,7] and adopt the other notation above. Then (Wt>0§t§Tf7’ is {?t}ogtggr,r—
Brownian motion under P(- | o(W,)). Because ¢, is 0(W;)-measurable, ¢, = g(W;) for a
suitable function g and thus ¢y, = g(Wiy, — W, + W,) is F-measurable relative to the
probability space (Q, Fr ., {F:}, P(- | ¢(W,)). By arguing as above, we can show that V,(c)
is deterministic relative to this probability space, implying that it is o (W, )-measurable. W
Proof of Lemma 4.6: (a) Theorem 2.3(b) delivers Q* in P© such that V;(c) = V< (e).

Therefore, for any other ¢/,
V() =V(e) = V()= V(c) =

in VO(c) = V() < V() -V
Jnin () (c) < V¥ () (c)

< [ oo ([ 2enVE@)ds) 1enVE @) (6= )| at
=FEp l/OTWt<C; — ) dt] )

The second inequality is due to the nature of supergradients for the stochastic differential
utility function V¥ (.), as established in [16].
(b): The argument is virtually identical to the proof of [24, Lemma 2.2]. W
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