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LEARNING UNDER AMBIGUITY∗

Larry G. Epstein Martin Schneider

March 12, 2005

Abstract

This paper considers learning when the distinction between risk and ambigu-
ity (Knightian uncertainty) matters. Working within the framework of recursive
multiple-priors utility, the paper formulates a model of learning in complicated en-
vironments. The model allows decision-makers’ confidence about the environment
to change — along with beliefs — as they learn. Moreover, confidence need never
become strong enough for decision-makers to identify a single stochastic process
that is generating the data. The model is applied to dynamic portfolio choice. A
calibrated example shows how learning about ambiguous returns leads to endoge-
nous stock market participation costs that depend on past market performance. In
addition, hedging of ambiguity provides a new reason why the investment horizon
matters for portfolio choice.

1 INTRODUCTION

Models of learning typically assume that agents assign (subjective) probabilities to all
relevant uncertain events. These models leave no role for confidence in probability assess-
ments; in particular, the degree of confidence does not affect behavior. Thus, for example,
agents do not distinguish between risky situations, where the odds are objectively known,
and ambiguous situations, where they may have little information and hence also little
confidence regarding the true odds. The Ellsberg Paradox has shown that this distinction
is behaviorally meaningful in a static context: people treat ambiguous bets differently
from risky ones. This paper argues that the distinction matters also for learning and it
provides a generalization of the Bayesian learning model that can accommodate it.
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Our starting point is recursive multiple-priors utility, a model of utility axiomatized
in Epstein and Schneider [13], that extends Gilboa and Schmeidler’s [19] model of de-
cision making under ambiguity to an intertemporal setting. Under recursive multiple-
priors utility, learning is completely determined by a set of probability measures P, and
measure-by-measure Bayesian updating describes responses to data. The present paper
introduces a tractable class of sets P, designed to capture learning when data are viewed
as being generated by the same memoryless mechanism in every period; this a priori
view is commonly imposed on learners in a wide variety of economic applications. To
illustrate the model in an economic setting, we solve the intertemporal portfolio choice
problem of an investor who learns about stock returns that she perceives as ambiguous.

Learning under ambiguity has two interesting properties that cannot be captured by
the standard Bayesian model of learning. First, confidence varies over time, together with
beliefs. For example, in our portfolio choice model, beliefs and confidence are represented
by an evolving set of conditional distributions over future stock returns. This set may
shrink over time as agents become more familiar with the environment, but it may also
expand if new information is surprising relative to past experience. Optimal portfolio
choice then leads to endogenous market entry and exit rules that respond to past market
performance.

The second important property of our model is that agents need not be certain ex
ante that they will identify one “true” stochastic process in the long run. This possibility
is relevant when agents take the complexity of the environment seriously and therefore
are less ambitious than Bayesians about how much can be learned. To capture this
attitude, our model allows for ambiguity that does not vanish in the long run. Agents in
our model may learn only some features of the environment, while others remain forever
ambiguous. They are aware of their own limitations and take them into account when
making decisions. For example, a belief that the mean equity premium will never be
known precisely, due to ongoing change in the economy for example, will lead them to be
more cautious stock market investors. Asset markets are one example of an environment
where such behavior appears relevant, but the structure is likely to be useful in other
contexts as well.

The paper is organized as follows. The rest of this introduction outlines the bench-
mark Bayesian model of learning, then our generalization, and finally our application to
portfolio choice. Section 2 presents a sequence of thought experiments to motivate our
model. Section 3 briefly reviews recursive multiple-priors utility and then introduces the
learning model. Section 4 establishes properties of learning in the short and long run.
Section 5 applies our model to portfolio choice. A discussion of related literature follows
in Section 6. The Appendix contains proofs.

1.1 Bayesian Learning

The Bayesian model of learning about a memoryless mechanism can be summarized by
a triple (Θ, µ0, ), where Θ is a parameter space, µ0 is a prior over parameters, and is
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a likelihood. The parameter space represents features of the data generating mechanism
that the decision-maker tries to learn. The prior µ0 represents initial beliefs about para-
meters. For a given parameter value θ ∈ Θ, the data are an independent and identically
distributed sequence of signals {st}∞t=1, where the distribution of any signal st is described
by the probability measure (·|θ) on the period state space St = S. The triple (Θ, µ0, )
is the decision-maker’s theory of how data are generated. This theory incorporates both
prior information (through µ0) and a view of how the signals are related to the underlying
parameter (through ). Beliefs on (payoff-relevant) states are equivalently represented
by a probability measure p on sequences of signals (that is, on S∞), or by the process
{pt} of one-step-ahead conditionals of p. The dynamics of Bayesian learning can be
summarized by

pt
¡·|st¢ = Z

Θ

(· | θ) dµt(θ|st), (1)

where st = (s1, ..., st) denotes the sample history at t and where µt is the posterior belief
about θ, derived via Bayes’ Rule.

Foundations for this model are provided by the de Finetti Theorem: the representation
(1) is possible if and only if the prior p on S∞ is exchangeable. Nevertheless, there is a
sense in which applications of the Bayesian model are still ad hoc. While the de Finetti
theorem begins with a prior p and the assumption of exchangeability, its usefulness
stems in large part from the reverse perspective as describing a cognitively plausible
procedure for a decision-maker to arrive at a prior p (and to determine thereby if, indeed,
exchangeability is acceptable).1 In some settings, there is a natural pair (Θ, ) and, when
Θ is simple, forming a prior µ0 over Θ is easier than forming one directly over S

∞. Thus
the representation (1) can be viewed as providing a procedure for the decision-maker to
arrive at the measure p on S∞ to use for decision-making. Moreover, to the extent that
(Θ, ) is simple and natural given her environment, the procedure is cognitively plausible.

We emphasize that cognitive plausibility is essential to support application of the
Bayesian model: the typical application assumes a particular parametric specification of
(Θ, µ0, ), which amounts, via (1), to assuming a particular prior p. There is no axiomatic
justification for this step - cognitive plausibility is the only supporting argument. How-
ever, outside of contrived settings, where the data generating mechanism is simple and
transparent, the existence of a cognitively plausible specification of (Θ, µ0, ) is problem-
atic. In particular, the Bayesian model presumes a degree of confidence on the part of
the agent that seems unintuitive in complicated environments.

The examples in Section 2 illustrate two aspects of “lack of confidence”. On the
one hand, a decision-maker may lack confidence in her initial information about the
environment. In light of the Ellsberg Paradox, the Bayesian model is then not applicable.
However, she may still expect to resolve initial ambiguity through learning and eventually
become confident enough to view the data as a simple i.i.d. process. Alternatively, she
may expect to never learn enough to confidently view the data generating process as an
i.i.d. process. Indeed, in contrast to a Bayesian, she may not even be sure whether the

1See, for example, Kreps [26, pp. 155-6].

3



empirical frequencies of the data will converge, let alone expect her learning process to
settle down at a single i.i.d. process.2

As a concrete example, consider independent tosses of a sequence of coins. If the
decision-maker perceives the coins to be identical, then after many tosses she will natu-
rally become confident that the observed empirical frequency of heads is close to a “true”
frequency of heads that is relevant for forecasting what happens in future tosses. This
laboratory-style situation is captured by the Bayesian model.3 More generally, suppose
that she believes the tosses to be independent, but that she has no reason to be sure that
the coins are identical - for example, she might be told the same about each coin but very
little (or nothing at all) about each. Then she would plausibly admit the possibility that
the coins are not identical. In particular, there is no longer a compelling reason why data
in the future should be i.i.d. with frequency of heads equal to the empirical frequency
of heads observed in the past. This situation cannot be captured by the Bayesian model
(1).4 One can view our model as an attempt to capture learning in such complicated
environments.

1.2 Our Model

Generalize the Bayesian triple to (Θ,M0,L). As before, Θ is a parameter space. The set
of priorsM0 represents the agent’s initial view of these parameters. WhenM0 is not a
singleton, it also captures (lack of) confidence in the information upon which this initial
view is based. Finally, a set of likelihoods L represents the agent’s a priori view of the
connection between signals and the true parameter. These components are combined in a
way described below, and paralleling the Bayesian model (1), to define the set of priors P
appearing in recursive multiple-priors utility. In particular, we specify sets of posteriors
Mt that update beliefs about the parameter, including the evolution of confidence. These
sets of posteriors may shrink in response to a signal, if it confirms current beliefs and
thus enhances confidence, or expand, if the signal is an outlier relative to current beliefs
and reduces confidence.

The multiplicity of likelihoods and the distinction between Θ and L are central to
the way we model an agent who has modest (or realistic) ambitions about what she can
learn. The set Θ represents features of the environment that the agent views as constant
over time and that she therefore expects to learn. However, in complicated environments
she may be wary of a host of other poorly understood or unknown factors that also
affect realized signals. They vary over time in a way that she does not understand well

2For the exchangeable Bayesian model, convergence of empirical frequencies is a consequence of the
LLN for exchangeable random variables; see Schervish [34].

3Under regularity conditions, the posterior µt converges to a Dirac measure on Θ, almost surely under
p, the Bayesian’s subjective probability on sequences of data; see Schervish [34].

4If the data are generated by a memoryless mechanism and information about each observation is
a priori the same, the exchangeable model is the only relevant Bayesian model. More complicated
Bayesian models that introduce either serial dependence or a dependence of the distribution on calendar
time are not applicable.
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enough even to theorize about and therefore she does not even try to learn about them.
The multiplicity of likelihoods in L captures these factors. Under regularity conditions,
we show that beliefs become concentrated on one parameter value in Θ, but the time-
varying unknown features remain impossible to know even after many observations. Thus
ambiguity does not vanish in the long run. Instead, the agent moves towards a state of
time-invariant ambiguity, where she has learned all that she can.5

Though recursive multiple-priors is an axiomatic model, we do not have axiomatic
foundations for the specialization described here. But as argued above, there is a sense in
which applications of the Bayesian model are ad hoc in spite of the axiomatic foundations
provided by the de Finetti Theorem, and cognitive plausibility is a concern. We view
enhanced cognitive plausibility as a justification for our model. As illustrated by the
examples in Section 2, greater cognitive plausibility is afforded if we allow the decision-
maker to have multiple priors on the statistical parameter space and, more importantly,
multiple likelihoods.

Another feature of our model should be made clear at the outset: the decomposition
between the learnable parameters Θ and the unlearnable features of the environment
embodied by a nonsingleton L is exogenous. We do not explain which features the
agent tries to learn in any given setting. Note that an exogenous decomposition is
imposed also by the Bayesian model, where the decomposition is extreme -L is a singleton
and the agent tries to identify a true i.i.d. process. Thus, while we leave important
aspects unmodeled, we do extend the Bayesian model in the direction of permitting
more plausible ambitions about what can be learned in complex settings. The Ellsberg-
style examples and the portfolio choice application illustrate that natural decompositions
may be suggested by descriptions of the environment.

1.3 Stock Market Participation

We use our model to study portfolio choice and asset market participation by investors
who are ambiguity averse and learn over time about asset returns. Standard models
based on expected utility and rational expectations predict that investors should diversify
broadly. In fact, the typical U.S. investor participates in only a few asset markets. For
example, many households stay out of the stock market altogether, and those who do
hold equity often pick only a few individual stocks. This selective participation in asset
markets has been shown to be consistent with optimal static (or myopic) portfolio choice
by ambiguity averse investors.6 What is new in the present paper is that we solve the
— more realistic — intertemporal problem of an investor who rebalances his portfolio in
light of new information that affects both beliefs and confidence. The model delivers

5Existing applications of ambiguity to financial markets typically impose time-invariant ambiguity.
Our model makes explicit that this can be justified as the outcome of a learning process. See Epstein
and Schneider [14] for further properties of time invariant ambiguity.

6See Guiso and Haliassos [20] for a survey of the existing empirical and theoretical literature on
portfolio choice. Non-participation with multiple priors was first derived by Dow and Werlang [11]. The
argument is discussed in detail in Section 5.
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endogenous market exit and entry rules that depend on past market performance as well
as on the planning horizon.

We view excess stock returns as a data series that is generated by a memoryless mech-
anism. We model investors who perceive the mechanism driving returns as ambiguous.
They try to resolve ambiguity about the equity premium by looking at the distribution
of past returns. However, they are aware that they have only a limited understanding
of the data generating mechanism, and that there are factors influencing returns about
which they cannot even theorize. As a result, they are not confident that they will ever
resolve all ambiguity about the equity premium. We propose a way for investors to
quantify their degree of ambiguity. We then calculate real time optimal portfolios for the
post-war period. For U.S. investors with a moderate degree of ambiguity aversion, the
model recommends that they hold virtually no stocks in the 1970’s, entering the market
only in the late 1980’s.

We also show that with time-varying ambiguity in returns, the investment horizon
matters for asset allocation: the optimal myopic portfolio need not be optimal for a long-
horizon investor. The reason is that if the investor perceives both returns in the short term
and investment opportunities in the longer term to be affected by a common unknown
(ambiguous) factor, then a long-horizon investor will have an implicit exposure to that
factor. Her optimal portfolio may try to hedge this exposure. This hedging of ambiguity
is distinct from the familiar hedging demand driven by intertemporal substitution effects
stressed by Merton [30]. Indeed, we show that it arises even when preferences over risky
payoff streams are logarithmic, so that the traditional hedging demand is zero.

2 EXAMPLES

In this section, we consider three related learning scenarios. Each involves urns containing
five balls that are either black or white. However, the scenarios differ in a way intended
to illustrate alternative hypotheses about learning in economic environments, and to
motivate the main ingredients of our model. Figure 1 illustrates the composition of the
urns.

Scenario 1: Pure risk

An urn contains five balls. The agent is told that two are black, two are white
and that the fifth is either black or white depending on the outcome of the toss of an
unbiased coin - the ‘coin ball’ is black if the coin toss produces heads and it is white
otherwise. She cannot see the outcome of the coin toss, but she does observe some
possibly related signals, namely, in each period she sees a black or white ball. Suppose
that she anticipates all this and that her ex ante view is that these data are generated
by sampling with replacement from the given urn. This may be because she is actually
doing the sampling, or because she has been told that this is how signals are generated.
Alternatively, it may simply reflect her subjective view of the environment. In any case,
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the obvious version of the Bayesian learning model (1) seems appropriate. In particular,
she can be confident of learning the color of the coin ball.

It is useful to compare the preceding with the following alternative scenario (referred
to later as Scenario 10): signals are generated by successive sampling from a sequence of
urns, each containing black and white balls. Each urn is perceived as consisting of a coin
ball and four other balls as above. The coin is tossed once at the start and determines the
same color for coin-balls in all urns. However, non-coin balls are replaced every period
with a new set of non-coin balls. Each set is determined by a new realization of an i.i.d.
process that puts probability 1/2 each on 2 and 3 black non-coin balls.

At first sight, this scenario looks more complicated: the number of non-coin balls in
any given urn is not known and cannot be learned because it changes over time. However,
the fact that there is a known identical distribution over the number of black non-coin
balls at all dates implies that Scenario 10 is effectively the same as Scenario 1: in both
cases, the probability that a randomly drawn non-coin ball is black is 1/2 at all dates.
This is all that matters for updating beliefs about what the next draw will be. Decisions
that depend on the conditional probability of the next ball drawn, such as betting on the
color of the latter, should thus be identical in the two scenarios. Similarly, in both cases
beliefs about the total number of black balls in each urn will settle down at the long run
empirical frequency of black draws.

The difference between the two alternative perceptions of signals - they are generated
by sampling with replacement from a fixed urn on the one hand versus being due to
sampling from different urns on the other - will play an important role below in the
intuition for our model of learning under ambiguity. The fact that there is no meaningful
difference between them here is a (restrictive) feature of the Bayesian model.

Scenario 2: Ambiguous priors and fixed urn

The information provided about the urn is modified to: there is at least one non-coin
ball of each color. Thus unlike Scenario 1, no objective probabilities are given for the
composition of the urn — there is ambiguity about the number of black non-coin balls.
However, signals are again observed in each period and they are viewed as resulting from
sampling with replacement from the given urn. Because the agent views the factors
underlying signals, namely the color composition of the urn, as fixed through time, she
can hope to learn it. That is, she would try to learn the true θ ∈ Θ = {1

5
, 2
5
, 3
5
, 4
5
}, where

the connection to signals is expressed by the single likelihood

(B | θ) = θ.

Compare this situation with the purely risky one, Scenario 1 above, assuming the
two coin tosses are independent. In particular, consider the choice between betting on
drawing black (white) from the risky urn as opposed to the ambiguous one. (Throughout
a bet on the color of a ball drawn from an urn is understood to pay one util if the ball has
the desired color and zero otherwise.) The familiar Ellsberg Paradox examines this choice
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Figure 1: Urns for Scenarios 1-3.

prior to any sampling. The intuitive behavior pointed to by Ellsberg is the preference
to bet on drawing black from the risky urn as opposed to the ambiguous one, and a
similar preference for white. This behavior is inconsistent with any single probability
measure on the associated state space and hence also with any single prior on Θ. The
intuition is that confidence about the odds differs across the two urns. This difference
matters for behavior, but cannot be captured by probabilities. On the other hand, the
multiple-priors model predicts the intuitive choices if the setM0 of priors on Θ admits
the possibility that the number of black non-coin balls is less than 2 and similarly for
white. Thus we are led to the triple (Θ,M0, ), which differs from the Bayesian model
only in thatM0 is a nonsingleton set.

Consider the ranking of bets after some sampling. Assuming that the agent’s prior
view of signals is correct, actual learning proceeds in each case as though sampling is
from an unchanging urn. Thus it is intuitive that for the ambiguous urn, learning should
resolve ambiguity in the long run. As the number of draws increases, ambiguity should
diminish and asymptotically the agent should behave as if she knew the fraction of black
balls were equal to their empirical frequency - in the limit, and for any common sample
history across the two urns, she would be indifferent between betting on the next draw
from the risky as opposed to the ambiguous urn. Formally, increasing confidence about
the ambiguous urn is captured in our model because the set Mt of posteriors shrinks
with time.

Both Scenarios 1 and 2 are conducive to inference and learning because there is one
urn with fixed composition. Next we examine learning in a more complex setting where
signals are generated by a sequence of urns with time-varying composition. This added
complexity was shown above to be of no consequence in the Bayesian model, but it will
matter more generally.
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Scenario 3: Unambiguous prior and changing urns

Signals are generated by successive sampling from a sequence of urns, each containing
black and white balls. The urns are perceived in the following way: each urn consists
of a coin ball and four other balls as above. The coin is tossed once at the start and
determines the same color for coin-balls in all urns. However, non-coin balls are replaced
every period with a new set of non-coin balls. This task is performed every period by an
administrator. It is also known that (i) a new administrator is appointed every period,
(ii) no administrator knows the previous history of urns or draws and (iii) the only
restriction on any given administrator is that at least one non-coin ball of each color be
placed in the urn.

Ex ante, before any draws are observed, this environment looks the same as Scenario
2: there is one coin ball, there is at least one black and one white non-coin ball, and there
are two non-coin balls about which there is no information. The new feature in Scenario
3 is that the non-coin balls change over time in a way that is not well understood. What
might an agent now try to learn? Since the coin-ball is fixed across urns and underlies all
signals, it still makes sense to try to learn its color. At the same time, learning about the
changing sequence of non-coin balls has become more difficult. Compared to Scenario 2,
one would thus expect agents to perceive more uncertainty about the overall proportion
of black balls. This leads to behavioral differences between the two scenarios in both the
short and the long run.

Consider first betting behavior after a small number of draws, assuming that the
coin tosses in Scenarios 2 and 3 are independent. Before any sampling, one should be
indifferent between bets in Scenarios 2 and 3, since the two settings are a priori identical.
However, suppose that one black draw from each urn has been observed and consider
bets on the next draw being black. It is intuitive that the agent prefer again to bet on
the next urn in Scenario 2 because the black draw is stronger evidence there for the next
draw also being black: in Scenario 3, the agent does not understand well the dynamics of
the non-coin balls and thus is plausibly concerned that the next urn may contain more
white balls than did the first. She thinks that it may also contain more black balls,
but as in the static Ellsberg choice problem, the more pessimistic possibility outweighs
the optimistic one. Thus she would rather bet in Scenario 2 where the number of black
non-coin balls is perceived not to change between urns. Our model can accommodate
this preference (see Section 4.1).

How does an agent expect to behave in the long run? A Bayesian might postulate a
family of stochastic processes that describe the evolution of the non-coin balls over time.
She would then hope to learn moments of that process, such as the fraction of black non-
coin balls placed in the urn by the average administrator. However, any such approach
makes sense only if the agent is confident that the fraction of black non-coin balls will
converge to some limit. The description (or perception) of the environment provides
no indication that this will happen. To the contrary, the ever-changing sequence of
administrators suggests perpetual change.

Our model thus allows the agent to view the number of black non-coin balls as inde-
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pendent across urns. Under this view, she does not expect to learn anything about future
non-coin balls from sampling. Given how little information is provided about any single
urn, it is then natural for her to perceive the number of non-coin balls as ambiguous at
all dates. In particular, she expects that, after sufficiently long identical samples from
the two scenarios, she will still prefer to bet on the next draw being black from the urns
in Scenario 2 rather than in Scenario 3.

Multiple likelihoods to model changing urns

Our model of Scenario 3 builds on the Bayesian model in that it also starts from
a parameter space — here Θ = {B,W}, corresponding to the two possible colors of
the coin-ball — and a prior µ0, here the

¡
1
2
, 1
2

¢
prior on Θ corresponding to the toss of

the unbiased coin. In addition, ambiguity perceived about the changing non-coin balls
motivates a set of likelihoods L. The general idea is that of an agent who perceives the
data generating mechanism as having some unknown features that are common across
a set of experiments, represented by θ. At the same time, other unknown features are
variable across experiments, represented by L. It is known that the variable features
are determined by a memoryless mechanism — this is why the set L does not depend on
history. It is also known that the relative importance of the variable features is the same
every period, as in the urn example where there are always four non-coin balls and one
coin ball. This is why the set L does not depend on time.
In the urns example, the set of likelihoods might be specified as follows: let λ denote

the number of black non-coin balls. Then the likelihood of drawing a black ball from
that urn is given by

λ (B|θ) =
½

λ+1
5

if θ = B
λ
5

if θ =W.

Given the symmetry of the environment, a natural set of likelihoods is

L = { λ : λ ∈ [2− , 2 + ]} , (2)

where is a parameter, 0 ≤ ≤ 1.
In the special case = 1, the set L models an agent who attaches equal weight to

all logically possible urn compositions λ = 1, 2, or 3. More generally, (2) incorporates
a subjective element into the specification. Just as subjective expected utility theory
does not impose connections between the Bayesian prior and objective features of the
environment, so too the set of likelihoods is subjective (varies with the agent) and is
not uniquely determined by the facts. For example, the agent might attach more weight
to the ‘focal’ likelihood corresponding to λ = 2 as opposed to the more extreme cases
λ = 1, 3. The parameter can be interpreted as the weight attached to the latter cases,
as opposed to the focal likelihood. Indeed, L can be rewritten as7

L = {(1− ) 2 (· | θ) + λ (· | θ) : λ = 1, 2, 3}.
7This is a form of the -contamination model employed in robust statistics (see Walley [37], for

example). In economic modeling, it is used in Epstein and Wang [16], for example.
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We emphasize that the agent behaves as though she views any likelihood in L as
applying at any future time. In particular, she admits the possibility that the operative
likelihood varies from period to period. Moreover, the way in which it can vary is con-
strained only by the requirement that every likelihood lies in L. This view is perfectly
consistent with her limited information about the urns. The description of the environ-
ment does not give any indication of patterns in the sequence of urns. In particular,
past draws do not provide any information about the non-coin balls in future urns. The
composition of the non-coin balls in the next urn is thus always ambiguous, even after a
large number of draws.8

It follows that Ellsberg-type choices in betting on the color of the next draw should
persist forever, in contrast to what we have observed for Scenario 2. For example, after a
sufficiently long sample, an agent will prefer to bet on the next draw being black from the
urns in Scenario 2 rather than in Scenario 3. The model thus rationalizes a preference
for bets in Scenario 2 over those in Scenario 3 in the long run. Section 4.1 below will
show that it also captures the intuitive preference for bets in Scenario 2 in the short run.

Updating

To motivate how we model behavior in the short run, turn to the agent’s view about
θ after a finite number of draws. Intuitively, the fraction of black draws observed in the
past is informative about the parameter: the more black draws are observed, the more
confident she should become that the coin ball is black. How quickly confidence will
change now also depends on what she believes, with hindsight, about the sequence of
non-coin balls in past urns. Importantly, while it is not possible to learn about future
non-coin balls, past draws are certainly informative about past non-coin balls.9 For
example, if a black ball was drawn two periods ago, it is more likely, with hindsight, that
the urn from which draws were made at that date contain three black non-coin balls.

More generally, any view one might have about the past sequence of non-coin balls
can be evaluated in light of a sample st = (s1, ..., st) . In Scenario 3, such reevaluation
of the non-coin balls is important for updating about the parameter θ. To illustrate,
suppose 50 draws have been observed, and 30 of them have been black. Given a theory
about the non-coin balls, these observations suggest that the coin ball is more likely to
be black than white. At the same time, given a value of the parameter, the observations
suggest that more than half of the past urns contained three black non-coin balls. Sensible
updating takes both of these features into account. Our approach is based on selecting
theories about the data described by a prior and a sequence of likelihoods, and then
taking conditionals of theories that explain the given sample well.

8Scenario 3 is thus similar to Scenario 1’ above in that the agent is a priori certain that she will never
learn more about future non-coin balls than what she already knows a priori. The difference is that
initial beliefs in Scenario 1’ are captured by a single probability measure for the non-coin balls, while in
Scenario 3 the non-coin balls are viewed as ambiguous.

9In this respect, Scenario 3 again resembles Scenario 1’. In Scenario 1’, one can infer something about
past realizations of the i.i.d. non-coin ball process from past draws. At the same time, the conditional
distribution of future non-coin balls is always the same.
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More specifically, consider the following heuristic reasoning. There is a large set of
“theories” about sequences of data that the agent might be willing to entertain. Every
theory is described by a probability measure on S∞ of the typeZ

Π∞j=1 j (.|θ) dµ0(θ), (3)

where µ0 ∈ M0 is a prior and { t} ∈ L∞ is a sequence of likelihoods. Here every
theory says that the data are serially independent conditional on θ, but many allow for
nonstationarity, although there are also theories that say the data are conditionally i.i.d.
We define the agent’s set of one-step-ahead beliefs after a sample st as conditionals (given
st) of probabilities of type (3). To capture reevaluation, we allow only conditionals of
those probability measures that do a “good enough job” in explaining the sample st,
which is formalized using an approriate likelihood ratio test. The stringency of the test
becomes a parameter α that governs how quickly agents are willing to resolve ambiguity.

3 A MODEL OF LEARNING

3.1 Recursive Multiple-Priors

We work with a finite period state space St = S, identical for all times. One element
st ∈ S is observed every period. At time t, an agent’s information consists of the history
st = (s1, ..., st) . There is an infinite horizon, so S∞ is the full state space.10 The agent
ranks consumption plans c = (ct), where ct is a function of the history st. At any date
t = 0, 1, ..., given the history st, the agent’s ordering is represented by a conditional
utility function Ut, defined recursively by

Ut(c; s
t) = min

p∈Pt(st)
Ep

£
u(ct) + βUt+1(c; s

t, st+1)
¤
, (4)

where β and u satisfy the usual properties. The set of probability measures Pt(s
t) models

beliefs about the next observation st+1, given the history st. Such beliefs reflect ambiguity
when Pt(s

t) is a nonsingleton. We refer to {Pt} as the process of conditional one-step-
ahead beliefs. The process of utility functions is determined by specification of {Pt}, u (·)
and β, which constitute the primitives of the functional form.

To clarify the connection to the Gilboa-Schmeidler model, it is helpful to rewrite
utility using discounted sums. In a Bayesian model, the set of all conditional-one-step-
ahead probabilities uniquely determine a probability measure over the full state space.
Similarly, the process {Pt} determines a unique set of probability measures P on S∞

10In what follows, measures on S∞ are understood to be defined on the product σ-algebra on S∞,
denoted by S, and those on any St are understood to be defined on the power set of St. While our
formalism is expressed for S finite, it can be justified also for suitable metric spaces S but we ignore the
technical details needed to make the sequel rigorous more generally.
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satisfying the regularity conditions specified in Epstein and Schneider [13].11 Thus one
obtains the following equivalent and explicit formula for utility:

Ut(c; s
t) = min

p∈P
Ep

£
Σs≥t βs−t u(cs) | st

¤
. (5)

This expression shows that each conditional ordering conforms to the multiple-priors
model in Gilboa and Schmeidler [19], with the set of priors for time t determined by
updating the set P measure-by-measure via Bayes’ Rule.
Axiomatic foundations for recursive multiple-priors utility are provided in Epstein and

Schneider [13]. The essential axioms are that (i) conditional orderings satisfy the Gilboa-
Schmeidler axioms, and (ii) conditional orderings are connected by dynamic consistency.
The analysis in [13] also clarifies the role of the set P in an intertemporal multiple-priors
model. In particular, P should not be interpreted as the “set of time series models
that the agent contemplates”. Indeed, the axioms imply restrictions on P, although
they do not impose structure on agents’ beliefs. Instead, restrictions on P are needed
to capture aspects of dynamic behavior, such as backward-induction reasoning implied
by the dynamic consistency axiom. This observation is important for applications such
as learning: if P is selected on the basis of statistical criteria alone, this might have
unintended, or hard-to-understand, consequences for dynamic behavior.

Recursive multiple priors has some important features in common with the standard
expected utility model. Decision making after a history st is not only dynamically consis-
tent, but it also does not depend on unrealized parts of the decision tree. In other words,
utility given the history st, depends only on consumption in states of the world that can
still occur. To ensure such dynamic behavior in an application, it is sufficient to specify
beliefs directly via a process of one-step-ahead conditionals {Pt} . In the case of learning,
this approach has additional appeal. Because {Pt} describes how an agent’s view of the
next state of the world depends on history, it is a natural vehicle for modeling learning
dynamics. The analysis in [13] restricts {Pt} only by technical regularity conditions. We
now proceed to add further restrictions to capture how the agent responds to data.

3.2 Learning

Our model of learning applies to situations where a decision-maker holds the a priori
view that data are generated by the same memoryless mechanism every period. This a
priori view also motivates the Bayesian model of learning about an underlying parameter
from conditionally i.i.d. signals.

As in the Bayesian model outlined in the introduction, our starting point is again (a
finite period state space S and) a parameter space Θ that represents features of the data
the decision-maker tries to learn. To accommodate ambiguity in initial beliefs about

11In the infinite horizon case, uniqueness obtains only if P is assumed also to be regular in a sense
defined in Epstein and Schneider [14], generalizing to sets of priors the standard notion of regularity for
a single prior.
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parameters, represent those beliefs by a set M0 of probability measures on Θ. The
size ofM0 reflects the decision-maker’s (lack of) confidence in the prior information on
which initial beliefs are based. A technically convenient assumption is thatM0 is weakly
compact;12 this permits us to refer to minima, rather than infima, overM0.

Finally, we adopt a set of likelihoods L - every parameter value θ ∈ Θ is associated
with a set of probability measures

L(· | θ) = { (· | θ) : ∈ L}.
Each : Θ −→ ∆(S) is a likelihood function, so that θ 7−→ (A | θ) is assumed
measurable for every A ⊂ S. Another convenient technical condition is that L is compact
when viewed as a subset of (∆ (S))Θ (under the product topology). Finally, to avoid the
problem of conditioning on zero probability events, assume that each (· | θ) has full
support.

Turn to interpretation. If there is a single likelihood, that is L = { }, then any given
θ determines a unique probability measure on S∞. More generally, a nonsingleton set of
likelihoods reflects the decision-maker’s view that θ alone does not uniquely determine
the data generating mechanism. She feels there are other factors underlying data and
this will influence her beliefs and preference. Beliefs about the signal st are described by
the same set L for every t — this captures the perception that the same mechanism is at
work every period. Moreover, for a given parameter value θ ∈ Θ, signals are assumed
to be independent over time — the mechanism is perceived to be memoryless. Factors
modeled by θ are perceived as common across time or experiments - thus the agent can
try to learn about them. Those modeled by the set L are variable across time in a way
that she does not understand beyond the limitation imposed by L. In particular, at any
point in time, any element of L might be relevant for generating the next observation.
Accordingly, while she can try to learn the true θ, she has decided that she will not try
to (or is not able to) learn more.

Conditional independence implies that past signals st affect beliefs about future sig-
nals (such as st+1) only to the extent that they affect beliefs about the parameter. Let
Mt (s

t), to be described below, denote the set of posterior beliefs about θ given that the
sample st has been observed. The dynamics of learning can again be summarized by a
process of one-step-ahead conditional beliefs. However, in contrast to the Bayesian case
(1), there is now a (typically nondegenerate) set assigned to every history:

Pt(s
t) =

½
pt (·) =

Z
Θ

(· | θ) dµt(θ) : µt ∈Mt(s
t), ∈ L

¾
, (6)

or, in convenient notation,

Pt(s
t) =

Z
Θ

L(· | θ) dMt(θ).

12More precisely, measures inM0 are defined on the implicit and suppressed σ-algebra B associated
with Θ. Take the latter to be the power set when Θ is finite. The weak topology is that induced by
bounded and B-measurable real-valued functions on Θ. M0 is weakly compact iff it is weakly closed.
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This process enters the specification of recursive multiple priors preferences (4).13

Updating and reevaluation

To complete the description of the model, it remains to describe the evolution of the
posterior beliefs Mt. Imagine a decision-maker at time t looking back at the sample
st. In general, she views both her prior information and the sequence of signals as
ambiguous. As a result, she will typically entertain a number of different theories about
how the sample was generated. Adapting the notation used in the Bayesian case above,
a theory is now summarized by a pair (µ0,

t), where t = ( 1, .., t) ∈ Lt is a sequence
of likelihoods. The decision-maker contemplates different sequences t because she is not
confident that signals are identically distributed over time.

We allow for different attitude towards past and future ambiguous signals. On the
one hand, L is the set of likelihoods possible in the future. Since the decision-maker has
decided she cannot learn the true sequence of likelihoods, it is natural that beliefs about
the future must be based on the whole set L as in (6). On the other hand, the decision-
maker may reevaluate, with hindsight, her views about what sequence of likelihoods was
relevant for generating data in the past. Such revision is possible because the agent learns
more about θ and this might make certain theories more or less plausible. For example,
some interpretation of the signals, reflected in a certain sequence t = ( 1, ..., t), or some
prior experience, reflected in a certain prior µ0 ∈M0, might appear not very relevant if
it is part of a theory that does not explain the data well.

To formalize reevaluation, we need two preliminary steps. First, how well a theory
(µ0,

t) explains the data is captured by the (unconditional) data density evaluated at st:Z
Πt
j=1 j (sj|θ) dµ0(θ).

Here conditional independence implies that the conditional distribution given θ is simply
the product of the likelihoods j. Prior information is taken into account by integrating
out the parameter using the prior µ0. The higher the data density, the better is the
observed sample st explained by the theory (µ0,

t). Second, let µt (· ; st, µ0, t) denote
the posterior derived from the theory (µ0,

t) by Bayes’ Rule given the data st. This
posterior can be calculated recursively by Bayes’ Rule, taking into account time variation
in likelihoods:

dµt
¡· ; st, µ0, t

¢
=

t(st | ·)R
Θ t(st | θ0) dµt−1(θ0; st−1, µ0, t−1)

dµt−1(· ; st, µ0, t−1). (7)

Reevaluation takes the form of a likelihood-ratio test. The decision-maker discards
all theories (µ0,

t) that do not pass a likelihood-ratio test against an alternative theory

13Given compactness of M0 and L, one can show that Mt(s
t) defined below is also compact, and

subsequently that each Pt(st) is compact. This justifies the use of minima in (4).
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that puts maximum likelihood on the sample. Posteriors are formed only for theories
that pass the test. Thus posteriors are given by

Mα
t (s

t) = {µt
¡
st;µ0,

t
¢
: µ0 ∈M, t ∈ Lt, (8)Z

Πt
j=1 j (sj|θ) dµ0(θ) ≥ α max

µ̃0∈M0
t̃∈Lt

Z
Πt
j=1 j̃ (sj|θ) dµ̃0}.

Here α is a parameter, 0 < α ≤ 1, that governs the extent to which the decision-maker
is willing to reevaluate her views about how past data were generated in the light of new
sample information. The likelihood-ratio test is more stringent and the set of posteriors
smaller, the greater is α. In the extreme case α = 1, only parameters that achieve
the maximum likelihood are permitted. If the maximum likelihood estimator is unique,
ambiguity about parameters is resolved as soon as the first signal is observed. More
generally, we have that α > α0 implies Mα

t ⊂ Mα0
t . It is important that the test is

done after every history. In particular, a theory that was disregarded at time t might
look more plausible at a later time and posteriors based on it may again be taken into
account.

In summary, our model of learning about an ambiguous memoryless mechanism is
given by the tuple (Θ,M0,L, α). As described, the latter induces, or represents, the
process {Pt} of one-step-ahead conditionals via

Pt(s
t) =

Z
Θ

L(· | θ) dMα
t (θ),

whereMα
t is given by (8). The model reduces to the Bayesian model when both the set

of priors and the set of likelihoods have only a single element.

Another important special case occurs if M0 consists of several Dirac measures on
the parameter space in which case there is a simple interpretation of the updating rule:
Mα

t contains all θ̃’s such that the hypothesis θ = θ̃ is not rejected by an asymptotic
likelihood ratio test performed with the given sample, where the critical value of the
χ2 (1) distribution is −2 log α. Since α > 0, (Dirac measures over) parameter values are
discarded or added to the set, and Pt varies over time. The Dirac priors specification is
convenient for applications — it will be used in our portfolio choice example below. Indeed,
one may wonder whether there is a need for non-Dirac priors at all. However, more general
priors provide a useful way to incorporate objective probabilities, as illustrated by the
scenarios in Section 2.14

4 PROPERTIES

In this section we illustrate properties of learning under ambiguity in the context of the
scenarios described above. We show that our model rationalizes the intuitive choices
14Another example is in Epstein and Schneider [15], where a representation with a single prior and

α = 0 is used to model the distinction between tangible (well-measured, probabilistic) and intangible
(ambiguous) information.
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described in Section 2, and we examine the dynamics of beliefs and confidence in the
short term. Then we provide a result on convergence of the learning process in the long
run.

4.1 Scenarios Revisited

We described in Section 2 howwe would model the three scenarios. The intuitive Ellsberg-
type behavior would obviously be captured in this way. Focus on the other choice de-
scribed above - given that one black ball has been drawn, would you rather bet on the next
draw being black in Scenario 2 or in Scenario 3? This question highlights one difference
between learning in simple settings (Scenario 2) as opposed to complex ones (Scenario
3), and correspondingly demonstrates the key role played by multiple-likelihoods. We
argued above that it is intuitive that one prefer to bet in Scenario 2 - the black draw is
stronger evidence there for the next draw also being black. We now propose a natural
specification of beliefs for both Scenarios for which these choices obtain.

Scenario 2 : To define a representation (Θ,M0,L, α), take Θ =
©
n
5
: n = 1, 2, 3, 4

ª
, the

proportion of black balls (coin or non-coin), and (B | θ) = θ. Specify the set M0 of
priors on Θ as follows: the true overall proportion is θ iff there are 5θ black balls in total.
Let

P ⊂ ∆ ({1, 2, 3})
denote beliefs about the number of black non-coin balls. Since the coin-ball and other
colors are independent, each prior µ0 should have the form

µp0 (θ) =
1
2
p (5θ − 1) + 1

2
p (5θ) (9)

for some p ∈ P . Thus
M0 = {µp0 : p ∈ P}.

Finally, fix a reevaluation parameter α.

Scenario 3 : Take Θ = {B,W}, corresponding to the two possible colors of the coin ball,
µ0 =

¡
1
2
, 1
2

¢
, and define likelihoods as follows: let P ⊂ ∆ ({1, 2, 3}) denote beliefs about

number of black non-coin balls, where P is the same set used in Scenario 2. Since the
first urns in the two scenarios are identical, it is natural to use the same set P to describe
beliefs about them. Moreover, though the urns differ along the sequence in Scenario 3,
successive urns are indistinguishable, which explains why P can be used also to describe
the second urn in the present scenario. Each p in P suggests one likelihood function via

p (B | B) = Σλ p (λ) + 1

5
, p (B |W ) = Σλ p (λ)

5
,

and15

L = { p : p ∈ P} .
15If P = {p ∈ ∆ ({1, 2, 3}) : Σλp (λ) ∈ [2− , 2 + ]}, for given , then the corresponding set of

likelihoods is the set L described in Section 2.
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The appendix shows that the intuitive choices discussed in Section 2 follow from these
beliefs. In particular, it demonstrates that the minimal predictive probability for a black
ball conditional on observing a black ball,

min
p
P1(B) = min

∈L,µ1∈Mα
1 (B)

Z
Θ

(B | θ) dµ1(θ),

is smaller under Scenario 3 than under Scenario 3. An ambiguity averse agent who ranks
bets according to the smallest probability of winning will thus prefer to bet on the urn
from Scenario 2.

4.2 Inference from Small Samples

We use Scenario 3 here to illustrate the short run dynamics of beliefs (and confidence)
that can be delivered by our model. Once again, take Θ = {B,W}, µ0 =

¡
1
2
, 1
2

¢
, and

for the set of likelihoods take L from (2) with = 1 - the agent weighs equally all
the logically possible combinations of non-coin balls. The evolution of the posterior set
Mα

t in (8) shows how signals tend to induce ambiguity about parameters even where
there is no ambiguity ex ante (singletonMα

0 ). This happens when the agent views some
aspects of the data generating mechanism as too difficult to try to learn, as modeled by
a nonsingleton set of likelihoods. More generally, Mα

t can expand or shrink depending
on the signal realization.

Posterior beliefs can be represented by the intervals

[ min
µt∈Mα

t

µt (B) , max
µt∈Mα

t

µt (B)].

Figure 2 depicts the evolution of beliefs about coin-ball being black as more balls are
drawn. The top panel shows the evolution of the posterior interval for a sequence of
draws such that the number of black balls is 3t

5
, for t = 5, 10, .... Intervals are shown for

α = .1 and α = .001, as well as for α = 0, to illustrate what would happen without
revaluation. In addition, a single line is drawn for the case α = 1, where the interval is
degenerate. For example, after the first 5 signals, with 3 black balls drawn, the agent
with α = .1 assigns a posterior probability between .4 and .8 to the coin ball being black.

What happens if the same sample is observed again? There are two effects. First, a
larger batch of signals permits more possible interpretations of past signals. For example,
having seen ten draws, the agent may believe that all six black draws came about although
each time there were the most adverse conditions, that is, all but one non-coin ball
was white. This interpretation strongly suggests that the coin ball itself is black. The
argument also becomes stronger the more data are available - after only five draws, the
appearance of three black balls under ‘adverse conditions’ is not as remarkable. At the
same time, the story that all but one non-coin ball was always white is somewhat less
believable if the sample is larger: reevaluation limits the scope for interpretation, and
more so the more data are available. The evolution of confidence, measured by the size
of the posterior interval, thus depends on how much agents reevaluate their views. For
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Figure 2: The Posterior Interval is the range of posterior probability that the coin ball
is black, µt (B). In the top panel, the sample is selected to keep fraction of black balls
constant. In the bottom panel, vertical lines indicate black balls drawn.

an agent with α = .001, the posterior interval expands between t = 5 and t = 20. In
this sense, a sample of ten or twenty ambiguous signals induces more ambiguity than a
sample of five. However, reevaluation implies that large enough batches of ambiguous
signals induce less ambiguity than smaller ones.

The lower panel of Figure 2 tracks the evolution of posterior intervals along one
particular sample. Black balls were drawn at dates indicated by vertical lines, while
white balls were drawn at the other dates. Taking the width of the interval as a measure,
the extent of ambiguity is seen to respond to data. In particular, a phase of many black
draws (periods 5-11, for example) shrinks the posterior interval, while an ‘outlier’ (the
white ball drawn in period 12) makes it expand again. This behavior is reminiscent of
the evolution of the Bayesian posterior variance, which is also maximal if the fraction of
black balls is one half.

4.3 Beliefs in the Long Run

Turn now to behavior after a large number of draws. As discussed above, our model
describes agents who are not sure whether empirical frequencies will converge. Neverthe-
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less, it is useful to derive limiting beliefs for the case when such convergence occurs: the
limiting beliefs also approximately describe behavior after a large, but finite, number of
draws. Therefore, they characterize behavior in the long run. The limiting result below
holds with probability one under a true data-generating process, described by a prob-
ability P ∗ on (S∞,S). For this process, we require only that the empirical frequencies
of each of the finite number of states s ∈ S converge, almost surely under P ∗. In what
follows, these limiting frequencies are described by a measure φ on S.

By analogy with the Bayesian case, the natural candidate parameter value on which
posteriors might become concentrated maximizes the data density of an infinite sample.
With multiple likelihoods, any data density depends on the sequence of likelihoods that is
used. In what follows, it is sufficient to focus on sequences such that the same likelihood
is used whenever state s is realized. A likelihood sequence can then be represented by a
collection ( s)s∈S. Accordingly, define the log data density after maximization over the
likelihood sequence by

H (θ) := max
( s)s∈S

X
s∈S

φ (s) log s (s|θ) . (10)

The following result (proven in the appendix) summarizes the behavior of the posterior
set in the long run.

Theorem 1 Suppose that Θ is finite and that:

(i) θ∗ = argmaxθH (θ) is a singleton;

(ii) there exists κ such that for every µ0 inMα
0 ,

either µ0 (θ
∗) = 0 or µ0 (θ

∗) ≥ κ,

and µ0 (θ
∗) > 0 for some µ0 inMα

0 .

Then every sequence of posteriors fromMα
t converges to the Dirac measure δθ∗, almost

surely under the true probability P ∗, and the convergence is uniform, that is, there is a
set Ω ⊂ S∞ with P ∗ (Ω) = 1 and such that for every s∞ in Ω,

µt (θ
∗)→ 1

uniformly over all sequences of posteriors {µt} satisfying µt ∈Mα
t (s

t) for all t.

Condition (i) is an identification condition: it says that there is at least one sequence
of likelihoods (that is, the maximum likelihood sequence), such that the sample with
empirical frequency measure φ can be used to distinguish θ∗ from any other parameter
value. Condition (ii) is satisfied if every prior inMα

0 assigns positive probability to θ∗

(becauseMα
0 is weakly compact). The weaker condition stated accommodates also the

case where all priors are Dirac measures (including specifically the Dirac concentrated
at θ∗), as well as the case of a single prior containing θ∗ in its support. (In Scenario 3,
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(ii) is satisfied for any set of priors where the probability of a black coin ball is bounded
away from zero.)

Under conditions (i) and (ii), and ifΘ is finite, then in the long run only the maximum
likelihood sequence is permissible and the set of posteriors converges to a singleton. The
agent thus resolves any ambiguity about factors that affect all signals, captured by θ. At
the same time, ambiguity about future realizations st does not vanish. Instead, beliefs
in the long run become close to L (·|θ∗). The learning process settles down in a state of
time-invariant ambiguity.

The asserted uniform convergence is important in order that convergence of beliefs
translate into long-run properties of preference. Thus it implies that for the process of
one-step-ahead conditionals {Pt} given by (6),

Pt(s
t) =

Z
Θ

L(· | θ) dMα
t (θ),

we have

min
pt∈Pt

Z
f (st+1) dpt = min

µt∈Mα
t

min
∈L

Z
Θ

·Z
St+1

f (st+1) d (st+1 | θ)
¸
dµt (θ)

→ min
∈L

Z
St+1

f (st+1) d (st+1 | θ∗) ,

for any f : St+1 → R1 describing a one-step-ahead prospect (in utility units). In par-
ticular, this translates directly into the utility of consumption processes for which all
uncertainty is resolved next period.

Long run behavior in Scenario 3

As a concrete example, consider long run beliefs about the urns in Scenario 3. Let φ∞
denote the limiting frequency of black balls. Suppose also that beliefs are given by (2)
with = 1. Maximizing the data density with respect to the likelihood sequence yields

H(θ) = φ∞max
λB

log
1{θ=B} + λB

5
+ (1− φ∞)max

λW
log

5− 1{θ=B} − λW
5

= φ∞ log
1{θ=B} + 3

5
+ (1− φ∞) log

4− 1{θ=B}
5

.

The first term captures all observed black balls and is therefore maximized by assuming
λB = 3 black non-coin balls. Similarly, the likelihood of white draws is maximized by
setting λW = 1. It follows that the identification condition is satisfied except in the knife-
edge case φ∞ = 1

2
. Moreover, θ∗ = B if and only if φ∞ > 1

2
. Thus the theorem implies

that an agent who observes a large number of draws with a fraction of black balls above
one half believes it very likely that the color of the coin ball is black. The role of α is
only to regulate the speed of convergence to this limit. This dependence is also apparent
from the dynamics of the posterior intervals in Figure 2.
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The example also illustrates the role of the likelihood ratio test (8) in ensuring learn-
ability of the representation. Suppose that φ∞ = 3

5
. The limiting frequency of 3

5
black

draws could be realized either because there is a black coin ball and on average one half
of the non-coin balls were black, or because the coin ball is white and all of the urns
contained 3 black non-coin balls. If α were equal to zero, both possibilities would be
taken equally seriously and the limiting posterior set would contain Dirac measures that
place probability one on either θ = B or θ = W. This pattern is apparent from Figure
2. In contrast, with α > 0, reevaluation eliminates the sequence where all urns contain
three black non-coin balls as unlikely.16

Memoryless truths

The set of “true” processes P ∗ for which the theorem holds is large. Like a Bayesian
who is sure the data are exchangeable, the agent described by the theorem is convinced
that the data generating process is memoryless. As a result, learning is driven only by the
empirical frequencies of the one-dimensional events, or subsets of S. Given any process
for which those frequencies converge to a given limit, the agent will behave in the same
way. For example, if the data were generated by a stationary Markov chain, the agent
would not react to the resulting patterns of serial dependence, and act the same way
as if the data were serially independent. Of course, in applications one would typically
consider a “truth” that is memoryless. Like the exchangeable Bayesian model, our model
is best applied to situations where the agent is correct in his a priori judgement that the
data generating process is memoryless.

Importantly, a memoryless process for which empirical frequencies converge need not
be i.i.d. There exists a large class of serially independent, but nonstationary, processes
for which empirical frequencies converge. In fact, there is a large class of such processes
that cannot be distinguished from an i.i.d. process with distribution φ on the basis of any
finite sample. A concern with ongoing change may thus lead agents to never be confident
that they have identified a “true” i.i.d. data generating process with distribution φ, even
if they are convinced that the empirical frequencies converge.17

For a simple example, consider two measures φ1 and φ0 on S such that φ is a convex
combination, that is, there is a number ω ∈ (0, 1) such that φ = ωφ1 + (1− ω)φ0. Now
let ω̃t be an i.i.d. process valued in {0, 1} with Pr (ω̃t = 1) = ω. To construct a new
nonstationary process on the state space S, first fix a realization ω = (ωt) of the process
(ω̃t) . Then consider the serially independent process (sωt ) where the distribution of s

ω
t is

φt = ωtφ1 + (1− ωt)φ0. For almost every realization ω, the empirical distribution of the
nonstationary process (sωt ) will now converge to that of an i.i.d process with distribution
φ.18 Without further information, agents who have observed a lot of i.i.d. data with

16With a stronger identification condition, then even if α = 0, the posterior set converges to the
singleton set consisting of the Dirac measure concentrated on θ∗. This case is discussed further in
Epstein and Schneider [15].
17As discussed earlier, they may also reach this view because they are not sure whether the empirical

frequencies converge in the first place.
18See Nielsen [32] for a formal statement and proof.

22



distribution φ cannot rule out the possibility that the true data generating process is
nonstationary — it could be any of the nonstationary processes indexed by a typical
realizations ω. Moreover, since ωt+1 is unknown for any finite t, agents may not be sure
that the distribution of the next realization is φ — for all they know, it might be φ0 or
φ1. Non-vanishing ambiguity is one way to capture this concern with ongoing change.

5 DYNAMIC PORTFOLIO CHOICE

Selective asset market participation is puzzling in light of standard models based on
expected utility and rational expectations. In contrast, it is consistent with optimal static
portfolio choice by investors who are averse to ambiguity in stock returns. Such investors
will take a nonzero (positive or negative) position in an asset only if it unambiguously
promises an expected gain. Dow and Werlang [11] consider an investor who allocates
wealth between a riskless asset and one other asset with ambiguous return. They show
that if the range of premia on the ambiguous asset contains zero, it is optimal to invest
100% in the riskless asset. The intuition is that, when the range of premia contains zero,
the worst case expected excess return on both long and short positions is not positive.

In practice, most investors do not make one-shot portfolio choices, but have long
investment horizons during which they repeatedly rebalance their portfolios. Here we
consider an intertemporal problem, where the investor updates his beliefs about future
returns. For simplicity, we follow Dow and Werlang by restricting attention to the case
of a single uncertain asset. However, the effects we emphasize are relevant more widely.
Indeed, work by Epstein and Wang [16] and Mukherji and Tallon [31] has clarified that
the basic nonparticipation result extends to selective participation when many assets are
available. The key observation is that the multiple-priors model allows confidence to
vary across different sources of uncertainty.19 Investors will participate in a market only
if they are confident that they know how to make money in that particular market. 20

Suppose the investor cares about wealth T periods from now and plans to rebalance
his portfolio once every period. There is a riskless asset with constant gross interest
rate Rf , as well as an asset with uncertain gross return R̃t = R (st) that depends on
the history st observed by the investor. Signals may consist of more than current excess
returns. Beliefs are given by a process of one-step-ahead conditionals {Pt}. At date t,
given information st, the investor selects a portfolio weight ω (st) for the risky asset by

19For example, suppose that the set of excess return distributions for each available asset contains a
component with unknown mean that is uncorrelated with the return on other assets. The range of mean
excess returns for a particular asset now reflects investor confidence towards that asset only. If the range
is a large interval around zero, that is, investor confidence is low, it is optimal to allocate zero wealth to
the asset.
20This intuition fits well with evidence from surveys among practitioners, who participate in a market

only if they “have a view” about price movements of the asset in question. See Chew [9, Ch. 43] for a
discussion of this issue.
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solving the recursive problem

Vt
¡
Wt, s

t
¢
= max

ω
min

pt∈Pt(st)
Ept

£
Vt+1

¡
Wt+1, s

t+1
¢¤

subject to

Wt =
¡
Rf + (R

¡
st
¢−Rf)ω

¡
st−1

¢¢
Wt−1, t = 1, ..., T. (11)

This problem differs from existing work on portfolio choice with multiple-priors be-
cause beliefs are time-varying. We also emphasize the role of the investor’s planning
horizon T . In Section 5.1, we discuss the nature of intertemporal hedging with recur-
sive multiple-priors. To distinguish intertemporal hedging due to time-varying ambiguity
from the intertemporal substitution effects stressed by Merton [30], we focus on the case
of log utility, where traditional hedging demand is zero. In Section 5.2, we study a cal-
ibrated example of asset allocation between stocks and riskless bonds for U.S. investors
in the post-war period.

5.1 Intertemporal Hedging and Participation

If future investment opportunities and future returns are affected by common unknown
(ambiguous) factors, then investors who have a longer planning horizon, and therefore
care about future investment opportunities, will deal differently with ambiguity than
short term investors. For example, if expected returns in some market are perceived
to be highly ambiguous, the optimal myopic policy may be non-participation, to avoid
exposure to ambiguity. However, if returns are also a signal of future expected returns,
then a long-horizon investor is already exposed to the unknown (ambiguous) factor that
is present in returns even if she does not currently participate in the market. It may then
be better to take a position to offset existing exposure. We now derive intertemporal
hedging demand due to ambiguity for the log utility case. We then discuss how the
importance of hedging depends on the structure of ambiguity, and what this implies for
the emergence of dynamic participation rules.

Hedging ambiguity

In the expected utility case, it is well known that log investors act myopically; even if
the conditional distribution of future investment opportunities changes over time, the
income and substitution effects of these changes are exactly offsetting. As a result, the
investor’s asset demand depends only on current investment opportunities, captured by
the conditional one-period-ahead distribution of returns. The optimal weight after history
st and given the beliefs process {pt} is simply

ω∗
¡
pt
¡
st
¢¢
:= argmax

ω
Ept(st)

h
log
³
Rf +

³
R̃t+1 −Rf

´
ω
´i

.

Consider next a myopic investor with nondegenerate beliefs process {Pt} . Given the
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history st, such an agent solves

max
ω

min
pt(st)∈P(st)

Ept(st)
h
log
³
Rf +

³
R̃t+1 −Rf

´
ω
´i

= min
pt(st)∈P(st)

Ept(st)
h
log
³
Rf +

³
R̃t+1 −Rf

´
ω∗
¡
pt
¡
st
¢¢´i

, (12)

where we have used the minmax theorem to exchange the order of optimization. Denote
by pmyopic

t (st) the minimizing (conditional-one-step-ahead) measure in (12). Then the
optimal policy of a myopic agent is ω∗

¡
pmyopic
t (st)

¢
, the portfolio weights that are optimal

for the corresponding Bayesian.

For the intertemporal problem (11), conjecture the value functions Vt (Wt, s
t) =

logWt + ht (s
t), with hT = 0. Again using the minmax theorem, as well as the bud-

get constraint, we obtain

Vt
¡
Wt, s

t
¢
= min

pt(st)∈Pt(st)
max
ω

Ept
£
Vt+1

¡
Wt+1, s

t+1
¢¤

= min
pt(st)∈Pt(st)

n
max
ω

Ept
h
log
³
Rf +

³
R̃t+1 −Rf

´
ω
´i
+Ept

£
ht+1

¡
st+1

¢¤o
+ logWt.

The first term depends only on time and st, verifying the conjecture for Vt. Denote by
p∗t (s

t) a minimizing measure in

ht
¡
st
¢
= min

pt∈Pt(st)
Ept

h
log
³
Rf +

³
R̃t+1 −Rf

´
ω
¡
pt
¡
st
¢¢´

+ ht+1
¡
st+1

¢i
. (13)

Then ω∗ (p∗t (s
t)) is an optimal policy for the intertemporal problem.

Comparison of (12) and (13) reveals that the supporting probabilities pmyopic
t and p∗t ,

and hence the optimal policies in the myopic and intertemporal problems, need not agree.
This motivates a decomposition of optimal portfolio demand ωt in the intertemporal
problem:

ωt = ω∗
¡
pmyopic
t

¡
st
¢¢| {z }

myopic demand

+
¡
ω∗
¡
p∗t
¡
st
¢¢− ω∗

¡
pmyopic
t

¡
st
¢¢¢| {z }

intertemporal hedging demand

.

The concept of intertemporal hedging demand identified here is unique to the case of
ambiguity: with a singleton set P = {p}, we have pmyopic

t (st) = p∗t (s
t) = pt (s

t) and there
is no intertemporal hedging.

Independent vs. correlated ambiguity

Intuitively, the intertemporal hedging demand should still be zero if returns are driven by
factors that are completely unrelated to future investment opportunities. Under risk, this
is captured by conditional independence of returns and the state variables that represent
opportunities. The intuition carries through to the ambiguity case. However, indepen-
dence is now required for sets of conditionals. In particular, if the set of conditional
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distributions for returns and state variables can be expressed as a Cartesian product of
sets of independent marginal distributions, then myopic portfolio choice remains opti-
mal. To see this, consider a simple example. Let S = X × Y . Assume that, at date
t, the investor observes st = (xt, yt). Here xt is a state variable that matters for future
investment opportunities, but not for current returns, and yt is a shock that affects only
current returns - thus Rt = R (xt−1, yt) . Then define conditionals

Pt

¡
st
¢
=

©
pxt ⊗ pyt : p

x
t ∈ Px

t

¡
xt
¢
, pyt ∈ Py

t

ª
= Px

t

¡
xt
¢⊗ Py

t , (14)

where Px
t (x

t) and Py
t are sets of probability measures on X and Y , respectively.21 We

thus allow both the signal and the shock to be ambiguous.

With these beliefs, (13) becomes

ht
¡
xt
¢
= min

pyt∈Pyt
Epyt

£
log
¡
Rf +

¡
R
¡
xt, yt+1

¢−Rf
¢
ω (pyt )

¢¤
+ min

pxt ∈Pxt (xt)
Epxt

£
ht+1

¡
xt+1

¢¤
,

and myopic behavior is clearly optimal. The key here is the separation into two minimiza-
tion problems. This may no longer be possible if returns depend also on xt+1. In that
case, the set Px

t may represent concern with factors that affect both future opportunities
and returns, or put alternatively, with “correlation" between the ambiguities perceived
for future opportunities and returns.

To summarize, an investor who optimizes intertemporally is also concerned about
future investment opportunities. As a result, she may be exposed to unknown factors
that affect the distribution of ht+1, even if she does not invest in the uncertain asset over
the next period.22 It makes sense to react to such an exposure by changing portfolio
strategy (and to deviate from the optimal myopic portfolio) only if the unknown factors
that affect future opportunities have something to do with returns. Then selection of
the worst case belief takes into account both terms in (13) and will typically end up at
a different belief than in the myopic case, where only the first term matters.

Learning

The previous paragraph has shown that hedging demand depends on the nature of
ambiguity. We now illustrate when hedging is important in the context of learning.
We present two examples where beliefs are given by representations (Θ,M0,L, α). In
one case, ambiguity about returns and ambiguity about investment opportunities are
independent, while in the other there is correlated ambiguity. The latter case is also
relevant for the calibrated example of the next subsection.

21The fact that Py
t does not depend on history here is not restrictive since predictability of returns is

permitted through the function R.
22Exposure requires that (i) the realization st+1 typically provides news about future opportunities,

that is, it affects future belief sets Pt+j
¡
st+j

¢
and (ii) that the news is payoff-relevant, so that the value

function ht+1
¡
st+1

¢
depends on st+1.
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To construct an example of learning with independent ambiguity, assume again S =
X × Y and Rt = R (xt−1, yt) . Let beliefs have a representation with likelihood set

L = { : (s|θ) = x (x|θ) y (y) ; x ∈ Lx,
y ∈ Ly} ,

where Lx and Ly are sets of likelihoods on X and Y . The interpretation is that returns
contain short term noise about which the investor does not expect to learn anything.
Unknown factors that affect returns in the short run correspond to parameters that
describe the set Ly. At the same time, the investor can learn about conditional moments
that depend on θ via the distribution of x. Unknown factors that affect learning are
captured by Lx and are independent of those that affect returns in the short run. With
this structure for L, terms involving y will cancel out of the updating equation (7) and
Mα

t (s
t) depends only on xt. Moreover, since y does not depend on the parameter θ,

the one-step-ahead conditionals Pt (s
t) will be a special case of (14). Myopic portfolio

choice is therefore optimal. This example illustrates that the presence of learning does
not invalidate the basic intuition for non-participation.

To obtain an example of learning with correlated ambiguity, modify the above setup
by setting Rt = R (xt), thus eliminating the shock y. For simplicity, let the signal x
be unambiguous (Lx = { x}) and assume that the setM0 is a one-parameter family of
priors, parametrized by the prior mean of θ, say θ̄0 ∈ Θ̄0. Every set of one-step-ahead
conditionals is then also a one-parameter family Pt (s

t) =
©
pt
¡
st; θ̄0

¢
; θ̄0 ∈ Θ̄0

ª
. The

parameter θ̄0 effectively describes a single common factor: since it affects all posteriors,
it directly matters both for one-period-ahead returns and for later returns, and hence
for future investment opportunities. When beliefs are parametrized this narrowly, one
can construct examples where hedging demand will lead to participation at all times
except in the final period. Indeed, non-participation requires that Ept [Rt+1] = 0 for
some conditional pt that achieves the minimum in (13). If distributions are chosen such
that there is just one value θ̄0 for which E

pt(st;θ̄0) [Rt+1] = 0, then this value will typically
not achieve the minimum for the sum in (13). The minimizing value will in turn not set
the mean excess return to zero.

It is difficult to make general statements beyond these examples. The importance of
intertemporal hedging due to ambiguity depends on the precise structure of ambiguity.
This is the case even when the analysis focuses on learning, as opposed to general time-
variation in beliefs. In this respect, the situation is similar to hedging demand due
to intertemporal substitution, where the literature contains few general results beyond
Merton’s [30] decomposition, and progress has been mostly through calibrated examples.
We proceed to develop such an example in the next section.

5.2 Learning and Stock Market Participation: A Calibrated
Example

Suppose the investor allocates wealth to a riskless bond and a broad U.S. stock index once
every quarter. To approximate the distribution of U.S. stock returns, assume that the
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state can take two values every period, st ∈ {0, 1} , and let R (1) = 1.14 and R(0) = .92.
If st is i.i.d. with Pr {st = 1} = 1

2
, then the mean and variance of NYSE returns from

1927:Q3 to 2001:Q2 are matched exactly. We fix the riskless rate at Rf − 1 = .01 per
quarter.23 The investor’s utility function exhibits constant relative risk aversion with risk
aversion parameter γ.

Beliefs are defined by a representation (Θ,M0,L, α). The investor thinks that some-
thing can be learned about the distribution of returns by looking at past data. This is
captured by a parameter θ ∈ Θ ≡ £

λ, 1− λ
¤
, where λ < 1

2
. However, she also believes

that there are many poorly understood factors driving returns. These are captured by
multiple likelihoods, where the set L consists of all (· | θ) such that

(1|θ) = θ + λ, for some λ ∈ [−λ, λ].

Given our assumptions on Θ, (1|θ) is between zero and one. The set of priorsM0 on Θ
is given by all the Dirac measures. For simplicity, we write θ ∈M0 if the Dirac measure
on θ is included. If λ > 0, returns are ambiguous signals: λt ∈ [−λ, λ] parametrizes the
likelihood t. Since the set of priors consists of Dirac measures, reevaluation (α > 0) is
crucial for nontrivial updating; if α = 0, thenMt =M0 for all t.

Belief dynamics

The above belief structure is convenient because the posterior set Mα
t depends on the

sample only through the fraction φt of high returns observed prior to t. More specifically,
it is shown in the appendix that

Mα
t

¡
st
¢
=

½
θ ∈ Θ : g (θ;φt) ≥ max

θ̃∈Θ
g(θ̃;φt) +

logα

t

¾
, (15)

where g (θ, φt) = φt log
¡
θ + λ

¢
+ (1− φt) log

¡
1− θ + λ

¢
. The function g (.;φ) is strictly

concave and has a maximum at θ = φ+ 2λ
¡
φ− 1

2

¢
.

Using (15), it is straightforward to determine the limiting behavior of the one-step-
ahead beliefs Pt (s

t) as t becomes large. Suppose that the empirical frequency of high
returns converges to φ∞. ThenMα

t collapses to the Dirac measure at θ
∗, where

θ∗ =


λ if φ∞ < 2λ

1+2λ

φ∞ + 2λ
¡
φ∞ − 1

2

¢
if φ∞ ∈

h
2λ
1+2λ

, 1
1+2λ

i
1− λ if φ∞ > 1

1+2λ
.

Thus Pt (s
t) collapses to the set L (.|θ∗), which consists of all probabilities on S = {0, 1}

with
Pr (s = 1) ∈ [θ∗ − λ, θ∗ + λ]. (16)

23Here we follow much of the finance literature and consider nominal returns.
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The agent thus learns the true parameter value θ∗, in the sense that in the limit she
behaves as if she had been told that it equals θ∗. If the realized empirical distribution
is symmetric (φ∞ = 1

2
), then θ∗ = φ∞. We use this fact below to calibrate the belief

parameters.

Bellman equation

The problem (11) can be rewritten using the fraction φt of high returns as a state variable:

Vt (Wt, φt) = max
ω

min
pt∈Pt(st)

Ept
£
Vt+1

¡
Wt+1, φt+1

¢¤
= max

ωt
min

λt∈[−λ,λ]
θ∈Mα

t

{ (θ + λt)Vt+1(Wt+1 (1) , φt+1 (1))

+ (1− θ − λt)Vt+1(Wt+1 (0) , φt+1 (0))
¢ },

subject to the transition equations

Wt+1 (st+1) =
¡
Rf +

¡
R (st+1)−Rf

¢
ωt

¢
Wt,

φt+1 (st+1) =
tφt + st+1
t+ 1

.

Preference parameters

We specify β = .99 and set the coefficient of relative risk aversion γ equal to 2. It
remains to specify the belief parameters α and λ. The parameter λ determines how much
the agent thinks that she will learn in the long run. To determine a value, she could pose
the following question: “Suppose I see a large amount of data and that the fraction of
high returns is φ∞ =

1
2
. How would I compare a bet on a fair coin with a bet that next

quarter’s returns are above or below the median?” By the Ellsberg Paradox, we would
expect the agent to prefer the fair bet. She could then try to quantify this preference
by asking: “What is the probability of heads that would make me indifferent between
betting on heads in a coin toss and betting on high stock returns?” In light of the range
of limiting probabilities given in (16), the result is 1

2
− λ. We present results for values

of λ ranging from 0 to 2%. Even the upper bound of 2% leaves substantial scope for
learning: in terms of mean returns, it implies that the investor believes that the range
of equity premia will be reduced below 1% (to 88 basis points, to be exact) after a lot of
data has been observed.

The parameter α determines how fast the set of possible models shrinks. Here it can
be motivated by reference to classical statistics. If signals are unambiguous (λ = 0), there
is a simple interpretation of our updating rule: Mα

t contains all parameters θ
∗ such that

the hypothesis θ = θ∗ is not rejected by an asymptotic likelihood ratio test performed
with the given sample, where the critical value of the χ2 (1) distribution is −2 logα. For
a 5% significance level, α = .14, which is the value we use below.
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Figure 3: Optimal stock position for ambiguity-averse agents with α = .14 and λ̄ = 0,
for 30-year planning problem, beginning in 1971:Q3.

5.3 Numerical Results

Our leading example is an investor in 1971:Q3 (t = 0), who plans over various horizons
(up to 30 years). She looks back on data starting in 1927:Q3 and thus begins with a
posterior set that is already based on 43 years of data. We generate a discretized returns
sample by letting st = 1 if the NYSE return was above the mean in quarter t and st = 0
otherwise. Figure 3 shows the optimal stock position as a fraction of wealth for a 5 year
horizon if α = .14 and λ = 0. The axis to the right measures time in quarters t up to
the planning horizon of 120 quarters. The axis to the left measures the number of high
returns observed, H = tφt. Thus only the surface above the region H ≤ t (that is, the
region to the right to the diagonal H = t in the plane) represents the optimal stock
position.

The slope of the surface suggests that the agent is by and large a momentum investor.
If low returns are observed (movements to the right, increasing t while keeping H fixed),
the stock position is typically reduced. On the path above the time axis, which is taken
if low returns are observed every period, she eventually goes short in stocks. In contrast,
if high returns are observed (movements into the page, increasing H one for one with t),
the stock position is typically increased. On the ridge above the diagonal (H = t) , which
is taken if high returns are observed every period, she takes ever larger long positions.
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The optimal policy surface has also a flat piece at zero: when enough low returns are
observed, the agent does not participate in the market. The terminal period of our model
corresponds to the static Dow-Werlang setup. In all earlier periods, participation and
the size of positions is in part determined by intertemporal hedging.

Hedging ambiguity

In the present example, both θ and λ capture unknown factors that matter not only
for returns over the next period, but also for future investment opportunities. For the
reasons discussed in Section 5.1, participation is thus more likely earlier in the investment
period. In addition, hedging due to time-varying ambiguity implies that the agent follows
contrarian, as opposed to momentum, strategies when she is not sure about the size of
the equity premium. To illustrate this effect, Figure 4 focuses on an agent planning in
1928:Q3, who has only one year of previous data as prior information. While the effects
are qualitatively similar in later years (such as for our leading example), the effects of
hedging are most pronounced if there is a large amount of prior uncertainty. The left
hand panel of Figure 4 shows a representative ‘section’ of the optimal policy surface (for
t = 12, here 1931:Q2). The right hand panel shows the change in the stock position at
t = 12, as a function of the number of high returns, if the 13th observation was either a
high or a low return.

Investment behavior falls into one of three regions. A non-participation region is
reached if the absolute value of the sample equity premium is low, which occurs for φt
slightly below 1

2
. If the equity premium has been either very high or very low, the agent

is in a momentum region. She is long in stocks if the sample equity premium is positive
and short otherwise. She also reacts to high (low) returns by increasing (decreasing)
her net position. If the absolute value of the equity premium is in an intermediate
range, the agent is in a contrarian region. She is short in stocks for a positive sample
equity premium and long otherwise. Moreover, she now reacts to high (low) returns by
decreasing (increasing) her net exposure. The contrarian region is also present in our
leading example (investment starting in 1971:Q3), but is very small; this is why it is not
discernible in Figure 3.

To understand why a contrarian region emerges, consider the dependence of contin-
uation utility on φt. The term ht (φt) is typically U-shaped in φt. Intuitively, the agent
prefers to be in a region where either the lowest possible expected return is much higher
than the riskless rate or the highest possible return is far below the riskless rate, because
in both cases there is an equity premium (positive or negative, respectively) that can
be exploited. Suppose the lowest expected equity premium is positive. The agent must
balance two reasons for investing in the stock market. On the one hand, she can exploit
the expected equity premium by going long. On the other hand, she can insure herself
against bad news about investment opportunities (low returns) by going short. Which
effect is more important depends on how the size of the equity premium compares to the
slope of the ht’s. If the equity premium is small in absolute value, the hedging effect
dominates.
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Figure 4: Stock position and responses to arrival of a high or low return after 12 quarters
in 30-year planning problem beginning in 1928:Q3. Ambiguity averse investor with α =
.14 and λ̄ = 0.

Participation over the last three decades

Figure 5 compares the positions that various investors would have chosen since 1971. An
investor who believes that returns are unambiguous signals (λ = 0) should always holds
stocks, although her positions are quite small, barely reaching 30% even after the high
returns of the 1990s. As a reference point, an agent with rational expectations who is
sure that the equity premium is equal to its sample mean would hold 82% stocks every
period. The Bayesian learner in Figure 5 lies between these two, increasing his position
up to 80% toward the end of the sample.

The plot also shows that small amounts of signal ambiguity can significantly reduce
the optimal stock position. The investor with λ = .01 already holds essentially no stocks
throughout most of the 1970s. An investor with λ = .02 does not go long in stocks until
1989. Both of these investors participate in the market in the 1970s, but spend most
of the time in their contrarian region, where they take tiny short positions. As long as
the investor remains in a region where she is long in stocks, changes in the ambiguity
parameters α and λ for a given sample tend to affect the level of holdings, with a negligible
effect on changes. Comparison of the Bayesian and ambiguity-averse solutions reveals
that the supporting measure’s means are essentially vertically shifted versions of each
other. Of course, the Bayesian model cannot generate non-participation, so changes will

32



1975 1980 1985 1990 1995 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

λ = .02

λ = .01

λ = 0

Bayesian

Figure 5: Optimal stock positions for ambiguity-averse agents with α = .14 and different
values of λ̄ (here denoted λ) as well as for Bayesian agent with uniform prior. All planning
problems are over 30 years beginning in 1971:Q3.

look very different in states where the ambiguity averse investor moves in and out of the
market.

Our results suggest that learning under ambiguity could be a building block in a
successful model of the cross section of asset holdings. While more work is required to
distinguish an ambiguity aversion story from one based on a technological participation
cost, it is already clear that the two models have very different implications. For example,
consider the issue of investing a social security fund in the stock market. If the participa-
tion cost is technological, then the government could reduce it by exploiting economies of
scale. In contrast, if non-participation is due to ambiguity underlying preferences, then
agents could not gain from being forced to invest.

Participation rules driven by learning from past returns may be relevant also for un-
derstanding the dynamics of selective participation in particular markets. For example,
it has been noted that the decline in equity home bias ceased in the late 1990s although
transaction costs were reduced further. Increases in the implicit participation cost in-
duced by ambiguity after recent financial crises abroad provide a candidate explanation.
Other examples include the increased participation by small investors in “hot” stocks or
mutual funds after a period of high returns.
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6 RELATED LITERATURE

We are aware of only two formal treatments of learning under ambiguity. Marinacci
[29] studies repeated sampling with replacement from an Ellsberg urn and shows that
ambiguity is resolved asymptotically. His setup correponds to a version of our model in
which there is a single likelihood and no reevaluation. The statistical model proposed by
Walley [37, pp. 457-72] differs in details from ours, but is in the same spirit; in particular,
it also features multiple likelihoods. An important difference, however, is that our model
is consistent with a coherent axiomatic theory of dynamic choice between consumption
processes. Accordingly, it is readily applicable to economic settings.24

In our model, learning may cease without all ambiguity having been resolved, which
is quite different from existing Bayesian approaches to modeling incomplete learning in
complicated environments. One such approach starts from the assumption that the true
data generating measure is not absolutely continuous with respect to an agent’s belief.25

This generates situations where beliefs do not converge to the truth even though agents
believe, and behave as if, they will.26 In contrast, agents in our model are aware of the
presence of hard-to-describe factors that prevent learning and their actions reflect the
residual uncertainty.

Our setup is also different in spirit from models with persistent hidden state variables,
such as regime switching models. In these models, learning about the state variable
never ceases because agents are sure that the state variable is forever changing, and the
distribution of these regime changes is known. Agents thus track a known data generating
process that is not memoryless. In contrast, our model applies to memoryless mechanisms
and learning is about a fixed true parameter. Nevertheless, because of ambiguity, the
agent reaches a state where no further learning is possible although the data generating
mechanism is not yet understood completely.

The role of ambiguity for explaining asset market participation was first studied by
Dow and Werlang [11] in a static context. We build on their analysis, but consider a dy-
namic problem with hedging demand. In addition, our learning process links ambiguity
aversion directly to information: ambiguity aversion is smaller towards sources of uncer-
tainty that are more familiar. This is consistent with evidence on investor behavior cited
above. Non-participation can also be derived also from preferences with first-order risk
aversion, as in Ang, Bekaert and Liu [2]. A key difference between first-order aversion
and ambiguity aversion is that only the latter allows different attitudes towards different
sources of uncertainty. In applications, this is relevant for modeling participation in some
asset markets and non-participation in others.

24A similar remark applies to Huber [23], who also points to the desirability of admitting multiple
likelihoods and outlines one proposal for doing so.
25This violates the Blackwell-Dubins [6] conditions for convergence of beliefs to the truth. See Feldman

[17] for an economic application.
26As a simple example, if the parameter governing a memoryless mechanism were outside the support

of the agent’s prior, the agent could obviously never learn the true parameter.
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Empirical work on stock market participation has considered agents with expected
utility preferences that face a fixed per period participation cost. For example, Vissing-
Jorgensen [36] estimates levels of per period fixed costs that would be required to ra-
tionalize observed participation rates in the U.S. Her approach exploits the tight link
between wealth and participation predicted by fixed cost models. While modest fixed
costs do help to explain the lack of participation among poor households that have little
financial assets in the first place, she also concludes that “it is not reasonable to claim
that participation costs can reconcile the choices of all nonparticipants”. This conclusion
follows because participation is not as widespread among wealthy households as a fixed
cost model would imply.

There exist a number of applications of multiple-priors utility or the related robust
control model to portfolio choice or asset pricing. None of these is concerned with learn-
ing. Multiple-priors applications typically employ a constant set of one-step-ahead prob-
abilities (Epstein and Miao [12], Routledge and Zin [33]). Similarly, existing robust
control models (Hansen, Sargent, and Tallarini [21], Maenhout [27], Cagetti et al. [7])
do not allow the ‘concern for robustness’ to change in response to new observations.
Neither is learning modeled in Uppal and Wang [35] that pursues a third approach to
accommodating ambiguity or robustness.

Our paper also contributes to a growing literature on learning and portfolio choice.
Bawa, Brown, and Klein [5] and Kandel and Stambaugh [25] first explored the role
of parameter uncertainty in a Bayesian framework.27 Several authors have solved in-
tertemporal portfolio choice problems with Bayesian learning.28 The main results are
conservative investment recommendations and optimal ‘market timing’ to hedge against
changes in beliefs. While these effects reappear in our setup, our results are qualitatively
different since multiple-priors preferences lead to non-participation.

A APPENDIX

A.1 Comparison of predictive probabilities from Section 4.1.

We want to show that the minimal predictive probability for a black ball conditional on
observing a black ball,

min
p
P1(B) = min

∈L,µ1∈Mα
1 (B)

Z
Θ

(B | θ) dµ1(θ),

is smaller under Scenario 3 than under Scenario 2.
27There are alternatives to a Bayesian approach to the parameter uncertainty problem. See Ang and

Bekaert [1] for a classical econometric strategy.
28Detemple [10] and Gennotte [18] have considered the case of learning about mean returns, while

Barberis [3] and Xia [38] have studied learning about predictability. See Ang and Bekaert [1] for portfolio
choice in a regime-switching model.
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Consider first Scenario 2. The setMα
1 of posteriors (after having observed one black

draw) is constructed by updating only those priors µp0 according to which the black draw
was sufficiently likely ex ante in the sense of the likelihood-ratio criterion in (8). The ex
ante probability of a black draw under the prior µp0 is (using (9))Z

Θ

θ dµp0 =
1
10

£
2 Σ3λ=1λp (λ) + 1

¤
. (17)

It follows that the agent retains only those priors µp0 corresponding to some p in P
α ⊂ P ,

where

Pα =

½
p ∈ P : Σλp (λ) + 1

2
(1− α) ≥ α max

p0∈P
Σλp0 (λ)

¾
.

(Because all measures in P have support in {1, 2, 3}, it is easily seen that Pα = P for all
α ≤ 3

4
. At the other extreme, if α = 1, then Pα consists only of those measures in P that

maximize Σλp (λ), the expected number of black non-coin balls.) ThusMα
1 consists of

all measures µp1, where

µp1 (θ) =
θR

Θ
θ0 dµ0

µp0 (θ) =
θ
¡
1
2
p (5θ − 1) + 1

2
p (5θ)

¢
1
10
[2 Σλp (λ) + 1]

for some p in Pα.

The set of predictive probabilities of a black on the next draw after having observed
one black draw is given by

P1 (B) =
½Z

Θ

θ dµp1 : p ∈ Pα

¾
.

Compute that Z
Θ

θ dµp1 =
Σθ

£
θ2
¡
1
2
p (5θ − 1) + 1

2
p (5θ)

¢¤
1
10
[2 Σλp (λ) + 1]

=
2Σ λ2p (λ) + 2Σ λp (λ) + 1

2 Σλp (λ) + 1
≥ 2 (Σ λp (λ))2 + 2Σ λp (λ) + 1

2 Σ λp (λ) + 1

=
Σλ p (λ) + 1

2 Σλ p (λ) + 1
+ Σλ p (λ) ,

that is, Z
Θ

θ dµp1 ≥
Σλ p (λ) + 1

2 Σλ p (λ) + 1
+ Σλ p (λ) , for every p in Pα.

Therefore, the minimum predictive probability satisfies

min

½Z
Θ

θ dµp1 : p ∈ Pα

¾
≥ 1

5

·
min
p∈Pα

Σλ p (λ) + 1

2 Σλ p (λ) + 1
+ min

p∈Pα
Σλ p (λ)

¸
. (18)

This inequality is used below to draw comparisons with Scenario 3.
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Turn now to Scenario 3. Note that

p (B | B)− (B |W ) = 1

5
for every p.

After seeing one black draw, the agent reevaluates which likelihoods in L could have
been operative in the first draw. He does this by computing the ex ante probability of a
black draw associated with each p (and the fixed µ0) - that probability is given byZ

θ∈{B,W}
p (B | θ) dµ0 =

1
2
( p (B | B) + p (B |W ))

= 1
10
(2 Σλ p (λ) + 1) ,

which is identical to the ex ante probability computed in Scenario 2 (see (17)). It follows
that the likelihood-ratio criterion leads to retention of only those likelihoods p where p
lies in Pα, the same set defined in the discussion of Scenario 2.

The setMα
1 of posteriors (after having observed one black) consists of the measures

µp1 (θ) =
p (B | θ)

p (B | B) + p (B |W ) , θ ∈ {B,W}, for some p in Pα.

In particular,

µp1 (B) =
p (B | B)

p (B | B) + p (B |W ) =
Σλ p (λ) + 1

2 Σλ p (λ) + 1
.

Finally, the set P1 (B) of predictive probabilities of a black on the next draw, after
having observed one black draw, is

P1 (B) =
½Z

θ∈{B,W}
(B | θ) dµp1 : ∈ L, p ∈ Pα

¾
.

Therefore the minimum predictive probability equals

min
p∈Pα, ∈L

{µp1 (B) [ (B | B)− (B |W )] + (B |W )} =

min
p∈Pα, ∈L

©
µp1 (B)

1
5
+ (B |W )ª =

1
5
min
p∈Pα

µp1 (B) + min∈L
(B |W ) = 1

5
min
p∈Pα

µp1 (B) + min
p0∈P

Σ31λ p0 (λ)
5

≤ 1
5
min
p∈Pα

µp1 (B) + min
p0∈Pα

Σ31λ p0 (λ)
5

(replacing P by its subset Pα)

= 1
5
min
p∈Pα

Σλ p (λ) + 1

2 Σλ p (λ) + 1
+ min

p0∈Pα

Σλ p0 (λ)
5

,

which is no larger than the minimum predictive probability computed for Scenario 2 (see
(18)). This proves that betting in Scenario 2 is preferable.

It is not difficult to see that there is indifference between the two scenarios iff there
exists λ∗ ∈ {1, 2, 3} such that P = {δλ∗}, that is, there is certainty that there are λ∗
black non-coin balls. In that case, the set of likelihoods proposed for Scenario 3 collapses
to a singleton.¥
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A.2 Proof of Theorem 1

For any sequence s∞ = (s1, s2, ...) , denote by φt the empirical measure on S corresponding
to the first t observations. We focus on the set Ω of sequences for which φt → φ; this set
has measure one under the truth. Fix a sequence s∞ ∈ Ω.

As in the text, use the notation ( s)s∈S for likelihood sequences ( t) such that j = k

if sj = sk. Suppose that the relative frequencies of the states in a (finite or infinite)
sample are represented by a probability measure λ on S — below we will take λ to be φt
or φ. Given a likelihood sequence ( s)s∈S , the likelihood of the sample conditional on the
parameter value θ is then

H̃ (λ, ( s) , θ) =
X
s∈S

λ (s) log s (s|θ) .

We want to show that, for every sequence of posteriors {µt} with µt ∈ Mα
t for all

t, the posterior probability of the parameter value θ∗ converges (uniformly) to one. By

the definition ofMα
t , for every posterior µt there exists an admissible theory

³
µ
(t)
0 , t,(t)

´
,

that is, a theory satisfying the conditions in (8), such that µt is the Bayesian update of

µ
(t)
0 along the sequence of likelihoods t,(t) =

³
(t)
1 ,

(t)
2 , ...,

(t)
t

´
. Here the t0s in brackets

indicate the place of the posterior in the given sequence of posteriors {µt} — they are
needed to account for the fact that not all µt in the sequence {µt} need to be updates
of the same initial prior µ0, or be updated along the same likelihood sequence. (As well,
the sequence of updates of a given µ0 along a given sequence of likelihoods need not be
admissible at all dates.) Thus our objective is to show that

lim
t→∞

µt(θ
∗|st, µ(t)0 , t,(t)) = 1, (19)

uniformly in the sequences of admissible theories
³
µ
(t)
0 , t,(t)

´
.

Given any likelihood tuple t and any parameter value θ, define

ηt
¡
θ, t

¢
:=

1

t
Σt
j=1log

t
j (sj | θ)−max

( s)

fH (φt, ( s) , θ
∗) .

Here ηt is the log likelihood ratio between the likelihood of the sample under
t at the

parameter value θ and the likelihood of the sample under the sequence ( s) that maximizes
the likelihood of the sample given the parameter θ∗. A posterior µt derived from a theory
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³
µ
(t)
0 , t,(t)

´
can be written as

µt(θ
∗|st, µ(t)0 , t,(t)) =

µ
(t)
0 (θ

∗)
Qt

j=1
(t)
j (sj|θ∗)P

θ∈Θ µ
(t)
0 (θ)

Qt
j=1

(t)
j (sj|θ)

=
µ
(t)
0 (θ

∗) etηt(θ
∗, t,(t))P

θ∈Θ µ
(t)
0 (θ) e

tηt(θ, t,(t))

= µ
(t)
0 (θ

∗)

µ
(t)
0 (θ

∗) +
X
θ 6=θ∗

µ
(t)
0 (θ) e

t(ηt(θ, t,(t))−ηt(θ∗, t,(t)))

−1 .

Claim 1: For every > 0 there exists T such that

ηt
¡
θ, t,(t)

¢ ≤ −
for all t > T ( ), θ 6= θ∗ and for all sequences of likelihood tuples

¡
t,(t)
¢
.

Claim 2 : ηt
¡
θ∗, t,(t)

¢→ 0 uniformly in admissible theories
³
µ
(t)
0 , t,(t)

´
.

Claim 3 : There exists T such that µ(t)0 (θ
∗) > 0 for all t > T and all admissible theories³

µ
(t)
0 , t,(t)

´
.

Claims 1 and 2 together imply that

X
θ 6=θ∗

µ
(t)
0 (θ) e

t(ηt(θ, t,(t))−ηt(θ∗, t,(t))) → 0

uniformly. Claim 3 and hypothesis (ii) imply that µ(t)0 (θ
∗) > κ for large enough t, and

(19) follows.

Proof of Claim 1: If t is to be chosen to maximize 1
t
Σt
j=1log j (sj | θ), it is wlog to

focus on sequences such that j = k if sj = sk. Therefore, any likelihood tuple t,(t) in
the sequence satisfies

1

t
Σt
j=1log

(t)
j (sj | θ) ≤ max( s)

eH (φt, ( s) , θ) (20)

By definition of H and the identification hypothesis (i), there exists > 0 such that

max( s)
eH (φ, ( s) , θ) ≤ H (θ∗) − 2 , for all θ 6= θ∗.

39



Thus the Maximum Theorem implies that, for some sufficiently large T ,

max( s)
eH (φt, ( s) , θ) ≤ max( s)

eH (φt, ( s) , θ
∗) − , (21)

for all θ 6= θ∗ and t > T . The claim now follows from (20).

Proof of Claim 2: By definition,

ηt
¡
θ∗, t

¢
=
1

t
Σt
j=1log

t
j (sj | θ∗)−max

( s)

X
s∈S

φt (s) log s (s|θ∗) .

By the definition ofMα
t , every element of a sequence of admissible theories³

µ
(t)
0 (t) ,

t,(t) (t)
´
satisfies

Ã
maxbµ0,bt Pr(s

t; bµ0, bt)
! 1

t

≥
³
Pr(st;µ

(t)
0 , t,(t))

´1
t ≥ α

1
t

Ã
maxbµ0,bt Pr(s

t; bµ0, bt)
!1

t

, (22)

where Pr(st;µ(t)0 , t,(t)) =
R
Πt
j=1

(t)
j (sj|θ) dµ(t)0 (θ); Pr(st; bµ0, bt) is defined similarly. Con-

sider the long run behavior of maxbµ0,bt Pr(st; bµ0, bt), the data density under the maximum
likelihood theory. We claim that"

maxbµ0,bt Pr(st; bµ0, bt)
etmax( s)

fH(φt,( s),θ
∗)

# 1
t

−→ 1, (23)

or equivalently, "
maxbµ0,bt

X
θ∈Θ

µ̂0 (θ) e
tηt(θ, t̂)

# 1
t

−→ 1. (24)

Claim 1 implies that (for all t > T )

maxµ̂0, t̂µ̂0 (θ
∗) etηt(θ

∗, t̂)

≤ maxµ̂0, t̂
X
θ∈Θ

µ̂0 (θ) e
tηt(θ, t̂)

≤ maxµ̂0, t̂µ̂0 (θ
∗) etηt(θ

∗, t̂) + (1− µ̂0 (θ
∗)) e− t.

We have assumed that there is a prior µ0 such that µ0 (θ
∗) > 0. Verify that

ηt

³
θ∗, bt´ ≤ 0 and max t̂ηt

³
θ∗, t̂

´
= 0. (25)

Then, by hypothesis (ii),

κ
1
t = κ

1
tmax t̂ e

ηt(θ∗, t̂) ≤
h
maxµ̂0, t̂ µ̂0 (θ

∗) etηt(θ
∗, t̂)

i 1
t ≤ £maxµ̂0 µ̂0 (θ

∗)
¤1
t ≤ 1,
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which implies that

h
maxµ̂0, t̂ µ̂0 (θ

∗) etηt(θ
∗, t̂)

i 1
t −→ 1,

and hence also (24).

Combining (23) and (22), it now follows that, for any sequence of admissible theories³
µ
(t)
0 (t) ,

t,(t) (t)
´
,

ÃX
θ∈Θ

µ
(t)
0 (θ) e

tηt(θ, t,(t))

! 1
t

=

"
Pr(st;µ

(t)
0 , t,(t))

etmax( s)
fH(φt,( s),θ

∗)

# 1
t

−→ 1, (26)

and that the convergence is uniform.

Finally, ηt
¡
θ∗, t,(t)

¢ ≤ 0 by construction - see (25). Suppose that ηt ¡θ∗, t,(t)
¢
< −δ

for some positive δ and infinitely many t. Then Claim 1 (with = δ) implies that"
Pr(st;µ

(t)
0 , t,(t))

etmax( s)
fH(φt,( s),θ

∗)

# 1
t

=

ÃX
θ∈Θ

µ
(t)
0 (θ) e

tηt(θ, t,(t))

! 1
t

≤ e−δ < 1

for infinitely many t, contradicting (26). This proves Claim 2.

Proof of Claim 3: Suppose that for infinitely many t there exists an admissible theory³
µ
(t)
0 , t,(t)

´
such that µ(t)0 (θ

∗) = 0. Claim 1 (with = δ) now implies that, for infinitely
many t,

"
Pr(st;µ

(t)
0 , t,(t))

etmax( s)
fH(φt,( s),θ

∗)

# 1
t

=

X
θ 6=θ∗

µ
(t)
0 (θ) e

tηt(θ, t,(t))

1
t

≤ e−δ < 1 ,

which contradicts (26).

A.3 Proof of (15)

Write the likelihood of a sample st under some theory, here identified with a pair
¡
θ, λt

¢
,

as

L
¡
st, θ, λt

¢
=

tY
j=1

(θ + λj)
sj (1− θ − λj)

1−sj . (27)

Let λ̃
t
denote the sequence that maximizes (27) for fixed θ. This sequence is independent

of θ and has λ̃j = λ if sj = 1 and λ̃j = −λ if sj = 0, for all j ≤ t. It follows

that L
³
st, θ, λ̃

t
´
depends on the sample only through the fraction φt of high returns
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observed. The setMα
t can be expressed in terms of L

³
st, θ, λ̃

t
´
, because θ ∈Mα

t if and

only if the theory
³
θ, λ̃

t
´
passes the likelihood ratio criterion. Indeed, if θ ∈Mα

t , then

there exists some λt such that the theory
¡
θ, λt

¢
passes the criterion. Thus

³
θ, λ̃

t
´
must

also pass it, since its likelihood is at least as high. In contrast, if θ /∈Mα
t , then there is

no λt such that the theory
¡
θ, λt

¢
passes the criterion. Finally, one can use

g (θ, φt) =
1

t
logL

³
st, θ, λ̃

t
´

to express the criterion in (15).¥
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