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1 Introduction

Economic models often imply that certain variables are cointegrated. However, tests often fail to reject
the null hypothesis of no cointegration for these variables. One possible explanation of these test results
is that the error is unit-root nonstationary due to a nonstationary measurement error in one variable or
nonstationary omittted variables. In the unit-root literature, when the stochastic error of a regression
is unit-root nonstationary, the regression is technically called a spurious regression. This is because the
standard t-test tends to be spuriously significant even when the regressor is statistically independent of
the regressand in Ordinary Least Squares. Monte Carlo simulations have often been used to show that
the spurious regression phenomenon occurs with regressions involving unit-root nonstationary variables
(see, e.g., Granger and Newbold (1974), Nelson and Kang (1981, 1983)). Asymptotic properties of
estimators and test statistics for regression coefficients of these spurious regressions have been studied
by Phillips (1986, 1998) and Durlauf and Phillips (1988) among others.

The purpose of this paper is twofold. First, we propose a new approach to estimating structural
parameters with spurious regressions. When structural parameters can be recovered from spurious
regressions, we call these structural spurious regressions. Second, we propose a Hausman-type test
for the null hypothesis of cointegration. This test is naturally motivated by the structural regression
approach. We also show that this test can be used to test for cointegration even when the spurious
regression is not structural under the alternative hypothesis.

As an example of a structural spurious regression, consider a regression to estimate the money
demand function when money is measured with a nonstationary error. Currency held by domestic
economic agents for legitimate transactions is very hard to measure since currency is held by foreign
residents and is also used for black market transactions. Therefore, money may be measured with a
nonstationary error. As shown by Stock and Watson (1993) among others, under the assumption that
the money demand function is stable in the long-run, we have a cointegrating regression if all variables
are measured without error. If the variables are measured with stationary measurement errors, we still
have a cointegrating regression. However, if money is measured with a nonstationary measurement error,
we have a spurious regression. We can still recover structural parameters under certain conditions. The
crucial assumption is that the nonstationary measurement error is not cointegrated with the regressors.

Another example of a structural spurious regression is a regression of money demand with non-
stationary omitted variables. Consider the case in which the money demand is stable in the long-run
when a measure of shoe leather costs of holding money is included as an argument. If an econometri-
cian omits the measure of shoe leather costs from the money demand regression, and if the measure is
nonstationary, the regression error is nonstationary. Shoe leather costs of holding money are related
to the value of time, and therefore to the real wage rate. Because the real wage rate is nonstationary
in standard dynamic stochastic general equilibrium models with a nonstationary technological shock,
the omitted measure of the shoe leather costs is likely to be nonstationary. In this case, the money
demand regression that omits the measure is spurious, but we can still recover structural parameters
under certain conditions. The crucial assumption is that the omitted variable is not cointegrated with
the regressors.

Our structural spurious regression approach is based on the Generalized Least Squares (GLS) solu-
tion of the spurious regression problem analyzed by Ogaki and Choi (2001),1 who use an exact small

1Another approach would be to take the first difference to induce stationarity and then use instrumental variables.

This is the approach proposed by Lewbel and Ng (2005) for their Nonstationary Translog Demand System. Our approach

exploits the particular form of endogeneity assumed by many authors in the cointegration literature and avoids the use

of instrumental variables. Our approach yields more efficient estimators as long as the particular form of endogeneity is

correctly specified. This is important especially when weak instruments cause problems.
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sample analysis based on the conditional probability version of the Gauss-Markov Theorem. We de-
velop asymptotic theory for two estimators motivated by the GLS correction: GLS corrected dynamic
regression and feasible GLS (FGLS) corrected dynamic regression estimators. These estimators will
be shown to be consistent and asymptotically normally distributed in spurious regressions. When the
error term is in fact stationary, and hence the variables are cointegrated, the GLS corrected estimator
is not efficient, but the FGLS corrected estimator, like the OLS estimator, is superconsistent. Hence
the FGLS estimation is a robust procedure with respect to the error specification. The FGLS corrected
estimator is asymptotically equivalent to the GLS corrected estimator in spurious regressions and it is
asymptotically equivalent to the OLS estimator in cointegrating regressions.

In some applications, it is hard to determine whether or not the error in the regression is stationary or
unit-root nonstationary because test results are inconclusive. In such applications, the FGLS corrected
estimator is attractive because it is consistent in both situations as long as the method of the dynamic
regression removes the endogeneity problem.

This approach naturally motivates a Hausman-type test2 for the null hypothesis of cointegration
against the alternative hypothesis of no cointegration (or a spurious regression) in the dynamic OLS
framework. We construct this test by noting that while both the dynamic OLS and GLS corrected
dynamic regression estimators are consistent in cointegration estimation, the dynamic OLS estimator
is more efficient.3 On the other hand, when the regression is spurious only the GLS corrected dynamic
regression estimator is consistent. Hence, we could do a cointegration test based on the specifications
on the error. We show that under the null hypothesis of cointegration the test statistics have a usual
χ2 limit distribution, while under the alternative hypothesis of a spurious regression, the test statistic
diverges.

In some applications, the assumption that the spurious regression is structural under the alternative
hypothesis is not very attractive. If the violation of cointegration arises from reasons other than a
nonstationary measurement error, it is hard to believe that the resulting spurious regression is structural.
For this reason, we relax the assumption that the spurious regression is structural and show that the
Hausman-type cointegration test statistic still diverges under the alternative hypothesis.

Dynamic OLS is used in many applications of cointegration. However, few tests for cointegration
have been developed for dynamic OLS with the exception of Shin’s (1994) test. As in Phillips and
Ouliaris (1990), the popular Augmented Dickey-Fuller (ADF) test for the null hypothesis of no cointe-
gration was originally designed to be applied to the residual from static OLS rather than the residual
from dynamic OLS. Because the OLS and dynamic OLS estimates are often substantially different, it
is desirable to have a test for cointegration applied to dynamic OLS. Another aspect of our Hausman
type test is that it is for the null hypothesis of cointegration. Ogaki and Park (1998) argue that it
is desirable to test the null hypothesis of cointegration rather than that of no cointegration in many
applications when economic models imply cointegration.

Using Monte Carlo experiments, we compare the finite sample performance of the Hausman-type
test with the test proposed by Shin (1994), which is a locally best invariant test for the null of zero
variance of a random walk component in the disturbances. The experiment results show that up to the
sample size of 300 the Hausman-type test is dominant in both size and power. When the sample size
increases, Shin’s test is better in power, but it suffers from a serious oversize problem.

2This test can also be called Durbin-Wu-Hausman-type test as it is closely related to ideas and tests in Durbin (1954)

and Wu (1973) as well as a family of tests proposed by Hausman (1978).
3After completing the first draft, it has come to our attention that the Hausman-type test was originally proposed by

Fernández-Macho and Mariel (1994) for the static OLS cointegrating regression with strict exogeneity and without any

serial correlation. The test probably has not been popular because these assumptions are hard to justify in applications

and because the test was not developed for dynamic regressions.
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In some applications, it is appropriate to consider the possibility that measurement error is I(1)
and is not cointegrated with the regressors. For these applications, the ADF test is applicable under
the null hypothesis of a structural spurious regression as shown in Hu and Phillips (2005). For such
applications, we recommend that both the ADF test and Hausman-type test be applied because it is
not clear which null hypothesis is more appropriate.

We apply our estimation and testing methods to four applications: (i) long-run money demand in
the U.S.; (ii) long-run implications of the consumption-leisure choice; (iii) output convergence among
industrial and developing countries; (iv) Purchasing Power Parity (PPP) for traded and non-traded
goods. In the first two applications, we focus on estimating unknown structural parameters, while in
the last two applications we purport to test for cointegration with the Hausman-type cointegration
test, where we relax the assumption that the spurious regression under the alternative hypothesis is
structural.

The rest of the paper is organized as follows. Section 2 gives econometric analysis of the model,
including asymptotic theories and finite sample simulation studies. Section 3 presents models of nonsta-
tionary measurement error and nonstationary omitted variables. It then presents the empirical results
of four applications. Section 4 contains concluding remarks.

2 The econometric model

Consider the regression model
yt = β′xt + ηt, (1)

where {xt} is an m-vector integrated process generated by

∆xit = vit.

The error term in (1) is assumed to be

ηt =
m∑

i=1

k∑
j=−k

γi,jvi,t−j + et, (2)

et = ρet−1 + ut. (3)

Assumption 1 Assume that vt = (v1t, . . . , vmt)′ and ut are zero mean stationary processes with
E|vit|α < ∞, E|ut|α < ∞ for some α > 2 and strong mixing with size −α/(α − 2). We also as-
sume that the method of dynamic regression removes the endogeneity problem, that is, E(utvs) = 0 for
all t, s. We call this the strict exogeneity assumption for the dynamic regression.

The conditions on vt and ut ensure the invariance principles: for r ∈ [0, 1], n−1/2
∑[nr]

t=1 vt →d V (r),
n−1/2

∑[nr]
t=1 ut →d U(r), where V (r) is anm-vector Brownian motion with covariance

∑∞
j=−∞E(vtv

′
t−j),

and U(r) is a Brownian motion with variance
∑∞

j=−∞E(utut−j). The functional central limit theorem
holds for weaker assumptions than assumed here (De Jong and Davidson (2000)), but the conditions as-
sumed above are general enough to include many stationary Gaussian or non-Gaussian ARMA processes
that are commonly assumed in empirical modeling.

Let vt = (∆x1,t−k, . . . ,∆x1,t, . . . ,∆x1,t+k, . . . ,∆xm,t−k, . . ., ∆xm,t, . . ., ∆xm,t+k)′, and γ = (γ1,−k,
. . . , γ1,0, . . . , γ1,k, . . . , γm,−k, . . . , γm,0, . . . , γm,k)′. We estimate the structural parameter β in the re-
gression

yt = β′xt + γ′vt + et. (4)
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The inference procedure about β differs according to different assumptions on the error term et in
(3). When |ρ| < 1, et is stationary, and hence regression (4) is a cointegration regression with serially
correlated error. When ρ = 1, et is a unit root nonstationary process and the OLS regression is spurious.
Both models are important in empirical studies in macroeconomics and finance.

In the next two sections, we will study the asymptotic properties of different estimation procedures
under these two assumptions. Under the assumption that ρ = 1, OLS is not consistent while both GLS
correction and FGLS correction will give consistent and asymptotically equivalent estimators. Under
the assumption that |ρ| < 1, the GLS corrected estimator is not efficient as it is

√
n convergent, but

the FGLS estimator is n convergent and asymptotically equivalent to the OLS estimator. Therefore,
FGLS is robust with respect to the error specifications (ρ = 1 or |ρ| < 1).

2.1 Regressions with I(1) error

In this section we consider the situation when the error term is I(1), i.e., ρ = 1 in (3). The estimation
methods we study are dynamic OLS, GLS correction, and FGLS correction.

2.1.1 The dynamic OLS spurious estimation

We start with dynamic OLS estimation of regression (4). Under the assumption of ρ = 1, this
regression is spurious since for any value of β the error term is always I(1). In Appendix A, we show
that the DOLS estimator β̂dols has the following limit distribution:

(β̂dols − β0) →
[∫ 1

0

V (r)V (r)′dr
]−1 [∫ 1

0

V (r)U(r)dr
]
. (5)

γ̂ in the estimation is also inconsistent with γ̂ − γ0 = Op(1). As remarked in Phillips (1986, 1989),
in spurious regressions the noise is as strong as the signal. Hence, uncertainty about β persists in the
limiting distributions.

2.1.2 GLS corrected estimation

When ρ = 1, we can filter all variables in regression (4) by taking the full first difference, and use OLS
to estimate

∆yt = β′∆xt + γ′∆vt + ut = θ′∆zt + ut, (6)

where θ = (β′,γ′)′ and zt = (x′t,v
′
t)
′. This procedure can be viewed as GLS corrected estimation.4

If we let θ̃dgls denote the GLS corrected estimator, then we can show that

√
n(θ̃dgls − θ0) →d N(0,Ω), (7)

where Ω = Q−1ΛQ−1 with Q = E(ztz
′
t) and Λ is the long run variance matrix of ztut. Thus β in

a structural spurious regression can be consistently estimated (jointly with γ) and the estimators are
asymptotically normal. In the special case when m = 1, {v1t} and {ut} are i.i.d. sequences and ηt = et,
(7) gives that √

n(θ̃dgls − θ0) →d N(0, σ2
u/σ

2
1v),

where σ2
u and σ2

1v are variances of ut and v1t, respectively.

4This is a conventional GLS procedure when ut is i.i.d.. When ut is serially correlated as in our approach, we name

this procedure GLS corrected dynamic estimation.
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2.1.3 The FGLS estimation

To use GLS to estimate a regression with serial correlation in empirical work, a Cochrane-Orcutt FGLS
procedure is usually adopted. This procedure also works for spurious regressions as shown by Phillips
and Hodgson (1994). They show that the FGLS estimator is asymptotically equivalent to that in the
differenced regression when the error is unit-root nonstationary. In the present paper, we will show that
the FGLS correction to the dynamic regression provides a consistent and robust estimator to structural
spurious regressions.

Let the residual from OLS regression (4) be denoted by êt,

êt = yt − β̂′nxt − γ̂′nvt.

To conduct the Cochrane-Orcutt GLS estimation, we first run an AR(1) regression of êt,

êt = ρ̂nêt−1 + ût. (8)

It can be shown that n(ρ̂n− 1) = Op(1). Conduct the following Cochrane-Orcutt transformation of the
data:

ỹt = yt − ρ̂nyt−1, x̃t = xt − ρ̂nxt−1, ṽt = vt − ρ̂nvt−1. (9)

Then consider OLS estimation of the regression

ỹt = β′x̃t + γ′ṽt + error = θ′z̃t + error, (10)

where z̃t = (x̃′t, ṽt
′)′. The OLS estimator of θ in (10) is computed as

θ̃fgls =

[
n∑

t=1

z̃tz̃
′
t

]−1 [ n∑
t=1

z̃tỹt

]
. (11)

The limiting distribution of θ̃fgls can be shown to be the same as in (7). Intuitively, even though
the dynamic OLS estimator is inconsistent, the residual is unit-root nonstationary because no linear
combination of yt and xt is stationary. Therefore, ρn approaches unity in the limit, and z̃t behaves
asymptotically equivalent to ∆zt. A detailed proof of results in this section is given in Appendix A.

2.2 Regressions with I(0) error

In this section we consider the asymptotic distributions of the three estimators (DOLS estimator,
GLS corrected estimator and FGLS corrected estimator) under the assumption of cointegration, i.e.,
|ρ| < 1 (3).

2.2.1 The dynamic OLS estimation

Under the assumption of cointegration, the DGP of yt is

yt = β′xt + γ′vt + et, et = ρet−1 + ut, |ρ| < 1. (12)

Applying the invariance principle, for r ∈ [0, 1], n−1/2
∑[nr]

t=1 et → E(r), where E(r) is a Brownian
motion with variance

∑∞
j=−∞E(etet−j). The limiting distribution of the OLS estimator of β, which is

asymptotically independent of γ̂n, is known to be

n(β̂dols − β0) →d

(∫ 1

0

V (r)V (r)′dr
)−1(∫ 1

0

V (r)dE(r)
)
. (13)
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2.2.2 GLS corrected estimation

Now, if we take the full first difference as we did in the spurious regressions, the regression becomes

∆yt = β′∆xt + γ′∆vt + et − et−1 = θ′∆zt + et − et−1. (14)

Note that this transformation leads to loss in efficiency since the estimator β̃dgls is now
√
n convergent

rather than n convergent as the DOLS estimator. With some minor revisions to equation (7), the
limiting distribution of the estimator in this case can be written as

√
n(θ̃dgls − θ0) →d N(0,Ω∗), (15)

where Ω∗ = Q−1Λ∗Q−1. Q is defined as following equation (7) and Λ∗ is the long run variance matrix
of vector zt∆et. In the special case when m = 1, {v1t} and {ut} are i.i.d. sequences and ηt = et,
Ω∗ = 2σ2

e(1− ψe)/σ2
1v, where ψe is the first order autocorrelation coefficient of {et}.

2.2.3 The FGLS estimation

Instead of taking the full first difference, if we estimate the autoregression coefficient in the error and
use this estimator to filter all sequences, we will obtain an estimator that is asymptotically equivalent
to the DOLS estimator. Intuitively, in the case that the error et = ut is serially uncorrelated, then the
AR(1) coefficient ρ̂n will converge to zero, and hence the transformed regression will be asymptotically
equivalent to the original regression. Or, if the error is stationary and serially correlated, then the
AR(1) coefficient will be less than unity, and, as shown in Phillips and Park (1988), the GLS estimator
and the OLS estimator in a cointegration regression are asymptotically equivalent.

If we conduct the Cochrane-Orcutt transformation (9) and estimate β in regression

ỹt = β̃′nx̃t + γ̃′nṽt + error, (16)

then Appendix B shows that the limiting distribution of β̃n is the same as the limit of the OLS estimator
given in (13). We summarize the FGLS corrected estimator in the following proposition:

Proposition 1 Suppose Assumption 1 holds. In spurious regressions, the FGLS corrected estimator is
asymptotically equivalent to the GLS corrected estimator, and its limit distribution can be written as

√
n(θ̃fgls − θ0) →d N(0,Ω).

In cointegration regressions, the FGLS corrected estimator is asymptotically equivalent to the DOLS
estimator, and its limit distribution can be written as

n(β̂fgls − β0) →d

(∫ 1

0

V (r)V (r)′dr
)−1(∫ 1

0

V (r)dE(r)
)
.

So FGLS is not only valid when the regression is spurious but also asymptotically efficient when the
regression is cointegration.

Remarks: 1. If a constant is added to (4), we show in Appendix D that our methods still apply.
In particular, the GLS or FGLS corrected estimators are asymptotically equivalent to that given in (7)
under the assumption of spurious regressions.

2. If a trend term is added to (4) (this is the case in which the deterministic cointegration restriction
is not satisfied in the terminology of Ogaki and Park (1988)), then the GLS corrected estimation leads
to a singular covariance matrix for the estimator when ρ is less than one in absolute value. This is
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because a trend term in (4) leads to a constant term in the first differenced regression (14) and because
the long run variance of the first difference of et multiplied by a constant is zero. Therefore, our methods
do not apply to regressions with time trends.

3. Under some conditions, the methods proposed in this paper also apply to other model configu-
rations, such as regressions where the regressors have drifts. These extensions will be studied in future
work.

2.3 Finite sample performance of the three estimators

From the above analysis, we show that the FGLS corrected estimation is a robust procedure with
respect to error specifications. In this section, we use simulations to study its finite sample performances
compared to the other two estimators. In the simulation we consider the case when xt is a scalar variable
and we generate vt and ut from two independent standard normal distributions and let et = ρet−1 +ut.
The structural parameter is set to β = 2, and γ′vt = 0.5vt. The number of iterations in each simulation
is 5000 and in each replication, 100 + n observations are generated of which the first 100 observations
are discarded.

Table 1 shows the bias and the mean square error (MSE) of all three estimators for ρ = 0, 0.95, and
1 . When ρ = 0, the regression is cointegration with i.i.d. error. It is clear that the DOLS estimator is
the best one when n = 50. But when n reaches 100, the FGLS estimator becomes almost as good as
the DOLS estimator. When ρ = 0.95, the regression is cointegration with serially correlated error. In
this case, the GLS and FGLS estimators are much better than the DOLS estimator. When the sample
size increases, the FGLS estimator becomes the best one. Finally when ρ = 1, the regression is spurious
and the GLS corrected estimator performs the best as expected.

Figure 1 plots the three estimators when n = 100 as ρ approaches 1. The figures show that the
DOLS estimator becomes flatter and flatter as ρ→ 1. The GLS estimator remain largely the same for
ρ close to unity. And the FGLS estimator becomes a bit flatter when ρ reaches 1, but it still shows a
clear peak around zero.

¿From the finite sample performance, it can be seen that the FGLS estimator is almost as good as
the DOLS estimator in cointegrations and it significantly outperforms the DOLS estimator in spurious
regressions. The GLS estimator is the best when ρ approaches 1, but it suffers from significant loss in
efficiency when ρ is small. So we may want to take full difference only when we are very sure that the
error is unit root nonstationary. Otherwise the FGLS estimator is a good choice.

2.4 Hausman specification test for cointegration

2.4.1 The test statistic and its asymptotic properties

In this section we construct a Hausman-type cointegration test based on the difference of two
estimators: an OLS estimator (β̂dols) and a GLS corrected estimator (β̃dgls). This is equivalent to
comparing estimators in a level regression and in a differenced regression. The test is for the null of
cointegrating relationships against the alternative of a spurious regression:

H0 : |ρ| < 1; against HA : ρ = 1.

Our discussions so far suggest that under the null of cointegration, both OLS and GLS are consistent
but the OLS estimator is more efficient. However under the alternative of a spurious regression, only
the GLS corrected estimator is consistent.

7
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Figure 1: Comparison of three estimators when n = 100 and ρ→ 1
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Let V̂β denote a consistent estimator for the asymptotic variance of
√
n(β̃dgls − β). Under our

assumptions, it converges to the corresponding submatrix of Ω∗ under the null hypothesis and to the
corresponding submatrix of Ω under the alternative. For example, when m = 1, {v1t} and {ut} are
independent i.i.d. and ηt = et, take V̂β =

(
1
n

∑n
t=1 ŵ

2
t

)
/
(

1
n

∑n
t=1 ∆x2

t

)
, where ŵt denotes the residuals

from OLS estimation of differenced regression. Under the null of cointegration, V̂β → 2σ2
e(1− ψe)/σ2

1v.
Under the alternative of spurious regression, V̂β → σ2

u/σ
2
1v.

We define the Hausman-type test statistic as:

hn = n(β̃dgls − β̂dols)′V̂ −1
β (β̃dgls − β̂dols). (17)

Proposition 2 Suppose Assumption 1 holds. Under the null hypothesis of cointegrations, hn → χ2(m).
Under the alternative of spurious regressions, hn = Op(n).

Proof: under the null of cointegration,
√
n(β̃dgls − β̂dols)

=
√
n(β̃dgls − β0)−

√
n(β̂dols − β0)

=
√
n(β̃dgls − β0) + op(1)

→ N(0, Vβ),

where Vβ is the asymptotic variance of β̃dgls under the assumption of cointegration. Therefore, if V̂β is
a consistent estimator for Vβ ,

hn = n(β̃dgls − β̂dols)′(V̂β)−1(β̃dgls − β̂dols) → χ2(m).

Under the alternative of spurious regressions,
√
n(β̃dgls − β̂dols)

=
√
n(β̃dgls − β0)−

√
n(β̂dols − β0)

= Op(1) +Op(
√
n)

= Op(
√
n).

Hence, hn = Op(n) under the alternative.
We can extend the test to allow endogeneity under the alternative. Consider the following DGP:

yt = β′xt + γ′vt + φst + et,

et = ρet−1 + ut,

where {st} satisfies the same conditions as ut and vt, but it is correlated with {vt}. The statistic defined
in (17) can be applied to test the hypotheses:

H ′
0 : |ρ| < 1 and φ = 0

against H ′
A : ρ = 1 and φ 6= 0.

The asymptotics of hn under the null H ′
0 are the same as that under H0. Under the alternative

H ′
A, we show in Appendix C that the DOLS estimator has the same asymptotic distribution as that

under HA and hn = Op(n). Therefore, this Hausman-type test is consistent for the null hypothesis
of cointegrations against the alternative of spurious regressions, regardless of whether the exogeneity
assumption holds under the alternative.
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2.4.2 Finite sample properties of the Hausman-type cointegration test

Before applying the Hausman-type cointegration test empirically, it will be instructive to examine its
finite sample properties in comparison with other comparable tests under the same null hypothesis. To
this end, we conduct a small simulation experiment based on the following dynamic regression model,

yt = γ1∆xt+1 + βxt + γ2∆xt−1 + et, (18)

et = ρet−1 + ut, (19)

where γ1 = 0.3, β = 2, γ2 = −0.5, and setting ρ = 0.9 for the size performance and ρ = 1 for the power
performance. We consider sample sizes of n ∈ {50, 100, 200, 300, 500} that are commonly encountered
in empirical analysis. In the simulations pseudo random numbers are generated using the GAUSS
(version 6.0) RNDNS procedures. Each simulation run is carried out with 5,000 replications. At each
replication 100 + n random numbers are generated of which the first 100 observations are discarded to
avoid a start-up effect.

Table 2 reports selected finite sample properties of the Hausman-type cointegration test together
with a residual based test under the null of cointegration due to Shin (1994, Shin’s test) who extended
the KPSS test in the parametrically corrected cointegrating regression. In the simulations the lengths
of lead and lag terms for DOLS and DGLS are chosen by the BIC rule.5 A nonparametric estima-
tion method for long run variance estimation is employed using the QS kernel with the bandwidth
of ‘integer[8(n/100)1/4]’. The results in Table 2 illustrate two points. First, the empirical size of the
Hausman-type test is close to the nominal size, in particular when sample size is relatively large, whereas
Shin’s test suffers from a serious oversize problem. Second, in terms of power, the Hausman-type test
dominates Shin’s test for moderate sample sizes that are very likely to be encountered empirically.
Shin’s test seems more powerful when n is relatively large, but only at the cost of severe size distor-
tions. Overall, our simulation results provide evidence in favor of the Hausman-type test.

3 Empirical applications

In this section we apply the GLS-type correction methods and the Hausman-type cointegration test to
analyze four macroeconomic issues: (i) long-run money demand in the U.S.; (ii) long-run implications of
the consumption-leisure choice; (iii) output convergence among industrial and developing countries; (iv)
Purchasing Power Parity (PPP) for traded and non-traded goods. Tthe main purpose of the first two
applications is to illustrate the spurious regression approach to estimating unknown structural parame-
ters. Identification of the structural parameters in these two applications are based on nonstationary
measurement error or nonstationary omitted variables that are explained in the following two subsec-
tions. The main purpose of the last two applications is to apply the Hausman-type cointegration test.
The alternative hypothesis is not taken as structural spurious regressions in the last two applications.

3.1 A model of nonstationary measurement error

Consider a set of variables that are cointegrated. One model of a structural spurious regression is based
on the case in which one of the variables is measured with nonstationary measurement error. Let y0

t be
the true value of yt, and assume that

5It is an interesting research topic to investigate the performance of various lag length selection rules, but would be

beyond the scope of this paper.
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y0
t = β′xt + γ0′vt + e0t (20)

is a dynamic cointegrating regression that satisfies the strict exogeneity assumption.6 Let yt be the
measured value of y0

t , and assume that the measurement error satisfies

yt − y0
t = γm′vt + em

t , (21)

where em
t is I(1) and its expectation conditional on xs for all s is zero. Here, the crucial assumption for

identification is that the measurement error is not cointegrated with xt. Then

yt = β′xt + γ′vt + et (22)

where γ = γ0 + γm, and et is I(1) and satisfies the strict exogeneity assumption.7

3.2 A model of nonstationary omitted variables

Another case that leads to a structural spurious regression is a model of nonstationary omitted variables.

yt = β′xt + θ′x0
t + γ1′vt + γ0′v0

t + e0t (23)

where x0
t is a vector of I(1) variables and v0

t is a vector of leads and lags of the first differences of x0
t .

We imagine that the econometrician omits x0
t from his regression. We assume that

θ′x0
t + γ0′v0

t = γm′vt + em
t , (24)

where em
t is I(1) and its expectation conditional on xs for all s is zero. Here, the crucial assumption for

identification is that the x0
t is not cointegrated with xt. Then

yt = β′xt + γ′vt + et (25)

where γ = γ1 + γm, and et is I(1) that satisfies the strict exogeneity assumption.

3.3 U.S. money demand

The long-run money demand function has often been estimated under a cointegrating restriction among
real balances, real income, and the interest rate. The restriction is legitimate if the money demand
function is stable in the long-run and if all variables are measured without nonstationary error. Indeed,
Stock and Watson (1993) found supportive evidence of stable long-run M1 demand by estimating
cointegrating vectors. However, either if money is measured with a nonstationary measurement error or
if nonstationary omitted variables exist, then we have a spurious regression and the estimation results
based on a cointegration regression are questionable.

First, consider the model of a nonstationary measurement error described above. To be specific, we
follow Stock and Watson (1993) and assume that the dynamic regression error is stationary and the
strict exogeneity assumption holds for the dynamic regression error when money is correctly measured.
We then assume that money is measured with a multiplicative measurement error. We assume that the
log measurement error is unit-root nonstationary, and that the residuals of the projection of the log

6Note that any variable can be chosen as the regressand in a cointegrating regression. Therefore, we choose the variable

with nonstationary measurement error as the regressand.
7Here, we assume that the dimensions of γ0 and γm are the same without loss of generality, because we can add zeros

as elements of γ0 and γm as needed.
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measurement error on the leads and lags of the regressors in the dynamic regression satisfy the strict
exogeneity assumption. Given that a large component of the measurement error is arguably currency
held by foreign residents and black market participants, the log measurement error is likely to be very
persistent. Therefore, the assumption that the log measurement error is unit root nonstationary may
be at least a good approximation. The assumption that the measurement error is not cointegrated with
the regressors is plausible if the error is mainly due to currency held by foreign residents.

Second, consider the model of nonstationary omitted variables. A possible omitted variable is a
measure of the “shoe leather cost” that represents transaction costs. For example, in the literature of
money demand estimation, the real wage rate has sometimes been used as a regressor for this reason.
Because the real wage rate is I(1) in standard dynamic stochastic general equilibrium models with an
I(1) technological shock, the omitted measure of the “shoe leather cost” is to be nonstationary. If the
real wage rate is the omitted variable, the assumption that it is not cointegrated with the regressors
that include log income is not very plausible. However, it is possible that the true omitted variable
that represents the “shoe leather cost” is not the real wage rate and that it is not cointegrated with log
income.

We apply our GLS correction methods to estimate long-run income and interest elasticities of M1
demand.8 To this end, the regression equations are set up with the real money balance (M

P ) as regressand
and income (y) and interest (i) as regressors. Following Stock and Watson (1993), the annual time series
for M1 deflated by the net national product price deflator is used for M

P , the real net national product
for y and the six month commercial paper rate in percentage for i. M

P and y are in logarithms while
three different regression equations are considered depending on the measures of interest. We have tried
the following three functional forms. Equation 1 has been studied by Stock and Watson (1993).

ln
(
M

P

)
t

= α+ β ln (yt) + γit + et, (equation 1)

ln
(
M

P

)
t

= α+ β ln (yt) + γ ln(it) + et, (equation 2)

ln
(
M

P

)
t

= α+ β ln (yt) + γ ln
[
1 + it
it

]
+ et. (equation 3)

It is worth noting that the liquidity trap is possible for the latter two functional forms. When the
data contain periods with very low nominal interest rates, the latter two functional forms may be more
appropriate.

Table 3 presents the point estimates for β (income elasticity of money demand) and γ based on the
three estimators under scrutiny: dynamic OLS, GLS corrected dynamic regression estimator, and FGLS
corrected dynamic regression estimator.9 Several features emerge from the table. First, all the estimated
coefficients have theoretically ‘correct’ signs: positive signs for income elasticities and negative signs
for γ for the first two functional forms and positive signs for γ for the third functional form. Second,
GLS corrected estimates of the income elasticity are implausibly low for all three functional forms for
low values of k and increase to more plausible values near one as k increases. The fact that the results
become more plausible as k increases suggests that the endogeneity correction of dynamic regressions
works in this application for moderately large values of k such as 3 and 4. The results for lower values
of k are consistent with those of low income elasticity estimates of first differenced regressions that

8Readers are referred to Appendix F for the empirical guidelines on the use of estimation and testing techniques

developed in this paper.
9For the FGLS corrected dynamic regression estimator, the serial correlation coefficient of the error term is estimated

before being applied to the Cochrane-Orcutt transformation. This coefficient is assumed to be unity in the GLS corrected

dynamic regression estimator which is equivalent to regressing the first difference of variables without a constant term.
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had been used in the literature before 1980. Therefore, the estimators in the old literature of first
differenced regressions before cointegration became popular are likely to be downward biased because
of the endogeneity problem. Third, all point estimates of the three estimators are very similar, and
the Hausman-type test fails to reject the null hypothesis of cointegration for large enough values of k.
Hence, there is little evidence against cointegration. However, it should be noted that a small random
walk component is very hard to detect by any test for cointegration. Therefore, it is assuring to know
that all three estimators are similar for large enough values of k, and the estimates are robust with
respect to whether the regression error is I(0) or I(1).

We report the value of k chosen by the Bayesian Information Criterion (BIC) rule throughout our
empirical applications in order to give some guidance in interpreting results. It is beyond the scope of
this paper to study detailed analysis of how k should be chosen because this issue has not been settled
in the literature of dynamic cointegrating regressions.

Table 3 also reports the results when the ADF test is applied to the residual of OLS. The results
show evidence against the null hypothesis of structural spurious regressions and hence corroborate the
results from the Hausman-type test under the opposite null hypothesis.

3.4 Long-run implications of the consumption-leisure choice

Consider a simplified version of Cooley and Ogaki’s (1996) model of consumption and leisure in which
the representative household maximizes

U = E0[
∞∑

t=0

δte(t)]

where Et denotes the expectation conditioned on the information available at t. We adopt a simple
intraperiod utility function that is assumed to be time and state-separable and separable in nondurable
consumption, durable consumption, and leisure

e(t) =
C(t)1−β − 1

1− β
+ v(l(t))

where v(·) represents a continuously differentiable concave function, C(t) is nondurable consumption,
and l(t) is leisure.

The usual first order condition for a household that equates the real wage rate with the marginal
rate of substitution between leisure and consumption is given as:

W (t) =
v′(l(t))
C(t)−β

where W (t) is the real wage rate. We assume that the stochastic process of leisure is (strictly) stationary
in the equilibrium as in Eichenbaum, Hansen, and Singleton (1988). An implication of the first order
condition is that ln(W (t)) − β ln(C(t)) = ln(v′(l(t))) is stationary. When we assume that the log of
consumption is difference stationary, this implies that the log of the real wage rate and the log of
consumption are cointegrated with a cointegrating vector (1,−β)′.

We first consider the model of the measurement error. We assume that (W (t)) is measured with
a multiplicative measurement error, so that ln(W (t)) is measured with a measurement error ε(t). We
assume that this measurement error is unit-root nonstationary. One component of the measurement
error arises because it is difficult to measure fringe benefits. Therefore, we expect the measurement error
to be very persistent, and the assumption of unit-root nonstationarity may be a good approximation.

13



We also assume that the measurement error and log consumption are not cointegrated for identificaiton.
This assumption does not rule out nonlinear long-run relationships between these variables.

Consider a regression
ln(Wm(t)) = a+ β ln(C(t)) + e(t), (26)

where Wm(t) is the measured real wage rate, and e(t) = −ε(t) + ln(v′(l(t))) − a. If ε(t) is stationary,
then e(t) is stationary, and Regression (26) is a cointegrating regression as in Cooley and Ogaki. In
this simple version, the preference parameter β is the Relative Risk Aversion (RRA) coefficient, which
is equal to the reciprocal of the intertemporal elasticity of substitution (IES). Cooley and Ogaki show
that the same regression can be used to estimate the reciprocal of the long-run IES when preferences
for consumption are subjected to time nonseparability such as habit formation. For simplicity, we
interpret β as the RRA coefficient in this paper.

If ε(t) is unit-root nonstationary, then Regression (26) is a spurious regression because e(t) is non-
stationary in this case. Hence, the standard methods for cointegrating regressions cannot be used.
However, the preference parameter β can still be estimated by the spurious regression method. The
key assumption for identification is that the measurement error is not cointegrated with the regressor
as discussed above. As long as the log multiplicative measurement error and log consumption are not
linearly related in the long-run by a linear cointegration relationship, the assumption is satisfied. It
should be noted that either consumption or the wage rate can be used as the regressand in the case of
cointegration. However, if the wage rate is measured with nonstationary error and consumption is not,
then the wage rate should be chosen as the regressand.

Another interpretation of this application is based on the nonstationary omitted variables for this
application. A possible omitted variable represents demographic changes. In our analysis, per capita
real consumption series was constructed by dividing constant 1982 dollar consumption series by civilian
noninstitutional adult (age 16 and over) population. If this population series does not capture the trend
of all the demographic change that affects the relationship between the real wage rate and consumption,
we have a nonstationary omitted variable. As long as the omitted demographic change and log con-
sumption are not linearly related in the long-run by a linear cointegration relationship, the assumption
that the omitted variable is not cointegrated with the regressor is satisfied. Another possible omitted
variable is human capital if human capital affects the marginal rate of substitution between leisure and
consumption.

Table 4 presents the estimation results for the RRA coefficient (β) based on various estimators. We
used the same data set that Cooley and Ogaki used.10 The results in Table 4 illustrate several points.
First, all point estimates for β have the theoretically correct positive sign. Second, for nondurables
(ND), GLS-corrected dynamic regression estimates of β are much lower than Dynamic OLS estimates
for all values of k. As a result, the Hausman-type cointegration test rejects the null hypothesis of
cointegration for all values of k at the 1 percent level. Therefore, the evidence supports the view
that Regression (26) is a spurious regression, and the true value of the RRA coefficient is likely to be
much lower than the dynamic OLS estimates. Both the GLS corrected and the robust FGLS corrected
dynamic regression estimation results are consistent with the view that the RRA coefficient is about
one for the value of k chosen by BIC. For nondurables plus services (NDS), GLS corrected dynamic
regression estimates of β are much lower than Dynamic OLS estimates for small values of k. As a
result, the Hausman-type cointegration test rejects the null hypothesis of cointegration at the 5 percent
level when k is 0, 1, and 2. It still rejects the null hypothesis of cointegration at the 5 percent level
when k is 3. It does not reject the null hypothesis when k is 4 or 5. According to the BIC rule, k is
chosen to be 3, and there is some evidence against cointegration. However, because the GLS corrected

10See Cooley and Ogaki (1996, page 127) for a detailed description of the data.
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dynamic regression estimates get closer to dynamic OLS estimates as k increases, the evidence is not
very strong. It is likely that a small random walk component exists for the error term of the regression
for NDS making it a spurious regression. The robust FGLS corrected dynamic regression estimates are
close to both GLS corrected dynamic regression estimates and dynamic OLS estimates as long as k is
3 or greater.

Table 4 also reports ADF test results when the test is applied to the residual of static OLS. The
lag length for the ADF test has been chosen by the sequential t-test method advocated by Campbell
and Perron (1991). We do not have any evidence against the null hypothesis of structural spurious
regressions for ND. This hypothesis cannot be rejected at the 5 percent level, but can be rejected at
the 10 percent level for NDS.

Thus, we have fairly strong evidence that we have a spurious regression for ND and some evidence
that we have spurious regression for NDS. The true value of RRA is likely to be about one for both
ND and NDS.

3.5 Output convergence across national economies

In this section, we apply the techniques to reexamine a long standing issue in macroeconomics, the
hypothesis of output convergence. For this application and the next, our main purpose is not to estimate
unknown structural parameters but to test the null hypothesis of cointegration with the Hausman-type
test. For this purpose, we do not need the strict exogeneity assumption under the alternative hypothesis
of no cointegration (or a spurious regression).

As a key proposition of the neoclassical growth model, the convergence hypothesis has been pop-
ular in macroeconomics and has attracted considerable attention in the empirical field, particularly
during the last decade. Besides its important policy implications, the convergence hypothesis has been
used as a criterion to discern the two main growth theories, exogenous growth theory and endogenous
growth theory. However, it remains the subject of continuing debate mainly because the empirical
evidence supporting the hypothesis is mixed. Nevertheless, the established literature based on popular
international datasets such as the Summers-Heston (1991) suggests as a stylized fact output conver-
gence among various national economies: convergence among industrialized countries but not among
developing countries and not between industrialized and developing countries.

Given that a mean stationary stochastic process of output disparities between two economies is
interpreted as supportive evidence of stochastic convergence, unit-root or cointegration testing proce-
dures are often used by empirical researchers to evaluate the convergence hypothesis. In this vein, our
techniques proposed here fit in the study of output convergence. We consider four developing countries
(Columbia, Ecuador, Egypt, and Pakistan) along with four industrial countries (Germany, Luxemburg,
New Zealand, Switzerland). The raw data are extracted from the Penn World Tables of Summers-
Heston (1991) and consist of annual real GDP per capita (RGDPCH) over the period of 1950-1992.
The following two regression equations are considered with regard to the cointegration relation.

yD
t = α+ βyI

t + et, (27)

yI
t = α+ βyI

t + et, (28)

where yD
t and yI

t denote log real GDP per capita for developing and industrial countries, respectively.
Tables 5-1 and 5-2 report the results which exhibit a large variation in estimated coefficients. Recall

that our interest in this application lies in the cointegration test based on the Hausman-type test. As
can be seen from Table 5-1, irrespective of country combinations, the null hypothesis of cointegration
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can be rejected when developing countries are regressed onto industrial countries, indicating that there
is little evidence of output convergence between developing countries and industrial countries. The
picture changes dramatically when industrial countries are regressed onto industrial countries as in
(28). Table 5-2 displays that the Hausman-type test fails to reject the null of cointegration in all cases
considered. Our finding is therefore consistent with the notion of convergence clubs.

3.6 PPP for traded and non-traded goods

As a major building block for many models of exchange rate determination, PPP has been one of
the most heavily studied subjects in international macroeconomics. Despite extensive research, the
empirical evidence on PPP remains inconclusive, largely due to econometric challenges involved in
determining its validity. As is generally agreed, most real exchange rates show very slow convergence
which makes estimating long-run relationships difficult with existing statistical tools. The literature
suggests a number of potential explanations for the very slow adjustment of relative price: volatility of
the nominal exchange-rate, market frictions such as trade barriers and transportation costs, imperfect
competition in product markets, and the presence of non-traded goods in the price basket. According
to the commodity-arbitrage view of PPP, the law of one price holds only for traded goods and the
departures from PPP are primarily attributed to the large weight placed on nontraded goods in the
CPI. This view has obtained support from many empirical studies based on disaggregated price indices.
They tend to provide ample evidence that prices for non-traded goods are much more dispersed than
for their traded counterpart and consequently non-traded goods exhibit far larger deviations from PPP
than traded goods. Given that general price indices involve a mix of both traded and non-traded goods,
highly persistent deviations of non-traded goods from PPP can lead to the lack of conclusive evidence
on the long run PPP relationship. As in the previous application, our main purpose for this application
is not to estimate unknown structural parameters but to test the null hypothesis of cointegration with
the Hausman-type test.

Let pt and p∗t denote the logarithms of the consumer price indices in the base country and foreign
country, respectively, and st be the logarithm of the price of the foreign country’s currency in terms of
the base country’s currency. Long-run PPP requires that a linear combination of these three variables
be stationary. To be more specific, long-run PPP is said to hold if ft = st + p∗t is cointegrated with pt

such that et ∼ I(0) in

fT
t = α+ βpT

t + et,

fN
t = α+ βpN

t + et,

where the superscripts T and N denote the price levels of traded goods and non-traded goods, respec-
tively.

Following the method of Stockman and Tesar (1995), Kim (2004) recently analyzed the real ex-
change rate for total consumption using the general price deflator and the real exchange rate for traded
and non-traded goods using implicit deflators for non-service consumption and service consumption,
respectively.11 We use Kim’s dataset to apply our techniques to the linear combination of sectorally
decomposed variables. Table 6 presents the results using quarterly price and exchange rate data for
six countries: Canada, France, Italy, Japan, U.K., and U.S. for the period of 1974 Q1 through 1998
Q4. With the Canadian dollar used as numeraire, Table 6 presents the estimates for β which should be
close to unity according to long-run PPP. For traded goods, estimates are above unity in most cases,
but the variation across estimates does not seem substantial, resulting in non-rejection of the null of

11For details, see the Appendix for the description of the data. We thank JB Kim for sharing the dataset.
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cointegration in all cases considered. By sharp contrast, the Hausman-type cointegration test rejects
the null hypothesis in every country when the price for non-traded goods is used. It is noteworthy that
there exists considerable difference between GLS-corrected estimates for β and their DOLS and FGLS
counterparts which are far greater than unity. That is, supportive evidence of PPP is found for traded
goods but not for non-traded goods, congruent with the general intuition as well as the findings by
other studies in the literature such as Kakkar and Ogaki (1999) and Kim (2004).12

4 Concluding remarks and future work

In this paper, we developed two estimators to estimate structural parameters in spurious regressions:
GLS corrected dynamic regression and FGLS corrected dynamic regression estimators. A GLS cor-
rected dynamic regression estimator is a first differenced version of a dynamic OLS regression estima-
tor. Asymptotic theory shows that, under some regularity conditions, the endogeneity correction of
the dynamic regression works for the first differenced regressions for both cointegrating and spurious
regressions. This result is useful because it is not intuitively clear that the endogeneity correction works
even in regressions with stationary first differenced variables.

For the purpose of the estimation of structural parameters when the possibility of nonstationary
measurement error or nonstationary omitted variables cannot be ruled out, we recommend the FGLS
corrected dynamic regression estimators. They are consistent both when the error is I(0) and I(1). They
are asymptotically as efficient as dynamic OLS when the error is I(0) and as GLS corrected dynamic
regression when the error is I(1). This feature may be especially attractive when the FGLS corrected
dynamic estimator is extended to a panel data setting when some regression errors are I(0) and the
others are I(1). This extension is studied by Hu (2005).

We also developed the Hausman-type cointegration test by comparing the dynamic OLS regression
and GLS corrected dynamic regression estimators. As noted in the Introduction, this task is important
not merely because few tests for cointegration have been developed for dynamic OLS but because tests
for the null hypothesis of cointegration are useful in many applications. For this test, the spurious
regression obtained under the alternative hypothesis does not have to be structural.

We applied our estimation and testing methods to four applications: (i) long-run money demand in
the U.S.; (ii) long-run implications of the consumption-leisure choice; (iii) output convergence among
industrial and developing countries; (iv) Purchasing Power Parity (PPP) for traded and non-traded
goods.

In the first application of estimating the money demand function, the results suggest that the
endogeneity correction of the dynamic regression works with a moderately large number of leads and lags
for the GLS corrected dynamic regression estimator. The GLS corrected dynamic regression estimates
of the income elasticity of money demand are very low with low orders of leads and lags, and then
increase to more plausible values as the order of leads and lags increases. Dynamic OLS estimates are
close to the GLS corrected dynamic regression estimates for a large enough order of leads and lags,
and we find little evidence against cointegration with the Hausman-type cointegration test. The FGLS
corrected dynamic regression estimates are very close to the GLS corrected dynamic regression and the
dynamic OLS estimates for sufficiently large order of leads and lags.

In the second application of the long-run implications of the consumption-leisure choice, we found
strong evidence against cointegration when nondurables are used as the measure of consumption with the

12Engel (1999) finds little evidence for long-run PPP for traded goods with his variance decomposition method. How-

ever, it should be noted that his method is designed to study variations of real exchange rates over relatively shorter

periods compared with cointegration-type methods that are designed to study long-run relationships.
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Hausman-type cointegration test. We also found some evidence against cointegration when nondurables
plus services are used as the measure of consumption. We estimate the RRA coefficient to be about
one with both GLS corrected and FGLS corrected dynamic regression estimators.

Hence, in these first two applications, the FGLS corrected dynamic regression estimator works well
in the sense that it yield estimates which are close to those of the estimator that seems to be correctly
specified. This is confirmed by our simulation results in Section 2 that the small sample efficiency
loss from using the FGLS corrected dynamic regression estimator is negligible for reasonable sample
sizes. Therefore, we recommend the robust FGLS corrected dynamic regression estimator when the
researcher is unsure about whether or not the regression error is I(0) or I(1). This is important because
it is difficult to detect a small random walk component in the error term when the error is actually I(1)
and to detect a small deviation from a unit-root when the dominant autoregressive root is very close to
one when the error is actually I(0).

In the third application, we applied the Hausman-type cointegration test to log real output of pairs
of countries to study output convergence across national economies. Our test results are consistent
with the stylized fact of convergence clubs in that we reject the null hypothesis of cointegration between
developing and developed countries while failing to reject the null hypothesis of cointegration between
two developed countries. Finally, we apply the Hausman-type cointegration test to study long-run PPP.
Our test results support the commodity-arbitrage view that long-run PPP holds for traded goods but
not for non-traded goods.

In future work, it will be important to study the choice of k, the number of leads and lags in the
endogeneity correction. Another aspect that will be useful in empirical work is the study of possible
deterministic time trend and seasonal effects in the model.
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Appendix

Appendix A: Proof of results in section 2.1

To show the distribution of the OLS estimator in regression (4) with ρ = 1, define X = [x1, . . . , xn]′, V =
[v1, . . . ,vt]′, and e = [e1, . . . , en]′. Also define Mv = In −V(V′V)−1V and Mx = In −X(X′X)−1X.
Then the OLS estimator for β and γ can be written as[

β̂n − β0

γ̂n − γ0

]
=

[
X′X X′V
V′X V′V

]−1 [
X′e
V′e

]
=

[
(X′MvX)−1 −(X′MvX)−1X′V(V′V)−1

−(V′V)−1V′X(X′MvX)−1 (V′MxV)−1

] [
X′e
V′e

]
.

We are mostly interested in the structural parameter β̂. Write its limit distribution as

β̂n − β0 = (X′MvX)−1X′e− (X′MvX)−1X′V(V′V)−1V′e

=
(

X′MvX
n2

)−1(X′e
n2

)
− 1
n

(
X′MvX
n2

)−1(X′V
n

)(
V′V
n

)−1(V′e
n

)
=

(
X′MvX
n2

)−1(X′e
n2

)
+ op(1)

→
[∫ 1

0

V (r)V (r)′dr
]−1 [∫ 1

0

V (r)U(r)dr
]
≡ h1,

which gives equation (5). For γ̂, we can write

γ̂n − γ0 = −
(

V′V
n

)−1(V′X
n

)(
X′MvX
n2

)−1(X′e
n2

)
+
(

V′MxV
n

)−1(V′e
n

)
= Op(1).

Alternatively, we can define that y∗t = yt − (
∑n

t=1 ytv′t) (
∑n

t=1 vtv′t)
−1 vt, x∗t = xt − (

∑n
t=1 xtv′t)

(
∑n

t=1 vtv′t)
−1 vt, and e∗t = et − (

∑n
t=1 etv′t) (

∑n
t=1 vtv′t)

−1 vt. Note that n−1/2x∗t = n−1/2xt + op(1)
and n−1/2e∗t = n−1/2et + op(1). Then regression (4) can be written as

y∗t = β′x∗t + e∗t . (29)

The OLS estimator for β in regression (4) and (29) are identical. Write

β̂n − β0 =

[
n−2

n∑
t=1

x∗tx
∗′
t

]−1 [
n−2

n∑
t=1

x∗t e
∗
t

]

=

[
n−2

n∑
t=1

xtx
′
t

]−1 [
n−2

n∑
t=1

xtet

]
+ op(1)

→
[∫ 1

0

V (r)V (r)′dr
]−1 [∫ 1

0

V (r)U(r)dr
]
.

To show the limit distribution of the GLS corrected estimator in regression (6), write

√
n(θ̃dgls − θ0) =

[
n−1

n∑
t=1

∆zt∆z′t

]−1 [
n−1/2

n∑
t=1

∆ztut

]
. (30)

19



For the denominator,

n−1
n∑

t=1

∆zt∆z′t =
[

n−1
∑n

t=1 vtv
′
t n−1

∑n
t=1 vt∆v′t

n−1
∑n

t=1 ∆vtv
′
t n−1

∑n
t=1 ∆vt∆v′t

]
→
[

Σv Γ′v,∆v

Γv,∆v Γ∆v,∆v

]
≡ Q, (31)

where Σv is the variance matrix of {vt} and Γ is a matrix with elements computed from the autoco-
variances of {vt}. In the special case when m = 1, ηt = γ1,0v1t + et,

n−1
n∑

t=1

∆zt∆z′t =
[

n−1
∑n

t=1 v
2
1t n−1

∑n
t=1 v1t(v1t − v1,t−1)

n−1
∑n

t=1 v1t(v1t − v1,t−1) n−1
∑n

t=1(v1t − v1,t−1)2

]
→ σ2

1v

[
1 1− ψ1v

1− ψ1v 2(1− ψ1v)

]
,

where σ2
1v is the variance of v1t and ψ1v is its first order autocorrelation coefficient. If we further assume

that v1t is i.i.d., the limit matrix becomes:

Q = σ2
1v

[
1 1
1 2

]
.

For the numerator, the assumptions on the innovation processes ensure that CLT holds:

n−1/2
n∑

t=1

∆ztut =
[

n−1/2
∑n

t=1 vtut

n−1/2
∑n

t=1 ∆vtut

]
→ N(0,Λ), (32)

where Λ is the long run covariance matrix of the vector ∆ztut:

Λ =

[ ∑∞
j=−∞E(vtv

′
t−jutut−j)

∑∞
j=−∞E(vt∆v′t−jutut−j)∑∞

j=−∞E(∆vtv
′
t−jutut−j)

∑∞
j=−∞E(∆vt∆v′t−jutut−j)

]
.

When m = 1, v1t, ut are both i.i.d. and ηt = γ1,0v1t + et,

Λ = σ2
1vσ

2
u

[
1 1
1 2

]
.

Hence, for the quantity defined in (30), we have the limit distribution given in (7):
√
n(θ̃dgls − θ0) → N(0,Ω)

where Ω = Q−1ΛQ−1.
To derive the limit distribution for the FGLS estimator, we first derive the limit distribution for ρ̂n

in regression (8). Write the process of êt as

êt = yt − θ̂′dolszt

= et + (θ0 − θ̂dols)′zt

= et−1 + (θ0 − θ̂dols)′zt + ut

= êt−1 + (θ0 − θ̂dols)′∆zt + ut

= êt−1 + gt, say.

¿From this expression, we can see that êt is a unit-root process with serially correlated error gt. The
OLS estimator ρ̂n can be written as

ρ̂n − 1 =
∑n

t=1 êt−1gt∑n
t=1 ê

2
t−1

. (33)
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If we let b = (1, (β0 − β̂n)′)′, at = (et, x
′
t)
′, we can write

êt = et + (β0 − β̂n)′xt + (γ0 − γ̂n)′vt (34)

= b′at + (γ0 − γ̂n)′vt.

Then the denominator in (33) can be written as

n−2
n∑

t=1

ê2t = b′n−2
n∑

t=1

ata
′
tb+ op(1) → α′

∫ 1

0

A(r)A(r)′dr α,

where α = (1,−h′1)′ and A(r) = (U(r), V (r)′)′.
The numerator in (33) can be written as

êt−1gt = [b′at + (γ0 − γ̂n)′vt][(β0 − β̂n)′vt + (γ0 − γ̂n)′(vt − vt−1) + ut].

The sum of this quantity is Op(n). We omit the details here since we will not make use of the distribution
form of ρ̂n. We let c denote the limit, i.e., n−1

∑n
t=1 êt−1gt → c.

Then,

n(ρ̂n − 1) =
n−1

∑n
t=1 êt−1gt

n−2
∑n

t=1 ê
2
t−1

→d c

(
α′
∫ 1

0

A(r)A(r)′dr α
)−1

. (35)

In fact, in our following computations, we only make use of the fact that

n(ρ̂n − 1) = Op(1).

Below we show how to derive the limit distribution for θ̃fgls. For the sequence of ỹt, we can write it
as

ỹt = yt − ρ̂nyt−1

= θ′0zt + et − ρ̂n(θ′0zt−1 + et−1)

= θ′0(zt − ρ̂nzt−1) + (et − et−1) + (1− ρ̂n)et−1

= θ′0z̃t + ut + (1− ρ̂n)et−1.

Now, we can write

θ̂fgls − θ0 =

[
n∑

t=1

z̃tz̃
′
t

]−1 [ n∑
t=1

z̃t[ut + (1− ρ̂n)et−1]

]
. (36)

Write the denominator as
n∑

t=1

z̃tz̃
′
t =

[ ∑n
t=1 x̃tx̃

′
t

∑n
t=1 x̃tṽ′t∑n

t=1 ṽtx̃
′
t

∑n
t=1 ṽtṽ′t

]
.

First,
n∑

t=1

x̃tx̃
′
t =

n∑
t=1

(xt − ρ̂nxt−1)(xt − ρ̂nxt−1)′

=
n∑

t=1

[(1− ρ̂n)xt−1 + vt][(1− ρ̂n)xt−1 + vt]′

= (1− ρ̂n)2
n∑

t=1

xt−1x
′
t−1 + (1− ρ̂n)

n∑
t=1

[xt−1v
′
t + vtx

′
t−1] +

n∑
t=1

vtv
′
t.
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Hence,

n−1
n∑

t=1

x̃2
t

= n(1− ρ̂n)2
(
n−2

n∑
t=1

xt−1x
′
t−1

)
+ (1− ρ̂n)

(
n−1

n∑
t=1

xt−1v
′
t + n−1

n∑
t=1

vtx
′
t−1

)
+ n−1

n∑
t=1

vtv
′
t

= n−1
n∑

t=1

vtv
′
t + op(1) → Σv.

Similarly,

n−1
∑

x̃tṽ′t = n−1
n∑

t=1

vt(vt − vt−1)′ + (1− ρ̂n)n−1
n∑

t=1

vtv′t−1

+(1− ρ̂n)n−1
n∑

t=1

xt−1(vt − vt−1)′ + (1− ρ̂n)2n−1
n∑

t=1

xt−1v′t−1

= n−1
n∑

t=1

vt(vt − vt−1)′ + op(1) → Γv,∆v.

Finally, n−1
∑n

t=1 ṽtṽ′t = 1
n

∑n
t=1 ∆vt∆v′t + op(1) → Γ∆v,∆v. Hence,

n−1
n∑

t=1

z̃tz̃
′
t = n−1

n∑
t=1

∆zt∆z′t + op(1) →p Q. (37)

Next, consider the numerator in (36)

n∑
t=1

z̃t[ut + (1− ρ̂n)et−1] =
[ ∑n

t=1 x̃t[ut + (1− ρ̂n)et−1]∑n
t=1 ṽt[ut + (1− ρ̂n)et−1]

]
.

It is not hard to see that n−1
∑n

t=1 z̃t[ut +(1− ρ̂n)et−1] →p 0. Intuitively, z̃t behaves asymptotically
like the differenced regressors (v′t,∆v′t)

′, and u and v are uncorrelated by assumption. Our remaining
task is to show that

n−1/2
n∑

t=1

z̃t[ut + (1− ρ̂n)et−1] = n−1/2
n∑

t=1

∆ztut + op(1) → N(0,Λ). (38)

This can be shown using similar arguments in proving (37). Combining (38) with (37), we obtain the
limit distribution for θ̃dgls as given in (11).

Appendix B: Proof of results in section 2.2

To show the limit distribution of the dynamic OLS estimator in the cointegration, define

Hn =
[
Imn 0
0 Im(2k+1)n

1/2

]
. (39)

We can write

Hn(θ̂dols−θ0) =

[
n(β̂n − β0)

n1/2(γ̂n − γ0)

]
=
[

n−2
∑n

t=1 xtx
′
t n−3/2

∑n
t=1 xtv′t

n−3/2
∑n

t=1 vtx
′
t n−1

∑n
t=1 vtv′t

]−1 [
n−1

∑n
t=1 xtet

n−1/2
∑n

t=1 vtet

]
.
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For the denominator,[
n−2

∑n
t=1 xtx

′
t n−3/2

∑n
t=1 xtv′t

n−3/2
∑n

t=1 vtx
′
t n−1

∑n
t=1 vtv′t

]
→

[ ∫ 1

0
V (r)V (r)′dr 0

0 Γv,v

]
. (40)

Thus, the estimator of the I(1) and I(0) components are asymptotically independent. For the numerator,[
n−1

∑n
t=1 xtet

n−1/2
∑n

t=1 vtet

]
→d

[ ∫ 1

0
V (r)dE(r)
N(0,Λv,e)

]
, (41)

where Λv,e is the long run variance of vtet. Equation (13) then follows.
To show the limit distribution for FGLS estimator in regression (16), write

n−1
n∑

t=1

ê2t

= n−1
n∑

t=1

e2t + 2n−1

(
n∑

t=1

etz
′
tH

−1
n

)
Hn(θ0 − θ̂dols) + n−1(θ0 − θ̂dols)′Hn

(
H−1

n

n∑
t=1

ztz
′
tH

−1
n

)
Hn(θ0 − θ̂dols)

= n−1
n∑

t=1

e2t + op(1) → σ2
e .

Similarly, we can show that

n−1
n∑

t=1

êtêt−1 = n−1
n∑

t=1

etet−1 + op(1) → ψeσ
2
e ,

where ψe is the first order autocorrelation coefficient of {et}. Then the OLS estimator is

ρ̂n =
n−1

∑n
t=1 êtet−1

n−1
∑n

t=1 ê
2
t

→p ψe.

Conduct the Cochrane-Orcutt transformation (9) and estimate

ỹt = β′x̃t + γ′ṽt + error.

For the sequence of ỹt, we can write it as

ỹt = β′0x̃t + γ′0ṽt + ẽt,

where ẽt = et − ρ̂net−1. Using the same weight matrix Hn, write[
n(β̃n − β0)

n1/2(γ̃n − γ0)

]
=
[
H−1

n

[ ∑n
t=1 x̃tx̃

′
t

∑n
t=1 x̃tṽt

′∑n
t=1 ṽtx̃

′
t

∑n
t=1 ṽtṽt

′

]
H−1

n

]−1 [
n−1

∑n
t=1 x̃tẽt

n−1/2
∑n

t=1 ṽtẽt

]
. (42)

Define that Ẽ(r) = (1− ψe)E(r) and Ṽ (r) = (1− ψe)V (r). By Lemma 2.1 in Phillips and Ouliaris
(1990), n−1/2x̃[nr] → Ṽ (r) and n−1/2

∑[nr]
t=1 ẽt → Ẽ(r). Therefore we can show that

n−2
n∑

t=1

x̃tx̃
′
t →

∫ 1

0

Ṽ (r)Ṽ (r)′dr

n−3/2
n∑

t=1

x̃tṽ′t → 0

n−1
n∑

t=1

ṽtṽt
′ → P, say.
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Hence, the limit of the denominator in (42) is

H−1
n

[
n∑

t=1

ztz
′
t

]
H−1

n →

[
(1− ψe)2

∫ 1

0
V (r)V (r)′dr 0
0 P

]
.

Next, consider the numerator in (42). In fact, we are only interested in the first element,

n−1
n∑

t=1

x̃tẽt →
∫ 1

0

Ṽ (r)dẼ(r) = (1− ψe)2
∫ 1

0

V (r)dE(r).

Therefore, we obtain the limit distribution for β̃fgls,

n(β̃fgls − β0) →
(∫ 1

0

Ṽ (r)Ṽ (r)′dr
)−1(∫ 1

0

Ṽ (r)dẼ(r)
)

=
(∫ 1

0

V (r)V (r)′dr
)−1(∫ 1

0

V (r)dE(r)
)
,

which is the same as the limit of β̂dols.

Appendix C: Proof of results in section 2.4

In the extended test, where we allow endogeneity under the alternative, the regression can be written
as:

yt = β′xt + γ′vt + (φst + et).

Define s = [φs1 + e1, . . . , φsn + en]′. Note that n−1/2s = n−1/2e + op(1). Similar as in Appendix A,
the OLS estimators for β under the alternative of a spurious regression can be written as

β̂n − β0 = (X′MvX)−1X′s− (X′MvX)−1X′V(V′V)−1V′s

=
(

X′MvX
n2

)−1(X′e
n2

)
− 1
n

(
X′MvX
n2

)−1(X′V
n

)(
V′V
n

)−1(V′e
n

)
+ op(1)

=
(

X′MvX
n2

)−1(X′e
n2

)
+ op(1)

→
[∫ 1

0

V (r)V (r)′dr
]−1 [∫ 1

0

V (r)U(r)dr
]
.

Due to endogeneity, the estimator in the differenced regression is not consistent either. The es-
timators (β̃′dgls − β′0, γ̃

′
dgls − γ′0)

′ → Q−1φ(E(vt∆st)′, E(∆vt∆st)′)′. Let β̄ denote the limit of β̃dgls,
then

√
n(β̃dgls − β̂dols)

=
√
n(β̃dgls − β̄)−

√
n(β̂dols − β̄)

= Op(1) +Op(
√
n)

= Op(
√
n).

Finally, in the differenced regression, the variance estimate still converges. Therefore, the Hausman-
type test statistic is of order n under the alternative of spurious regressions no matter whether exogeneity
holds or not.
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Appendix D: Regression with a constant

In this section, we consider the model with a constant term, e.g.

yt = δ + β′xt + γ′vt + et. (43)

As in Appendix A, we can also estimate the parameter δ and β in regression

y∗t = δ + β′x∗t + e∗t . (44)

The OLS estimator in regression (44) can be written as[
n−1/2(δ̂n − δ0)

β̂n − β0

]
=

[
1 n−3/2

∑n
t=1 x

∗′
t

n−3/2
∑n

t=1 x
∗
t n−2

∑n
t=1 x

∗
tx

∗′
t

]−1 [
n−3/2

∑n
t=1 e

∗
t

n−2
∑n

t=1 x
∗
t e
∗
t

]

=
[

1 n−3/2
∑n

t=1 x
′
t

n−3/2
∑n

t=1 xt n−2
∑n

t=1 xtx
′
t

]−1 [
n−3/2

∑n
t=1 et

n−2
∑n

t=1 xtet

]
+ op(1)

→
[

1
∫
V (r)dr∫

V (r)dr
∫
V (r)V (r)′dr

]−1 [ ∫
U(r)dr∫

V (r)U(r)dr

]
.

Therefore, the OLS estimator of the intercept diverges in the spurious regression. Similarly, we can
show that γ̂−γ0 in regression (43) is also Op(1). Note that the estimators δ̂, β̂ and γ̂ estimated in this
way are numerically identical to that estimated in regression (43).

If we do GLS correction or the differenced regression, the constant is canceled so the limit results
are the same as given by (7). Finally, consider the Cochrane-Orcutt FGLS estimation. Let êt denote
the OLS residual from (43),

êt = yt − δ̂n − β̂′nxt − γ̂′nvt.

Then do another OLS estimation of
êt = ρ̂nêt−1 + ût.

Write

êt = yt − δ̂n − β̂′nxt − γ̂′nvt

= et−1 + (δ0 − δ̂n) + (β0 − β̂n)′xt + (γ0 − γ̂)′vt + ut

= êt−1 + [(β0 − β̂n)′vt + (γ0 − γ̂n)′(vt − vt−1) + ut]

= êt−1 + gt,

which takes the same form as in the previous section where no constant is included. Hence we still have

ρ̂n − 1 =
∑n

t=1 êt−1gt∑n
t=1 ê

2
t−1

.

Write the process of êt as:

êt = yt − δ̂n − β̂′nxt − γ̂′nvt = (β0 − β̂n)′(xt − x̄) + (γ0 − γ̂n)′(vt − v̄) + (et − ē). (45)

Comparing equation (45) with (34), the only difference is that all terms in (45) are subtracted by their
sample means. This leads to demeaned Brownian motions instead of standard Brownian motions in the
limit of the distribution of ρ̂n. Using similar methods as in Appendix A, we can show that

n(ρ̂n − 1) = Op(1).
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Next, conduct the Cochrane-Orcutt transformation as in (9), and consider the OLS estimator in the
regression

ỹt = β̃′nx̃t + γ̃′nṽt + error = θ̃′z̃t + error.

Write the estimator

θ̃fgls =

[
n∑

t=1

z̃tz̃
′
t

]−1 [ n∑
t=1

z̃tỹt

]
.

For ỹt, write

ỹt = yt − ρ̂nyt−1

= (1− ρ̂n)δ0 + β′0x̃t + γ′0ṽt + et + (1− ρ̂n)et−1

= θ′0z̃t + (1− ρ̂n)δ0 + et + (1− ρ̂n)et−1.

Thus we can write

θ̂fgls − θ0 =

[
n∑

t=1

z̃tz̃
′
t

]−1 [ n∑
t=1

z̃t[(1− ρ̂n)δ0 + et + (1− ρ̂n)et−1]

]
. (46)

The only difference between (46) and (36) is that (46) has one additional term (1− ρ̂n)δ0. However,
since δ0 is a constant and 1 − ρ̂n = Op(n−1), this term vanishes in the limit. Therefore, using the
Cochrane-Orcutt transformation, the limit distribution of the estimators is the same regardless of
whether we have a constant in the data generating process of the data. In either case, we have the same
result as given by (7).

Above are discussions under the assumption of spurious regressions. Under the assumption of
cointegration, the OLS estimator β̂ is still n convergent. By similar arguments, we can also show that
the FGLS estimators are still asymptotically equivalent to the OLS estimators in the cointegration.
Thus Proposition 1 holds when there is a constant in the DGP of yt. Also, the GLS corrected estimator
has the same property as when there is no constant since this constant is removed in differenced
regression. Therefore, the Hausman-type cointegration test statistic has the same asymptotics as given
in Proposition 2.

Appendix E: Data descriptions

In the first two empirical analysis we use the same data set as in Stock and Watson (1993, page 817)
for the U.S. money demand, and the data set of Cooley and Ogaki (1996, page 127) for the long-run
intertemporal elasticity of substitution. Readers are referred to the original work for further details on
data.

Per capita output series are extracted from the Penn World Tables of Robert Summers and Alan
Heston (1991). They are annual data on real GDP per capita (RGDPCH) for four developing countries
(Columbia, Ecuador, Egypt, and Pakistan) along with four industrial countries (Germany, Luxemburg,
New Zealand, and Switzerland) over the period of 1950-1992.

In the PPP application we borrow the dataset from Kim (2004) who constructed the real exchange
rate for total consumption using the general price deflator and the real exchange rate for traded and non-
traded goods using implicit deflators for non-service consumption and service consumption, respectively.
Data are quarterly observations spanning from 1974 Q1 to 1998 Q4. The exchange rates for Canada,
France, Italy, Japan, the United Kingdom, and the United States are taken from the International
Financial Statistics (IFS) CD-ROM, and bilateral real exchange rates of traded and non-traded goods
classified by type and total consumption deflators from the Quarterly National Accounts and Data
Stream are studied.
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Appendix F: Guidelines on empirical application

Procedures for GLS- and FGLS- corrected estimations

Step 1 Choose a length (p) of lead and lag terms using popular lag selection rules such as AIC, BIC, or
their modified versions due to Ng and Perron (2001). Given that the lead and lag length selection
issue has not been settled in the dynamic OLS literature, we recommend to report results from
different order together with BIC as a rough guideline. To correct for the endogeneity problem
Instrumental Variable (IV) approach can be also applied. The IV approach is appealing as it does
not involve choosing proper length of leads and lags, but the downside must be that it is not easy
to find good instruments in practice.

yt =
p∑

k=1

γk∆xt+k + βxt +
p∑

k=1

φk∆xt−k + et,

Step 2 (GLS-corrected estimation) Filter all variables in the above equation by taking full difference

∆yt =
p−1∑
k=1

γk∆2xt+k + β∆xt +
p−1∑
k=1

φk∆2xt−k + ∆et,

∆yt = θ′∆zt + ∆et

Step 2’ (FGLS-corrected estimation) Retrieve the OLS residuals such that

êt = yt −
p∑

k=1

γ̂k∆xt+k + β̂xt +
p∑

k=1

φ̂k∆xt−k,

and obtain ρ̂ from regressing êt onto êt−1. After ‘n′ iterations ρ̂n can be obtained. The variables
are transformed such that ỹt = yt− ρ̂nyt−1, x̃t = xt− ρ̂nxt−1, and ∆x̃t+k = ∆xt+k − ρ̂n∆xt+k−1.

Step 3 Apply OLS to estimate θ = {γ1, · · · , γp−1, β, φ1, · · · , φp−1}. The obtained estimates are the
(F)GLS corrected estimates of θ.

The Hausman-type cointegration test

Step 1 Obtain the DOLS and GLS-corrected estimates for the parameters. We recommend to report
the results from different order of lead and lag terms together with the one chosen by the BIC rule
as a guideline. When selecting lead and lag lengths through the BIC rule, it is recommended to
choose the lengths for DOLS and DGLS separately. That is, θ̂dols is obtained using the BIC lag
length from DOLS regression equation while θ̃dgls using the BIC lag length selected from DGLS
regression equation as described above.

Step 2 Compute V̂β , a consistent estimate for the long run variance matrix of
√
n(θ̃dgls − θ) using

Heteroskedasticity and autocorrelation consistent (HAC) estimator. In the empirical part of
this paper we adopted the long run variance estimator from Andrews and Monahan (1992) with
a quadratic spectral (QS) kernel using prewhitening. Readers are also referred to the recent
study by Sul, Phillips, and Choi (2005) who propose a recursive demeaning and recursive Cauchy
estimation to reduce the small sample bias in prewhitening coefficient estimates as well as a sample-
size-dependent boundary condition rule that substantially enhances power without compromising
size.
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Step 3 Construct the test statistic

hn = n(β̃dgls − β̂dols)′V̂ −1
β (β̃dgls − β̂dols) → χ2(m)
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Table 1: The bias and square root of the mean square error of three estimators

ρ n DOLS estimator GLS corrected estimator FGLS corrected estimator

Bias Square root of MSE Bias Square root of MSE Bias Square root of MSE

n = 50 -0.0000 0.0290 0.0031 0.2156 -0.0000 0.0296

ρ = 0 n = 100 -0.0002 0.0169 0.0004 0.1448 -0.0002 0.0170

n = 500 -0.0000 0.0040 0.0010 0.0634 -0.0000 0.0040

n = 50 -0.0007 0.3555 0.0019 0.2104 0.0000 0.2162

ρ = 0.95 n = 100 0.0070 0.2415 -0.0010 0.1472 0.0036 0.1375

n = 500 0.0006 0.0773 -0.0007 0.0637 -0.0000 0.0475

n = 50 -0.0347 1.4769 0.0024 0.2103 -0.0095 0.5968

ρ = 1 n = 100 -0.0113 1.2809 0.0028 0.1439 0.0031 0.3635

n = 500 -0.0086 0.9895 0.0003 0.0643 -0.0011 0.1167

Table 2: Finite sample performance of the Hausman-type cointegration test

Hausman-type Test Shin’s Test

T power size (5%) power size (5%)

50 0.621 0.114 0.249 0.141

100 0.688 0.072 0.402 0.171

200 0.754 0.050 0.652 0.199

300 0.783 0.039 0.775 0.184

500 0.816 0.040 0.882 0.181

Note: The Hausman-type cointegration test is stipulated in section 2.4. Nonparametric estimator of long run variance is

used based on the QS kernel with the bandwidth of ‘integer[8(T/100)1/4]’.
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Table 3: Application to Long Run U.S. Money Demand

Estimator k Equation 1 Equation 2 Equation 3

β̂ γ̂ β̂ γ̂ β̂ γ̂

0 0.944 (0.054) -0.090 (0.015) 0.889 (0.057) -0.308 (0.058) 0.850 (0.085) 0.906 (0.280)

1 0.958 (0.048) -0.096 (0.014) 0.884 (0.046) -0.313 (0.045) 0.843 (0.066) 0.915 (0.216)

2 0.970 (0.051) -0.101 (0.014) 0.879 (0.044) -0.320 (0.043) 0.837 (0.072) 0.941 (0.233)

DOLS 3 0.975 (0.055) -0.104 (0.015) 0.871 (0.036) -0.328 (0.035) 0.832 (0.062) 0.975 (0.205)

4 0.967 (0.054) -0.108 (0.015) 0.855 (0.029) -0.334 (0.028) 0.824 (0.065) 0.995 (0.215)

BIC

[lag] [3] [5] [5]

0 0.407 (0.081) -0.014 (0.004) 0.419 (0.079) -0.086 (0.022) 0.388 (0.078) 0.300 (0.082)

1 0.654 (0.119) -0.025 (0.010) 0.685 (0.115) -0.177 (0.046) 0.643 (0.115) 0.506 (0.148)

2 0.837 (0.134) -0.050 (0.013) 0.848 (0.130) -0.248 (0.053) 0.787 (0.133) 0.620 (0.161)

GLS- 3 0.856 (0.145) -0.067 (0.017) 0.884 (0.140) -0.289 (0.061) 0.816 (0.146) 0.725 (0.185)

corrected 4 0.962 (0.161) -0.086 (0.022) 0.898 (0.151) -0.283 (0.067) 0.811 (0.153) 0.654 (0.195)

BIC

[lag] [2] [2] [5]

0 0.942 (0.052) -0.083 (0.023) 0.893 (0.049) -0.290 (0.079) 0.858 (0.071) 0.850 (0.435)

1 0.888 (0.040) -0.065 (0.009) 0.872 (0.035) -0.278 (0.030) 0.815 (0.045) 0.744 (0.115)

FGLS- 2 0.940 (0.045) -0.081 (0.010) 0.901 (0.036) -0.309 (0.031) 0.840 (0.054) 0.797 (0.128)

corrected 3 0.980 (0.050) -0.096 (0.011) 0.905 (0.029) -0.330 (0.026) 0.851 (0.046) 0.912 (0.124)

AR(1) 4 1.010 (0.045) -0.108 (0.011) 0.886 (0.025) -0.333 (0.023) 0.833 (0.051) 0.895 (0.133)

BIC

[lag] [4] [5] [5]

0 0.942 (0.052) -0.083 (0.023) 0.893 (0.049) -0.290 (0.079) 0.858 (0.071) 0.850 (0.435)

1 0.900 (0.039) -0.069 (0.009) 0.872 (0.038) -0.276 (0.031) 0.809 (0.049) 0.722 (0.118)

FGLS- 2 0.948 (0.042) -0.086 (0.010) 0.894 (0.033) -0.312 (0.029) 0.839 (0.049) 0.830 (0.131)

corrected 3 0.991 (0.044) -0.100 (0.011) 0.907 (0.029) -0.332 (0.026) 0.853 (0.050) 0.903 (0.128)

AR(2) 4 1.012 (0.042) -0.109 (0.010) 0.889 (0.026) -0.335 (0.023) 0.827 (0.061) 0.856 (0.142)

BIC

[lag] [3] [5] [5]

0 4.147 2.643 2.270

1 0.691 0.041 0.113

Hausman- 2 0.549 0.007 0.012

Test 3 0.001 0.092 0.010

4 0.485 0.246 0.188

ADF-based Test 0 -3.768‡ -3.128‡ -2.726†

Note:

ln

�
M

P

�
t

= α + β ln (yt) + γit + et, (equation 1)

ln

�
M

P

�
t

= α + β ln (yt) + γ ln(it) + et, (equation 2)

ln

�
M

P

�
t

= α + β ln (yt) + γ ln

�
1 + it

it

�
+ et. (equation 3)

‘GLS-corrected (FGLS-corrected)’ denotes the GLS (FGLS) corrected dynamic regression estimator. Figures in the parenthesis

represent standard errors. ‘k’ denotes the maximum length of leads and lags. In FGLS corrected estimation, the serial correlation

coefficient in error term is estimated before being applied to the Cochrane-Orcutt transformation, whereas it is assumed to be

unity in GLS corrected estimation which is analogous to regressing the first difference of variables without a constant term.

Hausman test represents the Hausman-type cointegration test as stipulated in section 2.4. The test statistic is constructed as

(Γ̂dgls− Γ̃dols)Σ(Γ̂dgls− Γ̃dols)′ → χ2(2) where Γ = [β, γ] and Σ =

�
var(β̃dgls) cov(β̃dgls, γ̃dgls)

cov(β̃dgls, γ̃dgls) var(γ̃dgls)

�
. The critical values

of χ2(2) are 4.61, 5.99 and 9.21 for 10%, 5%, and 1% significance levels. The critical values of the ADF-based tests are -2.88 and

-2.57 for 5% and 10% significance levels. ‡(†) represents that the null hypothesis can be rejected at 5% (10%).
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Table 4: Application to Preference Parameter (β) Estimation

Estimator k DOLS GLS- FGLS FGLS Hausman ADF-based

corrected (AR(1)) (AR(2)) test test

0 1.865 (0.218) 0.222 (0.061) 1.874 (0.151) 1.874 (0.151) 140.35‡ -2.302

1 1.865 (0.192) 0.628 (0.091) 0.983 (0.087) 0.983 (0.087) 102.46‡
2 1.870 (0.181) 0.720 (0.102) 1.160 (0.089) 1.160 (0.089) 60.38‡
3 1.873 (0.193) 0.850 (0.110) 1.199 (0.097) 1.199 (0.097) 41.53‡

ND 4 1.877 (0.204) 0.963 (0.117) 1.207 (0.107) 1.207 (0.107) 37.01‡
5 1.880 (0.196) 1.041 (0.123) 1.391 (0.104) 1.391 (0.104) 34.68‡
6 1.888 (0.202) 1.129 (0.125) 1.437 (0.109) 1.488 (0.109) 32.63‡
7 1.891 (0.200) 1.185 (0.129) 1.533 (0.111) 1.558 (0.114) 35.05‡

BIC [lag] [0] [3] [4] [4]

0 1.102 (0.052) 0.480 (0.066) 1.106 (0.095) 1.106 (0.095) 15.93‡ -2.867†
1 1.103 (0.052) 0.796 (0.080) 0.912 (0.041) 0.932 (0.035) 8.22‡
2 1.102 (0.042) 0.855 (0.084) 0.952 (0.034) 0.911 (0.038) 3.88†
3 1.100 (0.041) 0.924 (0.085) 0.978 (0.032) 0.975 (0.031) 1.60

NDS 4 1.099 (0.036) 0.967 (0.087) 0.998 (0.030) 1.000 (0.029) 0.98

5 1.095 (0.033) 0.995 (0.088) 1.018 (0.028) 1.009 (0.029) 0.58

6 1.091 (0.030) 1.019 (0.089) 1.031 (0.025) 1.025 (0.025) 0.44

7 1.088 (0.029) 1.031 (0.091) 1.040 (0.023) 1.042 (0.024) 0.77

BIC [lag] [0] [3] [3] [3]

Note: Results for W (t) =
v′(l(t))
C(t)−β . ‘GLS-corrected (FGLS-corrected)’ denotes the GLS (FGLS) corrected dynamic

regression estimator. Figures in parenthesis represent standard errors. ‘k’ denotes the maximum length of leads and lags.

In FGLS corrected estimation, the serial correlation coefficient in the error term is estimated before being applied to the

Cochrane-Orcutt transformation, whereas it is assumed to be unity in GLS corrected estimation which is analogous to

regressing the first difference of variables without constant term. Hausman test represents the Hausman-type cointegration

test as stipulated in section 2.4. The test statistic is constructed as
(β̂dgls−β̃dols)2)

V ar(β̃dgls)
→ χ2(1). The critical values of χ2(1)

are 2.71, 3.84 and 6.63 for ten, five, and one percent significance levels. The critical values of the ADF-based tests are

-2.88 and -2.57 for 5% and 10% significance levels. ‡(†) represents that the null hypothesis can be rejected at 5% (10%)

significance level.
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Table 5-1: Application to Output Convergence (Regressand: developing countries; Regressor:
industrial countries)

Regressand Regressor k DOLS GLS- FGLS- Hausman

corrected corrected Test

0 0.680 (0.156) 0.464 (0.091) 0.635 (0.030) 3.668†
1 0.755 (0.179) 0.501 (0.111) 0.963 (0.109) 9.261‡

GER 2 0.876 (0.245) 0.490 (0.130) 1.087 (0.121) 11.294‡
3 0.963 (0.235) 0.409 (0.154) 0.979 (0.058) 13.996‡
4 1.105 (0.267) 0.607 (0.169) 1.029 (0.067) 11.654‡

BIC [0] [0] [3]

0 0.923 (0.144) 0.322 (0.097) 0.915 (0.009) 4.715‡
1 0.953 (0.208) 0.642 (0.151) 0.669 (0.143) 6.544‡

LUX 2 0.993 (0.136) 0.633 (0.167) 0.892 (0.103) 4.494‡
3 1.035 (0.118) 0.657 (0.193) 1.030 (0.095) 3.094†
4 1.087 (0.093) 0.739 (0.223) 1.119 (0.075) 3.012†

BIC [1] [1] [1]

COL 0 1.218 (0.454) 0.363 (0.117) 1.219 (0.053) 13.819‡
1 1.213 (0.368) 0.650 (0.199) 0.931 (0.270) 9.067‡

NZL 2 1.203 (0.309) 0.600 (0.241) 1.425 (0.221) 3.104†
3 1.218 (0.330) 0.748 (0.261) 1.608 (0.235) 2.205

4 1.178 (0.328) 0.788 (0.294) 1.801 (0.191) 0.109

BIC [0] [0] [1]

0 0.972 (0.349) 0.493 (0.121) 0.969 (0.021) 4.219‡
1 0.967 (0.343) 0.663 (0.162) 0.875 (0.284) 3.127†

SWI 2 0.948 (0.327) 0.662 (0.189) 1.350 (0.248) 4.359‡
3 0.901 (0.291) 0.567 (0.212) 1.435 (0.175) 6.130‡
4 0.926 (0.437) 0.576 (0.210) 1.491 (0.212) 5.398‡

BIC [0] [0] [1]

0 0.784 (0.311) 0.344 (0.159) 0.779 (0.009) 5.410‡
1 0.816 (0.400) 0.472 (0.191) 0.742 (0.413) 3.464†

GER 2 0.873 (0.583) 0.472 (0.231) 0.956 (0.503) 4.720‡
3 0.913 (0.596) 0.357 (0.273) 1.259 (0.289) 5.272‡
4 1.041 (0.743) 0.501 (0.322) 1.245 (0.252) 3.305†

BIC [0] [0] [1]

0 1.078 (0.697) 0.129 (0.157) 1.067 (0.034) 8.272‡
1 1.158 (0.661) 0.393 (0.263) 0.085 (0.293) 11.803‡

LUX 2 1.261 (0.410) 0.397 (0.291) 0.631 (0.246) 4.465‡
3 1.347 (0.696) 0.734 (0.301) 0.573 (0.407) 3.543†
4 1.438 (0.518) 0.848 (0.343) 1.076 (0.362) 1.487

BIC [0] [0] [1]

ECU 0 1.496 (0.418) 0.299 (0.182) 1.505 (0.091) 5.338‡
1 1.499 (0.446) 0.608 (0.331) 0.988 (0.366) 5.694‡

NZL 2 1.487 (0.536) 0.662 (0.387) 1.087 (0.436) 3.645†
3 1.520 (0.573) 0.795 (0.409) 1.367 (0.465) 3.419†
4 1.535 (0.631) 0.928 (0.462) 1.934 (0.486) 0.065

BIC [0] [0] [1]

0 1.155 (0.439) 0.287 (0.202) 1.176 (0.052) 10.777‡
1 1.139 (0.405) 0.368 (0.294) 0.819 (0.321) 8.719‡

SWI 2 1.086 (0.400) 0.418 (0.326) 1.139 (0.294) 5.337‡
3 1.022 (0.340) 0.470 (0.352) 1.354 (0.235) 4.840‡
4 1.061 (0.378) 0.563 (0.352) 1.332 (0.246) 0.492

BIC [0] [0] [1]

Note: See the notes in Table 2. Annual data covering 1950-1992 are used for four developing countries (COL: Columbia;

ECU: Ecuador; EGT: Egypt; PAK: Pakistan) and four industrial countries (GER: Germany; LUX: Luxemburg; NZL:

New Zealand; SWI: Switzerland). The regression equation is ln(yDEV ) = α + βln(yIND) + e.
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Table 5-1: Continued–

Regressand Regressor k DOLS GLS- FGLS- Hausman

corrected corrected Test

0 0.916 (0.108) 0.372 (0.133) 0.851 (0.009) 5.032‡
1 1.011 (0.145) 0.550 (0.143) 1.224 (0.094) 6.349‡

GER 2 1.125 (0.256) 0.663 (0.165) 1.278 (0.140) 6.886‡
3 1.160 (0.342) 0.691 (0.192) 1.263 (0.143) 7.081‡
4 1.233 (0.449) 0.767 (0.223) 1.227 (0.151) 3.663†

BIC [1] [1] [1]

0 1.228 (0.270) 0.059 (0.136) 1.203 (0.056) 16.382‡
1 1.313 (0.362) 0.568 (0.198) 0.596 (0.199) 15.242‡

LUX 2 1.390 (0.141) 0.611 (0.229) 1.239 (0.107) 5.224‡
3 1.436 (0.144) 0.831 (0.264) 1.280 (0.122) 3.104†
4 1.476 (0.100) 1.025 (0.287) 1.396 (0.091) 0.951

EGT BIC [5] [1] [1]

0 1.674 (0.317) 0.299 (0.155) 1.658 (0.115) 11.892‡
1 1.737 (0.301) 0.829 (0.257) 1.666 (0.260) 6.955‡

NZL 2 1.794 (0.388) 1.090 (0.298) 1.653 (0.331) 2.523

3 1.837 (0.456) 1.355 (0.324) 1.940 (0.412) 2.061

4 1.852 (0.594) 1.473 (0.359) 2.719 (0.497) 0.203

BIC [3] [1] [4]

0 1.344 (0.243) 0.388 (0.169) 1.311 (0.075) 13.502‡
1 1.422 (0.266) 0.666 (0.229) 1.464 (0.246) 5.930‡

SWI 2 1.498 (0.387) 0.991 (0.235) 1.571 (0.372) 3.723†
3 1.537 (0.483) 1.080 (0.268) 1.636 (0.462) 5.455‡
4 1.756 (0.453) 1.176 (0.297) 2.005 (0.254) 4.184‡

BIC [2] [2] [2]

0 0.746 (0.112) 0.328 (0.155) 0.696 (0.007) 4.188‡
1 0.858 (0.144) 0.454 (0.177) 0.930 (0.096) 6.657†

GER 2 0.981 (0.193) 0.526 (0.213) 0.994 (0.103) 2.638

3 1.020 (0.269) 0.727 (0.241) 1.066 (0.131) 1.212

4 0.999 (0.339) 0.771 (0.283) 0.985 (0.157) 0.127

BIC [0] [0] [1]

0 0.980 (0.233) 0.267 (0.148) 0.972 (0.031) 7.201‡
1 1.014 (0.257) 0.315 (0.245) 0.649 (0.188) 7.329‡

LUX 2 1.055 (0.167) 0.330 (0.282) 0.935 (0.127) 4.463‡
3 1.059 (0.196) 0.617 (0.321) 0.932 (0.164) 0.864

4 1.038 (0.169) 0.809 (0.355) 0.937 (0.140) 0.001

BIC [0] [0] [1]

PAK 0 1.354 (0.318) 0.294 (0.177) 1.347 (0.079) 2.775†
1 1.377 (0.268) 0.675 (0.314) 1.392 (0.258) 2.642

NZL 2 1.382 (0.273) 0.598 (0.381) 1.453 (0.251) 2.090

3 1.447 (0.311) 0.936 (0.409) 1.454 (0.303) 0.161

4 1.538 (0.582) 1.409 (0.384) 1.701 (0.633) 1.559

BIC [4] [0] [4]

0 1.121 (0.185) 0.557 (0.182) 1.088 (0.048) 3.709†
1 1.177 (0.176) 0.655 (0.260) 1.320 (0.172) 3.034†

SWI 2 1.254 (0.169) 0.722 (0.304) 1.413 (0.143) 0.767

3 1.333 (0.202) 1.036 (0.312) 1.579 (0.170) 1.055

4 1.542 (0.170) 1.208 (0.331) 1.692 (0.133) 0.982

BIC [0] [0] [3]

Note: Refer to the notes in Table 2. Annual data covering 1950-1992 are used for four developing countries (COL:

Columbia; ECU: Ecuador; EGT: Egypt; PAK: Pakistan) and four industrial countries (GER: Germany; LUX: Luxemburg;

NZL: New Zealand; SWI: Switzerland). The regression equation is ln(yDEV ) = α + βln(yIND) + e.
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Table 5-2: Application to Output Convergence (Regressand: industrial countries; Regressor:
industrial countries)

Regressand Regressor k DOLS GLS- FGLS- Hausman

corrected corrected Test

0 1.291 (0.246) 0.623 (0.112) 1.330 (0.044) 2.970†
1 1.302 (0.207) 1.018 (0.162) 0.719 (0.079) 1.219

LUX 2 1.312 (0.174) 1.094 (0.174) 0.849 (0.077) 2.314

3 1.294 (0.222) 1.040 (0.184) 0.706 (0.101) 2.046

4 1.293 (0.262) 1.074 (0.178) 0.694 (0.119) 0.224

BIC [4] [4] [1]

0 1.829 (0.125) 0.494 (0.159) 1.889 (0.078) 8.602‡
1 1.802 (0.165) 1.089 (0.240) 1.465 (0.165) 4.908‡

GER NZL 2 1.775 (0.105) 1.268 (0.285) 1.658 (0.096) 3.161†
3 1.760 (0.060) 1.480 (0.301) 1.643 (0.056) 0.029

4 1.692 (0.076) 1.671 (0.174) 1.746 (0.079) 0.318

BIC [5] [5] [5]

0 1.494 (0.087) 0.811 (0.147) 1.531 (0.064) 2.006

1 1.482 (0.127) 1.260 (0.150) 1.305 (0.121) 0.631

SWI 2 1.452 (0.127) 1.326 (0.169) 1.379 (0.107) 0.223

3 1.413 (0.118) 1.339 (0.171) 1.331 (0.090) 0.023

4 1.369 (0.184) 1.347 (0.148) 1.421 (0.134) 0.329

BIC [4] [4] [4]

0 0.726 (0.239) 0.702 (0.126) 0.678 (0.045) 1.914

1 0.800 (0.168) 0.581 (0.136) 0.909 (0.092) 4.105‡
GER 2 0.925 (0.191) 0.536 (0.163) 0.938 (0.088) 2.793†

3 1.030 (0.265) 0.723 (0.185) 1.039 (0.111) 1.971

4 1.104 (0.328) 0.838 (0.209) 1.000 (0.133) 3.667†
BIC [0] [1] [1]

0 1.289 (0.633) 0.412 (0.176) 1.290 (0.040) 3.015†
1 1.256 (0.852) 0.796 (0.294) 0.445 (0.447) 1.272

LUX NZL 2 1.227 (0.555) 0.797 (0.354) 1.231 (0.503) 0.201

3 1.255 (0.886) 1.098 (0.362) 0.464 (0.814) 0.067

4 1.188 (0.676) 1.277 (0.383) 2.311 (0.608) 0.094

BIC [3] [1] [1]

0 1.040 (0.499) 0.603 (0.184) 1.035 (0.007) 0.219

1 1.016 (0.642) 0.898 (0.240) 0.932 (0.480) 0.617

SWI 2 1.006 (0.461) 0.771 (0.273) 1.443 (0.469) 0.126

3 0.984 (0.616) 0.875 (0.309) 1.578 (0.626) 0.009

4 0.932 (0.900) 0.967 (0.336) 1.766 (0.845) 0.157

BIC [1] [1] [1]

Note: Refer to the notes in Table 2. Annual data covering 1950-1992 are used for four developing countries (COL:

Columbia; ECU: Ecuador; EGT: Egypt; PAK: Pakistan) and four industrial countries (GER: Germany; LUX: Luxemburg;

NZL: New Zealand; SWI: Switzerland). The regression equation is ln(yIND) = α + βln(yIND) + e.
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Table 5-2: Continued–

Regressand Regressor k DOLS GLS- FGLS- Hausman

corrected corrected Test

0 0.509 (0.044) 0.395 (0.127) 0.501 (0.046) 0.130

1 0.498 (0.060) 0.449 (0.149) 0.507 (0.047) 0.053

GER 2 0.498 (0.075) 0.459 (0.175) 0.488 (0.055) 2.174

3 0.520 (0.096) 0.285 (0.177) 0.511 (0.060) 2.115

4 0.517 (0.142) 0.315 (0.170) 0.452 (0.081) 0.106

BIC [5] [5] [5]

0 0.676 (0.232) 0.292 (0.125) 0.671 (0.044) 0.605

1 0.703 (0.233) 0.552 (0.202) 0.314 (0.161) 0.948

NZL LUX 2 0.731 (0.133) 0.576 (0.224) 0.485 (0.105) 2.393

3 0.734 (0.209) 0.483 (0.206) 0.496 (0.164) 0.389

4 0.745 (0.184) 0.628 (0.228) 0.597 (0.144) 0.014

BIC [5] [5] [5]

0 0.797 (0.043) 0.613 (0.145) 0.783 (0.013) 0.155

1 0.801 (0.050) 0.742 (0.201) 0.791 (0.050) 0.060

SWI 2 0.778 (0.047) 0.817 (0.224) 0.769 (0.046) 0.203

3 0.763 (0.057) 0.681 (0.227) 0.789 (0.055) 0.039

4 0.844 (0.080) 0.812 (0.238) 0.832 (0.080) 0.068

BIC [0] [0] [3]

0 0.634 (0.045) 0.531 (0.097) 0.639 (0.045) 0.077

1 0.649 (0.079) 0.623 (0.100) 0.653 (0.063) 0.042

GER 2 0.671 (0.119) 0.650 (0.114) 0.665 (0.078) 0.406

3 0.676 (0.179) 0.572 (0.130) 0.672 (0.091) 0.078

4 0.709 (0.278) 0.672 (0.149) 0.696 (0.122) 4.580

BIC [1] [1] [1]

0 0.831 (0.340) 0.350 (0.107) 0.848 (0.022) 0.934

1 0.850 (0.244) 0.724 (0.162) 0.421 (0.142) 0.626

SWI LUX 2 0.857 (0.214) 0.746 (0.183) 0.469 (0.137) 0.606

3 0.845 (0.250) 0.702 (0.214) 0.423 (0.169) 1.101

4 0.824 (0.268) 0.611 (0.238) 0.442 (0.182) 0.133

BIC [0] [1] [1]

0 1.206 (0.073) 0.503 (0.119) 1.233 (0.014) 1.700

1 1.219 (0.098) 0.991 (0.187) 1.148 (0.106) 1.219

NZL 2 1.224 (0.095) 1.005 (0.232) 1.171 (0.095) 0.634

3 1.233 (0.088) 1.056 (0.260) 1.180 (0.091) 0.036

4 1.234 (0.116) 1.194 (0.272) 1.263 (0.124) 0.051

BIC [1] [1] [1]

Note: Refer to the notes in Table 2. Annual data covering 1950-1992 are used for four developing countries (COL:

Columbia; ECU: Ecuador; EGT: Egypt; PAK: Pakistan) and four industrial countries (GER: Germany; LUX: Luxemburg;

NZL: New Zealand; SWI: Switzerland). The regression equation is ln(yIND) = α + βln(yIND) + e.
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Table 6: Application to PPP for traded and non-traded goods
Estimator k Traded Goods Non-traded Goods

FRA ITA JPN U.K. U.S. FRA ITA JPN U.K. U.S.

0 1.149 1.379 1.558 1.306 1.053 1.872 2.142 2.357 2.059 1.711

(0.312) (0.165) (0.326) (0.201) (0.198) (0.165) (0.241) (0.299) (0.278) (0.443)

1 1.179 1.456 1.485 1.439 1.078 1.887 2.175 2.376 2.066 1.728

(0.424) (0.217) (0.459) (0.262) (0.276) (0.151) (0.222) (0.299) (0.290) (0.441)

2 1.195 1.511 1.442 1.533 1.092 1.898 2.216 2.399 2.067 1.748

DOLS (0.515) (0.277) (0.646) (0.342) (0.328) (0.161) (0.237) (0.331) (0.272) (0.473)

3 1.186 1.531 1.390 1.571 1.102 1.888 2.250 2.397 2.054 1.762

(0.524) (0.308) (0.561) (0.392) (0.381) (0.165) (0.247) (0.346) (0.261) (0.511)

4 1.195 1.553 1.388 1.613 1.109 1.871 2.287 2.402 2.042 1.763

(0.502) (0.353) (0.471) (0.412) (0.401) (0.159) (0.252) (0.343) (0.233) (0.484)

BIC [0] [0] [0] [2] [0] [0] [0] [5] [1] [0]

0 0.833 1.114 1.086 1.030 0.919 0.375 0.448 0.372 0.351 0.159

(0.393) (0.381) (0.411) (0.365) (0.140) (0.178) (0.176) (0.198) (0.171) (0.080)

1 0.984 1.086 1.221 1.324 1.027 0.864 0.900 0.888 0.988 0.397

(0.454) (0.436) (0.477) (0.419) (0.161) (0.315) (0.309) (0.352) (0.295) (0.142)

2 1.259 1.333 1.415 1.516 1.103 1.127 1.104 1.046 1.001 0.569

GLS- (0.469) (0.454) (0.477) (0.430) (0.167) (0.369) (0.368) (0.408) (0.355) (0.166)

corrected 3 1.374 1.391 1.246 1.560 1.158 1.255 1.171 1.192 1.088 0.751

(0.501) (0.485) (0.504) (0.460) (0.176) (0.422) (0.422) (0.456) (0.407) (0.185)

4 1.549 1.661 1.248 1.600 1.184 1.577 1.411 1.379 1.166 0.785

(0.520) (0.511) (0.535) (0.492) (0.188) (0.456) (0.468) (0.503) (0.457) (0.208)

BIC [0] [0] [0] [0] [0] [0] [0] [0] [1] [0]

0 1.156 1.358 1.605 1.269 1.049 1.868 2.129 2.354 2.063 1.712

(0.259) (1.163) (0.783) (0.125) (0.054) (0.232) (1.223) (0.760) (0.156) (0.073)

1 1.229 1.456 1.607 1.248 0.766 1.909 2.005 1.947 1.671 0.291

(0.329) (0.149) (0.339) (0.162) (0.242) (0.141) (0.201) (0.257) (0.226) (0.159)

2 1.178 1.487 1.717 1.323 0.802 1.932 2.102 2.095 1.864 0.357

FGLS- (0.355) (0.181) (0.396) (0.217) (0.266) (0.152) (0.218) (0.286) (0.217) (0.191)

corrected 3 1.152 1.463 1.625 1.376 0.822 1.920 2.158 2.173 1.983 0.392

(0.339) (0.204) (0.318) (0.250) (0.301) (0.157) (0.233) (0.311) (0.214) (0.216)

4 1.252 1.603 1.506 1.423 0.826 1.922 2.285 2.202 2.052 0.631

(0.333) (0.245) (0.277) (0.272) (0.284) (0.153) (0.240) (0.310) (0.189) (0.234)

BIC [1] [1] [2] [1] [1] [2] [1] [5] [1] [3]

0 0.182 0.883 0.256 0.080 0.132 12.667‡ 20.200‡ 16.524‡ 13.972‡ 18.459‡
Hausman 1 0.022 0.209 0.002 0.002 0.006 5.097‡ 10.603‡ 9.597‡ 8.118‡ 17.424‡

Test 2 0.171 0.109 0.051 0.001 0.134 2.317 6.604‡ 6.494‡ 4.912‡ 16.549‡
3 0.553 0.058 0.039 0.001 0.222 0.424 3.363† 3.738† 3.019† 14.485‡
4 0.173 0.008 0.016 0.011 0.007 0.096 1.934 0.874 1.813 12.988‡

Note: Results are for fT
t = α + βpT

t + et and fN
t = α + βpN

t + et using Canada as a base country. Figures in parenthesis

represent standard errors. ‘k’ denotes the maximum length of leads and lags. Hausman test represents the Hausman-type

cointegration test as stipulated in section 2.4. The test statistic is constructed as
(β̂dgls−β̃dols)2)

V ar(β̃dgls)
→ χ2(1). The critical

values of χ2(1) are 2.71, 3.84 and 6.63 for ten, five, and one percent significance level. ‡(†) represents that the null

hypothesis of β̂dgls = β̃dols can be rejected at 5% (10%) significance level.
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