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Abstract

We consider the problem of adjudicating conflicting claims in the
context of a variable population. A property of rules is “lifted” if
whenever a rule satisfies it in the two-claimant case, and the rule is
bilaterally consistent, it satisfies it for any number of claimants. We
identify a number of properties that are lifted, such as equal treatment
of equals, resource monotonicity, composition down and composition
up, and show that continuity, anonymity and self-duality are not lifted.
However, each of these three properties is lifted if the rule is resource
monotonic.

Keywords: claims problems; consistency; lifting; constrained equal
awards rule; constrained equal losses rule.

JEL classification number: C79; D63; D74
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1 Introduction

We consider the problem of allocating a resource among agents having con-
flicting claims over it. An example is when the liquidation value of a bankrupt
firm has to be divided among its creditors. A “division rule” is a function
that associates with each situation of this kind, or “claims problem”, a di-
vision of the amount available. This division is interpreted as the choice
that a judge or arbitrator could make. (The literature originates in O’Neill,
1982). Now, let us imagine that a rule has been applied to solve a certain
problem and that some agents leave with their awards. If the situation is
reevaluated at this point, the claims of the agents who stay are what they
were initially and the endowment is the difference between the initial en-
dowment and what the departing agents took with them. Alternatively, this
difference can be calculated as the sum of what the remaining agents have
been assigned. If, in this “reduced problem”, the rule recommends for them
the same awards as initially, and if this is true no matter what the initial
problem is, and no matter who leaves, the rule is “consistent”. An important
special case of this requirement, known as “bilateral consistency”, is when
all but two claimants leave. It is the expression for the model at hand of a
general principle that has been central in developments that have occurred
in the last twenty years in game theory and the theory of resource allocation
(see Young, 1994; Thomson, 2006a). Our purpose is to contribute to the
understanding of its implications for division rules.

When studying any class of resource allocation problems or conflict sit-
uations, it is a standard research strategy to first deal with the two-agent
case, and once a solution has been obtained for that case, to extend it to
general populations by means of bilateral consistency. The two-agent case is
conceptually and mathematically simpler. Indeed, the usually delicate issue
of how to deal with coalitions does not arise then. Also, the analysis takes
place in a space of lower dimension, often allowing the use of less sophisti-
cated mathematical tools. In the context of the problem under investigation,
this strategy has been followed by Dagan and Volij (1997), Moulin (2000),
Hokari and Thomson (2003), and Thomson (2003b).

In the course of implementing this extension strategy, it has been observed
in a number of contexts that if a two-agent solution is required to satisfy
a certain property and it has a bilaterally consistent extension, then this
extension satisfies the property in general. We will say then that the property
is “lifted” from the two-agent case to the general case by bilateral consistency.

1



Our objective here is to identify which properties of division rules are lifted,
and under what conditions.

We offer two theorems. The first one lists properties that are lifted “di-
rectly” so to speak, the only requirements imposed on a rule being that it
satisfy the property in the two-claimant case and that it be bilaterally con-
sistent. We then identify several properties that are not lifted. For each of
them, we do so by constructing a bilaterally consistent rule that satisfies the
property in the two-claimant case but not in the general case. The second
theorem gives a list of properties that are lifted provided the rule also satis-
fies the requirement that, when the endowment increases, all agents should
receive at least as much as they received initially. We can then say that this
monotonicity property provides “assistance” in lifting other properties.

The properties of rules whose lifting we study are order properties, mono-
tonicity properties, and independence properties, including all of the proper-
ties that have been most often discussed in the recent axiomatic study of the
problem of adjudicating conflicting claims. They are mostly self-explanatory,
but a reader interested in detailed motivation and discussion should consult
the primary sources, which we cite when stating the properties, and the
surveys by Herrero and Villar (2001), Moulin (2002), and Thomson (2003a,
2006b).

An early example of lifting is given by Dagan, Serrano and Volij (1997).
We also note that Dagan and Volij (1997) have shown, and exploited the
fact, that certain properties of rules are lifted by a version of consistency
that they call “average consistency”. A systematic investigation of lifting for
other models also appears to be a fruitful endeavor.

2 The model

There is an infinite set of “potential” claimants, indexed by the natural
numbers N. In each instance however, only a finite number of them are
present. Let N be the class of finite subsets of N. A claims problem with
claimant set N ∈ N is a pair (c, E) ∈ RN

+ × R+ such that
∑

N ci ≥ E:
c ∈ RN

+ is the claims vector—for each i ∈ N , ci being the claim of agent i—
and E ∈ R+ is the endowment. Let CN be the class of these problems. A
rule is a function defined on

⋃
N∈N CN , which associates with each N ∈ N

and each (c, E) ∈ CN a vector x ∈ RN
+ such that x 5 c and whose coordinates
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add up to E, a property to which we refer to as efficiency.1,2 Any vector x
satisfying these two conditions is an awards vector for (c, E). For each
claims vector c ∈ RN

+ , the locus of the awards vector chosen by the rule when
the endowment varies from 0 to

∑
ci is its path of awards for c.

The following property of a rule is the focus of our analysis. It says
that, starting from any initial problem, if all but two claimants receive their
awards as specified by the rule and leave, and the situation is reevaluated
at that point, the rule should assign to each of the two remaining claimants
the same amount as it did initially.3 The problem involving the subgroup of
remaining claimants is the reduced problem associated with the initial
recommendation and the subgroup.4

Bilateral consistency: For each N ∈ N , each (c, E) ∈ CN , and each N ′ ⊂
N with |N ′| = 2, if x ≡ S(c, E), then xN ′ = S

(
cN ′ ,

∑
N ′ xi

)
.

The stronger version, consistency, is obtained by dropping the restriction
|N ′| = 2.

It will be convenient to have available the following concept (Aumann and
Maschler, 1985): The dual of a rule S is the rule Sd defined by setting,
for each N ∈ N and each (c, E) ∈ CN , Sd(c, E) ≡ c− S(c,

∑
ci − E). Two

properties are dual of each other if whenever a rule satisfies one of them,
its dual satisfies the other. A property is self-dual if it coincides with its
dual.

3 Lifting

Our first “lifting” theorem identifies a list of properties that, when satisfied
in the two-claimant case by a bilaterally consistent rule, is satisfied for any
number of claimants.

1Vector inequalities: x = y, x ≥ y, x > y.
2For surveys of the literature on division rules, see Thomson (2003a, 2006b).
3The many applications that have been made of the idea of consistency are surveyed

by Thomson (2006a). Early applications to the problem at hand are due to Aumann and
Maschler (1985) and Young (1987).

4Note that since we require rules to be such that for each i ∈ N , xi ∈ [0, ci], then
the sum of the claims of the agents who stay is still at least as large than the remaining
endowment, so the reduced problem is indeed a well-defined claims problem.
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The weaker version of a property obtained by restricting its applications
to two-claimant problems is denoted with the prefix “2”. For example, “2-
resource monotonicity”, defined shortly, means “resource-monotonicity in the
two-claimant case”. However, we state all of our fixed-population properties
for rules as defined above.

• We start with the requirement that two agents with equal claims should
receive equal amounts. This requirement is often imposed on rules. It is
not always desirable, for instance if claimants represent agents with different
characteristics—say a taxpayer may be single or may be a married couple—
and the recent literature has considerably progressed so as to free us of it
(Moulin, 2000; Hokari and Thomson, 2003; Thomson, 2003b), but in many
applications, it is very natural.

Equal treatment of equals: For each N ∈ N , each (c, E) ∈ CN , and each
pair {i, j} ⊆ N , if ci = cj, then Si(c, E) = Sj(c, E).

• If an agent’s claim is at least as large as some other agent’s claim, he should
receive at least as much. Also, the loss he incurs should be at least as large
as this other agent’s loss. The requirement strengthens equal treatment of
equals.5

Order preservation: For each N ∈ N , each (c, E) ∈ CN , and each pair
{i, j} ⊆ N , if ci ≥ cj, then Si(c, E) ≥ Sj(c, E) and ci − Si(c, E) ≥ cj −
Sj(c, E).

• When the endowment increases, each claimant should receive at least as
much as he did initially:6

Resource monotonicity: For each N ∈ N , each (c, E) ∈ CN , and each
Ē > E, if

∑
cj ≥ Ē, then S(c, Ē) = S(c, E).

• Suppose that a rule has been applied to some problem but that when agents
show up to collect their awards, the endowment is found to be smaller than
initially thought. In handling this new situation, two perspectives can be
taken: (i) the initial division is ignored and the rule reapplied to the new

5This property is formulated by Aumann and Maschler (1985).
6Properties of this type are standard in all branches of game theory and economics.

For a survey, see Thomson (2003c).
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problem; (ii) the amounts initially assigned are used as claims in the division
of the new endowment. We require that both perspectives should result in
the same awards vector:7

Composition down: For each N ∈ N , each (c, E) ∈ CN , and each Ē < E,
we have S(c, Ē) = S(S(c, E), Ē).

We will use the obvious fact that a rule satisfying 2-composition down
satisfies 2-resource monotonicity.8

• The next requirement pertains to the opposite possibility, namely that
when agents show up to collect their awards, the endowment is found to
be greater than initially thought. Here too, two perspectives can be taken:
(i) the initial division is ignored and the rule reapplied to the new problem;
(ii) each agent’s award is calculated in two installments; the first installment
is his award for the division of the initial endowment; the second installment is
what he gets when the rule is applied to divide the newly available resources,
all claims being revised down by the first installments. We require that both
perspectives should result in the same awards vector:9

Composition up: For each N ∈ N , each (c, E) ∈ CN , and each Ē > E such
that

∑
ci ≥ Ē, we have S(c, Ē) = S(c, E) + S(c− S(c, E), Ē).10

Composition down and composition up are dual properties (Moulin, 2000;
Herrero and Villar, 2001).

It will help the proof of our lifting theorems to have available the following
result, whose proof we omit:

Lemma 1 If a property is lifted by bilateral consistency for any rule satisfy-
ing certain properties, the dual of the property is lifted for any rule satisfying
the dual properties.

7The property is formulated by Moulin (2000).
8This is because of the claims boundedness requirement S(c, E) 5 c imposed on rules.

This implication holds for any number of claimants, but we need it only in the two-claimant
case.

9The property is formulated by Young (1987).
10Note that this equality is well-defined since by definition, rules satisfy claims bound-

edness, that is, always select a vector that is dominated by the claims vector.
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Our first lifting theorem states that each of the properties just defined is
lifted by bilateral consistency.11

Theorem 1 The following properties are lifted from the two-claimant case
to the general case by bilateral consistency:
(a) equal treatment of equals;
(b) order preservation;
(c) resource monotonicity;
(d) composition down and composition up.

Proof: We omit the proofs of (a) and (b), which are trivial.
(c) Resource monotonicity. The easy proof appears in Dagan, Serrano and
Volij (1997), but we include it for completeness. Let N ∈ N with |N | ≥ 3,
(c, E) ∈ CN , and Ē > E be such that Ē ≤ ∑

ci. Let x ≡ S(c, E) and
x̄ ≡ S(c, Ē). Suppose by contradiction that for some i ∈ N , x̄i < xi.
Then, there is j ∈ N such that x̄j > xj. Let N ′ ≡ {i, j}. By bilateral
consistency applied twice, xN ′ = S(cN ′ ,

∑
N ′ xk) and x̄N ′ = S(cN ′ ,

∑
N ′ x̄k).

The two problems (cN ′ ,
∑

N ′ xk) and (cN ′ ,
∑

N ′ x̄k) (possibly) differ only in
the endowment, and by 2-resource monotonicity, we should have x̄N ′ = xN ′

or x̄N ′ 5 xN ′ , which we know not to be true.

(d) Composition down. Let N ∈ N with |N | ≥ 3, (c, E) ∈ CN , Ē < E,
x ≡ S(c, E), x̄ ≡ S(c, Ē), and y ≡ S(x, Ē). We need to show that x̄ = y.
We argue by contradiction.

Suppose that for some i ∈ N , x̄i < yi. Then, there is j ∈ N \{i} such that
x̄j > yj. Let N ′ ≡ {i, j}. By bilateral consistency, xN ′ = S(cN ′ ,

∑
N ′ xk),

x̄N ′ = S(cN ′ ,
∑

N ′ x̄k), and yN ′ = S(xN ′ ,
∑

N ′ yk).
If

∑
N ′ xk ≤ ∑

N ′ x̄k, then by 2-resource monotonicity (which, as we
noted above, is implied by 2-composition down) applied to (cN ′ ,

∑
N ′ xk) and

(cN ′ ,
∑

N ′ x̄k), we have x̄i ≥ xi ≥ yi, which contradicts x̄i < yi.
If

∑
N ′ xk >

∑
N ′ x̄k, then by 2-composition down, x̄N ′ = S(xN ′ ,

∑
N ′ x̄k).

By 2-resource monotonicity applied to (xN ′ ,
∑

N ′ x̄k) and (xN ′ ,
∑

N ′ yk), we
should have x̄N ′ = yN ′ or x̄N ′ 5 yN ′ , which we know not to be true.

The proof for composition up follows from the statement just proved, the
fact that this property is dual to composition down, and Lemma 1. ¤

11There is no logical relations between (a) and (b) of Theorem 1, even though the
properties that are lifted are logically related. The reason is that both hypotheses and
conclusions are strengthened as one passes from the statement pertaining to the first
property to the statement pertaining to the second property.
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Next, we identify several properties that are not lifted:

• The first one is another strengthening of equal treatment of equals. The
rule should be invariant under permutations of agents.

Anonymity: For each pair {N, N̄} of elements of N , each (c, E) ∈ CN , and
each c̄ ∈ RN̄ , if there is a bijection π : N → N̄ such that for each i ∈ N ,
ci = c̄π(i), then for each i ∈ N , Si(c, E) = Sπ(i)(c̄, E).

Note that the idea can also be applied to the more limited case when
N = N̄ .

• A small change in the endowment should not be accompanied by a large
change in the chosen awards vector:

Continuity: For each N ∈ N , each sequence {Eν}∞ν=1, and each (c, E) ∈ CN ,
if Eν ≤ ∑

N ci for each ν ∈ N, and Eν → E, then S(c, Eν) → S(c, E).

• What is available should be divided symmetrically to “what is missing”
(the difference between the sum of the claims and the endowment):12

Self-duality: For each N ∈ N and each (c, E) ∈ CN , S(c, E) = c −
S(c,

∑
ci − E).

We will show that none of the three properties just defined is lifted. We
will actually provide a proof for these last two properties together, by means
of a single example.13 In defining the example, we use the following rule as
an ingredient and the fact that it is bilaterally consistent.14

Reverse Talmud rule, T r: For each (c, E) ∈ CN and each i ∈ N ,

T r
i (c, E) ≡

{
max

{
0, ci

2
− λ

}
if

∑ cj

2
≥ E,

ci

2
+ min

{
ci

2
, λ

}
otherwise,

where in each case, λ ≥ 0 is chosen so as to achieve efficiency.

12This property is formulated by Aumann and Maschler (1985).
13Thus, in the language of Section 4, 2-anonymity provides no “assistance” in the lifting

of 2-continuity, nor does 2-continuity provide “assistance” in the lifting of 2-anonymity.
14The Talmud rule can be understood as a hybrid of the constrained equal awards rule

defined later, and it dual, the so-called constrained equal losses rule. The former is applied
if the endowment is at most as large as the half-sum of the claims, and the other otherwise.
The reverse Talmud rule (Chun, Schummer, and Thomson, 2001) is defined in a similar
way, but it starts with an application of the constrained equal losses rule, the constrained
equal awards rule being used second.
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Proposition 1 Neither 2-continuity nor 2-self-duality is lifted from the two-
claimant case to the general case by bilateral consistency.

Proof: The proof is by means of an example of a rule S defined as follows.
Let N ∈ N and (c, E) ∈ CN .

Case (i): 1 6∈ N . Then, S(c, E) ≡ T r(c, E).

Case (ii): N = {1, i}. Then, if ci ≥ c1
2
, the path of awards of S for c is

the piecewise linear path connecting (0, 0), (0, ci

2
+ c1

4
), (c1,

ci

2
− c1

4
), and c

(Figure 1a); otherwise it is the piecewise linear path connecting (0, 0), (0, ci),
( c1

2
− ci, ci), ( c1

2
+ ci, 0), (c1, 0), and c (Figure 1b).

Case (iii): 1 ∈ N , |N | ≥ 3, and E <
∑

i∈N\{1} min
{
ci,

ci

2
+ c1

4

}
. Then,

S1(c, E) ≡ 0, and for each i ∈ N \ {1}, Si(c, E) ≡ T r
i (cN\{1}, E).

Case (iv): 1 ∈ N , |N | ≥ 3,

∑

i∈N\{1}
min

{
ci,

ci

2
+

c1

4

}
≤ E < c1 +

∑

i∈N\{1}
max

{
0,

ci

2
− c1

4

}
.

Then, S1(c, E) ≡ t, and for each i ∈ N \{1}, Si(c, E) ≡ T r
i (cN\{1}, E− t),

where t is the largest t′ ∈ [0, c1) such that

t′ +
∑

i∈N\{1}
max

{
min

{
ci,

ci

2
+

c1

4
− t′

2

}
, 0

}
= E.

Case (v): 1 ∈ N , |N | ≥ 3, and

E ≥ max





∑

i∈N\{1}
min

{
ci,

ci

2
+

c1

4

}
, c1 +

∑

i∈N\{1}
max

{
0,

ci

2
− c1

4

}


 .

Then, S1(c, E) ≡ c1, and for each i ∈ N \ {1}, Si(c, E) ≡ T r
i (cN\{1}, E− c1).

Note that the reverse Talmud rule is continuous and self-dual. From this
fact and an inspection of Figure 1, we conclude that, in the two-claimant case,
S is continuous and self-dual. As Figure 2 shows, S is neither continuous nor
self-dual in general. Self-duality implies that when the endowment is equal
to the half-sum of the claims, the half-claims vector is chosen, which is seen

8



-

6

x1

xi

c1

ci

2 + c1
4

ci

c1
2

ci

2

ci

2 − c1
4

(c1, ci)

(a) ci > c1
2 .

-

6

x1

xi

c1

ci

2

ci

2 + c1
4

ci

c1
2

c1
2 − ci

c1
2 + ci

(c1, ci)

(b) ci < c1
2 .

-

6

xi

xj

ci

cj+ci

2

cj

ci

2

cj

2

cj−ci

2

(ci, cj)

(c) i, j 6= 1 and ci < cj .

-

6

xi

xj

ci

cj

2

cj

ci

2
ci−cj

2
ci+cj

2

(ci, cj)

(d) i, j 6= 1 and ci > cj .

Figure 1: The two-claimant case.
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-

6

®

x1

xi

xj

ci

2 + c1
4

cj

2 + c1
4

cj

2 − c1
4

ci−cj

2

ci+cj

2

ci

2 − c1
4

c1

ci

cj

(a) ci > cj > c1
2 .

-

6

®

x1

xi

xj

ci

ci

2 + c1
4

c1
2 − ci

c1
2 + ci

c1

cj

(b) cj > c1
2 > ci.

-

6

®

x1

xi

xj

c1

ci

ci

2 + c1
4

cj

cj

2 + c1
4

(c) c1
2 > cj > ci.

Figure 2: The three-claimant case. Self-duality and continuity are violated.
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not to be the case on the figures;15 it is also for an endowment equal to the
half-sum of the claims that continuity is violated.

We assert that S is bilaterally consistent.
Let N ∈ N with |N | ≥ 3, (c, E) ∈ CN , x ≡ S(c, E), and N ′ ⊂ N with

|N ′| = 2. We want to show that xN ′ = S(cN ′ ,
∑

i∈N ′ xi). If 1 6∈ N ′, then this
equality holds since the reverse Talmud rule is bilaterally consistent and for
each i ∈ N \ {1}, xi = T r

i (cN\{1}, E − x1).
Suppose that N ′ = {1, i} for some i 6= 1. Three of the 5 cases listed in

defining the rule may apply to (c, E).
If case (iii) applies, then x1 = 0 and xi ≤ min

{
ci,

ci

2
+ c1

4

}
.

If case (iv) applies, then xi = max
{
min

{
ci,

ci

2
+ c1

4
− x1

2

}
, 0

}
.

If case (v) applies, then x1 = c1 and xi ≥ max
{
0, ci

2
− c1

4

}
.

It can be seen from Figure 1 that, in each of these cases, (x1, xi) lies on
the path of awards of S for (c1, ci). ¤

It follows directly from the definition of consistency that if a rule satisfies
this property, then for each population N ∈ N with three or more agents,
each claims vector c ∈ RN

+ , and for each subpopulation N ′ ⊂ N , the path of
awards of the rule for c, when projected onto RN ′

, is a subset of its path of
awards for the projection of c onto RN ′

, cN ′ . If the rule is resource monotonic,
the projection of the path for c onto RN ′

actually coincides with the path
for cN ′ . For the example constructed here, the projection is a strict subset.

The proof of the next result is also by means of an example. We use
the following rule as an ingredient and the fact that this rule is bilaterally
consistent.16

Constrained equal awards rule, CEA: For each (c, E) ∈ CN and each
i ∈ N ,

CEAi(c, E) ≡ min{ci, λ},
where λ ≥ 0 is chosen so as to achieve efficiency.

15The path for c consists of two connected components. One is a broken segment in five
parts; the other is also a broken segment in five parts. The two components are symmetric
of each other with respect to c

2 except that the fifth segment of the first component is open
at its highest endpoint, whereas the fifth segment of the second component, counting down
from c, is closed at its lowest endpoint. The two points belong to the plane of equation∑

ti =
∑ ci

2 .
16The constrained equal awards rule appears in Maimonides (Aumann and Maschler,

1985).
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Proposition 2 Anonymity is not lifted from the two-claimant case to the
general case by bilateral consistency.17

Proof: Let α > 0 be given and consider the following rule: For each N ∈ N
and each (c, E) ∈ CN , let Nα ≡

{
i ∈ N

∣∣ ci = α
}
, N+ ≡

{
i ∈ N

∣∣ ci ≥ 2α
}
,

and N− ≡
{
i ∈ N

∣∣ α 6= ci < 2α
}
.

Case (i): E < α|Nα|. Then,

Si(c, E) ≡
{

CEAi(cNα , E) = E
|Nα| if i ∈ Nα,

0 otherwise.

Case (ii): α|Nα| ≤ E < 2α|N+|. Then,

Si(c, E) ≡




α− λ if i ∈ Nα,
2λ if i ∈ N+,
0 if i ∈ N−,

where λ ∈ [0, α) is uniquely determined by (α− λ)|Nα|+ 2λ|N+| = E.

Case (iii): α|Nα| < E and 2α|N+| ≤ E <
∑

i∈N+
ci. Then,

Si(c, E) ≡
{

CEAi(cN+ , E) if i ∈ N+,
0 otherwise.

Case (iv): N+ 6= ∅, α|Nα| < E, and
∑

i∈N+
ci ≤ E <

∑
i∈N+

ci + α|Nα|.
Then,

Si(c, E) ≡





CEAi(cNα , E −∑
j∈N+

cj) =
E−∑

j∈N+
cj

|Nα| if i ∈ Nα,

ci if i ∈ N+,
0 if i ∈ N−.

Case (v):
∑

i∈N+
ci + α|Nα| ≤ E. Then,

Si(c, E) ≡




α if i ∈ Nα,
ci if i ∈ N+,
CEAi

(
cN− , E −∑

j∈N+
cj − α|Nα|

)
if i ∈ N−.

17Since the rule we construct to prove this result is 2-continuous, the same example
actually shows that, in the language of Section 4, 2-continuity provide no assistance in
lifting 2-anonymity. Note that this rule could also be used to prove the point, already
made in Proposition 1, that continuity is not lifted.
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-
xi

6xj

cj = α

2α ci

(a) ci ≥ 2α and cj = α.

-
xi

6xj

cj = α

2αci

(b) cj = α 6= ci < 2α.

-
xi

6xj

cj

2α

2αci

(c) α 6= ci < 2α ≤ cj .

-
xi

6xj

cj

2α

2αci

(d) α 6= ci < 2α and α 6= cj < 2α.

-
xi

6xj

cj

2α

2α ci

(e) ci ≥ 2α and cj ≥ 2α.

Figure 3: The two-claimant case.

Case (vi): 1 ∈ N+ and 2α|N+| ≤ α|Nα| = E. Then,

Si(c, E) ≡
{

α if i ∈ Nα,
0 otherwise.

Case (vii): 1 6∈ N+ 6= ∅ and 2α|N+| ≤ α|Nα| = E <
∑

i∈N+
ci. Then,

Si(c, E) ≡
{

CEAi(cN+ , E) if i ∈ N+,
0 otherwise.

Case (viii): 1 6∈ N+ 6= ∅, and
∑

i∈N+
ci ≤ α|Nα| = E. Then,

Si(c, E) ≡





CEAi

(
cNα , E −∑

j∈N+
cj

)
=

E−∑
j∈N+

cj

|Nα| if i ∈ Nα,

ci if i ∈ N+,
0 if i ∈ N−.

Note that cases (vi), (vii), and (viii) do not apply when there are only two
claimants, and that the definition of S is anonymous except for these three
cases. Thus, in the two-claimant case, S is anonymous. (See also Figure 3.)
As panels (f) and (g) of Figure 4 show, it is not anonymous in general. We
claim that it is bilaterally consistent.
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-
xi

6xj

®xk

cj = α

2αci

2α

(a) cj = α 6= ci < 2α and
ck ≥ 2α.

-
xi

6xj

®xk

cj = α

2αci

ck

2α

(b) cj = α 6= ci < 2α and
α 6= ck < 2α.

-
xi

6xj

®xk

cj = α

ck

2α

2α

ci

(c) cj = α, ci ≥ 2α, and ck ≥ 2α.

-
xi

6xj

®xk

cj

ck

2α

2α

2α

ci

(d) ci ≥ 2α, cj ≥ 2α, and
α 6= ck < 2α.

-
xi

6xj

®xk

cj

ck

2α

2α

2α

ci

(e) cj ≥ 2α, α 6= ci < 2α, and
α 6= ck < 2α.

-
x1

6xj

®xk

cj = α

2α c1

ck = α

(f) cj = ck = α and c1 ≥ 2α.

-
xi

6xj

®xk

cj = α

2α ci

ck = α

(g) cj = ck = α, ci ≥ 2α, and i 6= 1

Figure 4: The three-claimant case. From panels (f) and (g), it can be seen that
anonymity is violated when ci = c1.
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Let N ∈ N with |N | ≥ 3, (c, E) ∈ CN , x ≡ S(c, E), and N ′ ⊂ N with
|N ′| = 2. We want to show that xN ′ = S(cN ′ ,

∑
i∈N ′ xi). Let N ′ ≡ {i, j},

E ′ ≡ xi + xj, and (yi, yj) ≡ S(cN ′ , E ′). Since yi + yj = xi + xj, it is enough
to show that either yi = xi or yj = xj.

First, suppose that i, j ∈ Nα. If any of cases (i), (ii) with λ > 0, (iv), or
(viii) applies to (c, E), then E ′ < 2α and case (i) applies to (cN ′ , E ′). Thus,
yi = E′

2
= xi. If any of cases (ii) with λ = 0, (v), or (vi) applies to (c, E),

then E ′ = 2α and case (v) applies to (cN ′ , E ′). Thus, yi = α = x. If either of
case (iii) or case (vii) applies to (c, E), then E ′ = 0 and hence yi = 0 = xi.

Suppose that i, j ∈ N+. If either case (i) or case (vi) applies to (c, E),
then E ′ = 0 and hence yi = 0 = xi. If case (ii) applies to (c, E), then
E ′ < 4α and the same case applies to (cN ′ , E ′). Thus, yi = E′

2
= xi. If either

case (iii) or case (vii) applies to (c, E), then 4α ≤ E ′ ≤ ci + cj and either
case (iii) or case (iv) applies to (cN ′ , E ′). If case (iii) applies to (c, E), since
CEA is bilaterally consistent, yi = xi. In case (iv), yi = ci = xi. If any
of cases (iv), (v), or (viii) applies to (c, E), then E ′ = ci + cj and case (v)
applies to (cN ′ , E ′). Thus, yi = ci = xi.

Suppose that i, j ∈ N−. If case (v) applies to (c, E), then the same case
applies to (cN ′ , E ′). Since CEA is bilaterally consistent, yi = xi. If any other
case applies to (c, E), then E ′ = 0 and hence yi = 0 = xi.

Suppose that i ∈ Nα and j ∈ N+. If case (i) applies to (c, E), then E ′ < α
and the same case applies to (cN ′ , E ′). Thus, yj = 0 = xj. If case (ii) applies
to (c, E), then E ′ = α+λ < 2α and the same case applies to (cN ′ , E ′). With
the same λ, we have α − λ + 2λ = E ′. Thus, yi = α − λ = xi. If either
case (iii) or case (vii) applies to (c, E), then 2α ≤ E ′ = xj ≤ cj and either
case (iii) or case (iv) applies to (cN ′ , E ′). In both cases, yi = 0 = xi. If any
of cases (iv), (v), or (viii) applies to (c, E), then α < E ′ ≤ cj + α and either
case (iv) or case (v) applies to (cN ′ , E ′). In both cases, yj = cj = xj. If
case (vi) applies to (c, E), then E ′ = α < 2α and case (ii) applies to (cN ′ , E ′)
with λ = 0. Thus, yi = α = xi.

Suppose that i ∈ Nα and j ∈ N−. If any of cases (ii) with λ = 0, (v), or
(vi) applies to (c, E), then α ≤ E ′ and case (v) applies to (cN ′ , E ′). Thus,
yi = α = xi. If any other case applies to (c, E), then E ′ < α and case (i)
applies to (cN ′ , E ′). Thus, yj = 0 = xj.

Finally, suppose that i ∈ N+ and j ∈ N−. If any of cases (i), (ii) with
λ = 0, or (vi) applies to (c, E), then E ′ = 0 and hence yi = 0 = xi. If
any of cases (ii) with λ > 0, (iii), (iv), (vii), or (viii) applies to (c, E), then
E ′ = xi ≤ ci and one of cases (ii), (iii), or (v) with E ′ = ci applies to (cN ′ , E ′).
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In these cases, yj = 0 = xj. If case (v) applies to (c, E), then ci ≤ E ′ and
the same case applies to (cN ′ , E ′). Thus, yi = ci = xi. ¤

4 Assisted lifting

In our second lifting theorem, the hypothesis is made on the rule that it
is resource-monotonic. Theorem 1c states that this property is lifted, so it
suffices to impose it in the two-claimant case. The theorem pertains to the
following properties:

• If the endowment increases, of two claimants, the award to the one with
the larger claim should increase by at least as much as the award to the one
with the smaller claim:18

Super-modularity: For each N ∈ N , each (c, E) ∈ CN , each Ē ∈ [0, E], and
each pair {i, j} ⊆ N , if ci ≤ cj, then Si(c, E)−Si(c, Ē) ≤ Sj(c, E)−Sj(c, Ē).

• If an agent’s claim is such that by substituting it to the claim of any other
agent whose claim is higher, there is now enough to compensate everyone,
then the agent should be fully compensated:19

Conditional full compensation: For each N ∈ N , each (c, E) ∈ CN , and
each i ∈ N , if

∑
j∈N min{cj, ci} ≤ E, then Si(c, E) = ci.

• If an agent’s claim satisfies the hypothesis of conditional full compensation,
he should receive nothing in the problem in which the endowment is what it
was initially minus the sum of the claims:

Conditional null compensation: For each N ∈ N , each (c, E) ∈ CN , and
each i ∈ N , if

∑
j∈N min{cj, ci} ≤ E, then Si(c,

∑
ck − E) = 0.

Conditional full compensation and conditional null compensation are dual
properties (Herrero and Villar, 2002).

• If an agent’s claim increases, he should receive at least as much as he did
initially:

18This property is formulated by Dagan, Serrano, and Volij (1997).
19The property is formulated by Herrero and Villar (2002) under the name of “sustain-

ability”, and so is the next one, under the name of “independence of residual claims”.

16



Claims monotonicity: For each N ∈ N , each (c, E) ∈ CN , each i ∈ N ,
and each c̄i > ci, we have Si(c̄i, c−i, E) ≥ Si(c, E).

• If an agent’s claim and the endowment increase by the same amount, what
he receives should increase by at most that amount.20

Linked claim-resource monotonicity: For each N ∈ N , each (c, E) ∈ CN ,
each i ∈ N , and each δ > 0, we have Si(ci + δ, c−i, E + δ)− Si(c, E) ≤ δ.

Claims monotonicity and linked claim-resource monotonicity are dual
properties (Thomson and Yeh, 2002):

Finally are two invariance requirements.

• One should be able to solve a problem in either one of the following two
ways, either directly, or by first truncating claims at the endowment:21

Claims truncation invariance: For each N ∈ N and each (c, E) ∈ CN ,
S(c, E) = S(t(c, E), E), where for each i ∈ N , ti(c, E) ≡ min{ci, E}.

• One should be able to solve a problem in either one of the following two
ways, either directly, or by first attributing to each claimant his “minimal
right”, defined to be the difference between the endowment and the sum of
the claims of the other agents (or zero if this difference is negative).22

Minimal rights first: For each N ∈ N and each (c, E) ∈ CN , S(c, E) =
m(c, E) + S(c−m(c, E), E −∑

mi(c, E)).23

Claims truncation invariance and minimal rights first are dual properties
(Herrero and Villar, 2001).

The proof of one of the statements of Theorem 2 below will also involve
an additional lemma relating three properties, two of which we have already
encountered and an additional one pertaining to a thought experiment that
is the converse to that underlying bilateral consistency : it allows to deduce
the desirability of a proposed awards vector x for some problem from the

20This property is formulated by Thomson and Yeh (2002).
21This property is formulated by Dagan and Volij (1993).
22This property is formulated by Curiel, Maschler and Tijs (1987).
23Note this is a well-defined problem.
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desirability of the restriction of x to each two-claimant subgroup for the
reduced problem obtained by imagining the departure of the members of
the complementary group with their awards. If x is such that for each two-
claimant subgroup, its restriction to that subgroup would be chosen by the
rule for the associated reduced problem, then it should be chosen by the rule
for the initial problem.24

Converse consistency: For each N ∈ N with |N | ≥ 3, each (c, E) ∈ CN ,
and each x ∈ RN such that

∑
xi = E, if for each N ′ ⊂ N with |N ′| = 2, we

have xN ′ = S(cN ′ ,
∑

N ′ xi), then x = S(c, E).

The following Lemma is an easy consequence of the facts that 2-resource
monotonicity is lifted and that if a rule is resource monotonic and bilaterally
consistent, it is conversely consistent (Chun, 1999).

Lemma 2 If a rule is 2-resource monotonic and bilaterally consistent, it is
conversely consistent.

Theorem 2 The following properties are lifted from the two-claimant case
to the general case by bilateral consistency for any rule satisfying 2-resource
monotonicity:
(a) anonymity;
(b) super-modularity;
(c) self-duality;
(d) conditional full compensation and conditional null compensation;
(e) claims monotonicity and linked claim-resource monotonicity;
(f) claims truncation invariance and minimal rights first.

In the light of this theorem, it should be no surprise that the examples of
rules used to prove Propositions 1 and 2 are not 2-resource monotonic.

Proof: For each implication, let S be a rule satisfying the hypotheses.

(a) Anonymity. Let N , N̄ ∈ N with |N | = |N̄ | ≥ 3, (c, E) ∈ CN and
c̄ ∈ RN̄ be such that there is a bijection π : N → N̄ such that for each i ∈ N ,
ci = c̄π(i). We argue by contradiction. Suppose that there is ` ∈ N such
that x` ≡ S`(c, E) 6= Sπ(`)(c̄, E) ≡ x̄π(`). Then, there are i, j ∈ N such that
xi > x̄π(i) and xj < x̄π(j). By bilateral consistency, (xi, xj) = S(ci, cj, xi +xj)

24The literature concerning this property is surveyed by Thomson (2006a).
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and (x̄π(i), x̄π(j)) = S(ci, cj, x̄π(i) + x̄π(j)). The problems (ci, cj, xi + xj) ∈
C{i,j} and (ci, cj, x̄π(i) + x̄π(j)) ∈ C{π(i),π(j)} involve two different set of agents,
and they (possibly) differ only in the endowment. By 2-anonymity and 2-
resource monotonicity, we should have (xi, xj) = (x̄π(i), x̄π(j)) or (xi, xj) 5
(x̄π(i), x̄π(j)), which we know not to be true.

(b) Super-modularity. Let N ∈ N with |N | ≥ 3, (c, E) ∈ CN , and Ē > E be
such that (c, Ē) ∈ CN . Let i, j ∈ N be such that ci ≤ cj and N ′ ≡ {i, j}.
Let x ≡ S(c, E) and x̄ ≡ S(c, Ē). We need to show that x̄i − xi ≤ x̄j − xj.
By 2-resource monotonicity and Theorem 1c, for each k ∈ N , xk ≤ x̄k. By
bilateral consistency, xN ′ = S(cN ′ ,

∑
N ′ xk) and x̄N ′ = S(cN ′ ,

∑
N ′ x̄k). Note

that
∑

N ′ xk ≤
∑

N ′ x̄k. By 2-super-modularity, x̄i − xi ≤ x̄j − xj.

(c) Self-duality. Let N ∈ N and (c, E) ∈ CN . Let x ≡ S(c, E) and
y ≡ Sd(c, E). We need to show that x = y. We argue by contradiction.
Suppose that for some i ∈ N , xi < yi. Then, there is j ∈ N \ {i} such that
xj > yj. Let N ′ ≡ {i, j}. Since S is bilaterally consistent, so is Sd. Also,
S and Sd coincide in the two-claimant case. Thus, xN ′ = S(cN ′ ,

∑
N ′ xk)

and yN ′ = Sd(cN ′ ,
∑

N ′ yk) = S(cN ′ ,
∑

N ′ yk). The problems (cN ′ ,
∑

N ′ xk)
and (cN ′ ,

∑
N ′ yk) (possibly) differ only in the endowment, and by 2-resource

monotonicity, we should have xN ′ = yN ′ or xN ′ 5 yN ′ , which we know not to
be true.

(d) Conditional full compensation. Let N ∈ N with |N | ≥ 3, (c, E) ∈ CN ,
and x ≡ S(c, E). Let i ∈ N be such that

∑
j∈N min{cj, ci} ≤ E. We need to

show that xi = ci. We argue by contradiction. Suppose that xi < ci.
First, we claim that there is j ∈ N \ {i} such that xj > ci. Indeed, if for

each k ∈ N\{i}, xk ≤ ci, then E = xi+
∑

k∈N\{i} xk <
∑

j∈N min{cj, ci} ≤ E,
a contradiction.

Let N ′ ≡ {i, j}. By bilateral consistency, xN ′ = S(cN ′ ,
∑

N ′ xk). Since
ci < xj ≤ cj, then (cN ′ , 2ci) ∈ C{i,j}. Moreover, by 2-conditional full com-
pensation, S(cN ′ , 2ci) = (ci, ci). The problems (cN ′ ,

∑
N ′ xk) and (cN ′ , 2ci)

(possibly) differ only in the endowment, and by 2-resource monotonicity, we
should have xN ′ = cN ′ or xN ′ 5 cN ′ , which we know not to be true.

The proof for conditional null compensation follows from the statement
just proved, the facts that this property is dual to conditional full compen-
sation, that resource monotonicity is a self-dual property, and Lemma 1.

(e) Claims monotonicity. Let N ∈ N with |N | ≥ 3 and (c, E) ∈ CN . Let
i ∈ N and c̄ ∈ RN

+ be such that c̄i > ci and for each j ∈ N\{i}, c̄j = cj. Let
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x ≡ S(c, E) and x̄ ≡ S(c̄, E). We need to show that x̄i ≥ xi. We argue by
contradiction. Suppose that x̄i < xi.

Let j ∈ N\{i} and N ′ ≡ {i, j}. We assert that
∑

N ′ x̄k <
∑

N ′ xk.
By bilateral consistency, xN ′ = S(cN ′ ,

∑
N ′ xk) and x̄N ′ = S(c̄i, cj,

∑
N ′ x̄k).

Suppose by contradiction that
∑

N ′ x̄k ≥ ∑
N ′ xk. By 2-resource mono-

tonicity, Si(c̄i, cj,
∑

N ′ xk) ≤ Si(c̄i, cj,
∑

N ′ x̄k). By 2-claims monotonicity,
Si(ci, cj,

∑
N ′ xk) ≤ Si(c̄i, cj,

∑
N ′ xk). Hence, xi = S(cN ′ ,

∑
N ′ xk) ≤ Si(c̄i, cj, x̄i+

x̄j) = x̄i < xi, which is a contradiction.
Since x̄i < xi, then for at least one j ∈ N , x̄j > xj. Let N ′ ≡ {i, j}. By bi-

lateral consistency, xN ′ = S(cN ′ ,
∑

N ′ xk) and x̄N ′ = S(c̄i, cj,
∑

N ′ x̄k). By the
previous paragraph,

∑
N ′ x̄k <

∑
N ′ xk, so that by 2-resource-monotonicity,

Sj(c̄i, cj,
∑

N ′ xk) ≥ Sj(c̄i, cj,
∑

N ′ x̄k) = x̄j > xj. By 2-claims monotonicity,
Si(c̄i, cj,

∑
N ′ xk) ≥ Si(cN ′ ,

∑
N ′ xk) = xi. Thus,

∑
N ′ Sk(c̄i, cj,

∑
N ′ xk) >

xi + xj, which contradicts the efficiency of S.
The proof for linked claim-resource monotonicity follows from the state-

ment just proved, the facts that this property is dual to claims monotonicity,
that resource monotonicity is a self-dual property, and Lemma 1.

(f) Claims truncation invariance. Let N ∈ N with |N | ≥ 3 and (c, E) ∈ CN .
Let x ≡ S(t(c, E), E). We will show that x = S(c, E). Let N ′ ≡ {i, j} ⊂ N .
By bilateral consistency, xN ′ = S(tN ′(c, E),

∑
N ′ xk). Let E ′ ≡ ∑

N ′ xk. By 2-
claims truncation invariance, S(tN ′(c, E), E ′) = S(t(tN ′(c, E), E ′), E ′). Since
E ′ ≤ E, then t(tN ′(c, E), E ′) = tN ′(c, E ′), so that xN ′ = S(tN ′(c, E ′), E ′).
Also, by 2-claims truncation invariance, S(tN ′(c, E ′), E ′) = S(t(cN ′ , E ′) =
S(cN ′ , E ′). Thus, recalling the definition of E ′, we have obtained xN ′ =
S(cN ′ ,

∑
N ′ xk). This conclusion can be reached for each {i, j} ⊂ N . Thus,

by converse consistency, which holds by Lemma 2, x = S(c, E), as asserted.
The proof for minimal rights first follows from the statement just proved,

the facts that this property is dual to claims truncation invariance, that
resource monotonicity is a self-dual property, and Lemma 1. ¤

Theorem 2a can also be proved as follows: (i) 2-anonymity implies 2-
equal treatment of equals ; (ii) 2-equal treatment of equals and 2-resource
monotonicity are lifted by bilateral consistency (Theorem 1a,c); (iii) re-
source monotonicity and bilateral consistency together imply consistency
(Chun, 1999); (iv) equal treatment of equals and consistency imply anonymity
(Chambers and Thomson, 2002). The same argument can be used to prove
that the fixed-population version of 2-anonymity is lifted.
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