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Abstract 

 The empirical literature is abundant with detrended cointegration, where cointegration 

relationships are tested and estimated with deterministic trend terms. Cointegration is, however, 

critically dependent on whether time series is detrended or not. A series of Monte Carlo 

experiments show that inappropriately detrended time series tend to exhibit a spurious 

cointegration. Although true time series are known not to be cointegrated, inappropriately 

detrended series tend to be cointegrated. Foreign exchange rates are analyzed to demonstrate the 

relevance and importance of the inappropriate detrending in the cointegration analysis. 
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Inappropriate Detrending and Spurious Cointegration 
 
 

1. Introduction 
 

 The empirical literature is abundant with cointegration studies, in which deterministic 

trend is commonly included in the test and in the estimation of cointegration relationships. In 

fact, in a popular software procedure in the test of cointegration relationship, a linear time trend 

is included as a default procedure. That is, the linear time trend is routinely removed when 

cointegration relationships are investigated. Two time series are cointegrated, according to 

Granger (1986, 1991) and Engle and Granger (1987), when a linear combination of the two I(1) 

series becomes an I(0) series. By definition, an I(0) time series does not contain a unit root and 

an I(1) time series does contain one. 

 This paper will investigate the consequence of an inappropriate detrending in the 

cointegration analysis. In particular, what happens to the test of cointegration and to the 

estimation of cointegration relationships if a deterministic time trend is inappropriately included? 

In Nelson and Kang (1981), an inappropriately detrended univariate time series is shown to 

introduce a certain spurious periodicity. When a time series is I(1) without containing a linear 

time trend, but the series is nevertheless detrended, the resultant detrended time series exhibits 

some periodic behavior. More importantly, Nelson and Kang (1981, 1984) show that a pure I(1) 

time series appears to contain a linear trend. When a random walk time series is regressed on a 

linear trend and when this “regression” equation is estimated by ordinary least squares (OLS), 

then the time trend term appears to be statistically significant. For instance, the average 

coefficient of determination is about 0.45 when 1,000 observations of a random walk time series 

is regressed on a linear time trend. 
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 The importance of the role a deterministic trend plays in the study of regression or 

cointegration relationships has been extensively investigated. Nelson and Kang (1984) show that 

inappropriately detrended nonstationary time series will contain spurious regression 

relationships. Harvey and Jaeger (1988, p. 231) warn us that “the uncritical use of mechanical 

detrending can lead investigators to report spurious cyclical behaviour.” Nelson (1988) shows 

how a state space decomposition is influenced by detrending and Ohanian (1988) illustrates how 

vector autoregression analyses are affected by the treatment of detrending. Hamilton (1994, pp. 

611-612) shows the importance the presence of a deterministic trend makes in the test of 

cointegration. Yet, Hamilton’s example of a cointegration between income and consumption 

indicates that whether the two time series are cointegrated or not does not really depend on the 

detrending. In this study, we show the impact of an inappropriate detrending on cointegration 

relationships and whether nonstationary time series are cointegrated or not often materially 

depends on the presence or the absence of the deterministic time trend.  

 Since most nonstationary I(1) time series appear to contain a linear time trend, most 

analysts routinely and uncritically detrend nonstationary time series. If inappropriately 

detrended, however, the time series properties of the underlying series are then distorted. We 

thus expect that an inappropriate detrending may change the cointegration relationships between 

two I(1) time series. Through a series of Monte Carlo sampling experiments, this paper will 

show that two I(1) time series, that are not cointegrated, would appear to be cointegrated when 

both series are inappropriately detrended. In addition, inappropriately detrended I(1) time series 

would create spurious structural changes. In particular, there would appear to be a structural 

break in the series when time series are inappropriately detrended. 
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 Detrending and its consequence on cointegration are applied to three foreign exchange 

rates of the Japanese yen, British pound, and Italian lira, in terms of the United States dollar. 

Foreign exchange rates contain a unit root, but they in general appear to contain a linear time 

trend. Whether or not foreign exchange rates are detrended will have very different conclusions 

on their cointegration relationships. Three exchange rates from January 1986 to December 2001 

are analyzed to show the impact of the detrending on their cointegration relationships. Whether 

exchange rates are detrended or not critically change the conclusion of the cointegration test. 

 The structure of the paper is as follows. The consequence of the inappropriate detrending 

will be investigated for univariate I(1) time series in Section 2. The conventional t-statisitcs will 

show the presence of a significant linear trend in the pure I(1) time series. Such significant trends 

are also well documented in the literature. Unlike earlier studies, the nature of the 

inappropriateness will be demonstrated by showing that there will appear to be a structural break 

in the series. Although a time series is generated to be a pure random walk in the entire time 

period without a trend, a spurious linear trend in the first half of the sample period will often be 

significantly different from another in the last half. Two I(1) time series, not cointegrated by 

construction, will be shown to appear to be cointegrated when I(1) times series are 

inappropriately detrended in Section 3. The role of the inappropriate detrending in the 

investigation of structural changes will be discussed in Section 4. Although two I(1) time series 

are not cointegrated, inappropriately detrended series may appear to be cointegrated in one 

segment of time series but not in another thus incorrectly to suggest a structural change. Analysis 

of three foreign exchange rates is given in Section 5 and concluding remarks in Section 6. 
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2. Inappropriate Detrending of I(1) Time Series 

 Consider the following random walk series: 

(1) zt = zt-1 + ut, 

where ut is independently and identically distributed (iid) with mean zero and unit variance. By 

construction, zt in (1) is I(1) to contain a stochastic trend, but not a (linear) deterministic time 

trend. Suppose such a time series is nevertheless detrended by estimating the following linear 

regression equation, 

(2) zt = α + β Tt + ε1t, 

where Tt is a linear deterministic time trend. The OLS estimate of β will show a statistical 

significance. 

 To demonstrate the statistical significance of the linear trend, a series of Monte Carlo 

sampling experiments are conducted. First, 2,000 standard normal deviates of ut are generated by 

Regression Analysis of Time Series (RATS), Version 5. By setting the initial value of z0 to zero, 

a random walk series, zt, of 2,000 observations is generated by using (1). A total of 100,000 

replications are tried not only for this but also for all the other experiments. In order to reduce 

the influence of the zero initial value, the first 1,000 observations are discarded and only the last 

1,000 observations are subsequently analyzed. The series is regressed on the linear deterministic 

time trend as in (2), and OLS is used for the estimation. Table 1 reports the conventional t-

statistics and their absolute values. The figures are the mean values over the 100,000 

replications. The standard deviations of the corresponding mean values are provided in 

parentheses. 

[Insert Table 1 about here] 
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 The mean value of t-statistics is close to zero with −0.36678, because many trend 

coefficients are positive and many others are negative. The absolute values of t-statistics are 

relevant in testing a hypothesis for a linear deterministic time trend. The mean |t(b)| is 35.57198 

with the standard deviation of 28.3326. Out of the 100,000 replications, the linear time trend 

shows a statistical significance in 96.422%. The significance level of 5% is used throughout the 

paper unless otherwise specified. The average R2 is 0.44749 which implies that the OLS 

estimation of (2) yields statistically significant results. It should be mentioned that a careful 

analyst would detect the inappropriateness of the OLS estimation of (2), because its Durbin-

Watson statistics would indicate that the OLS residuals have strong autocorrelations. The 

exercise here, however, is to demonstrate how an inappropriate detrending would produce a 

significant linear trend. 

 In the next experiments, the number of observations is changed from 1,000 to 500 and 

then to 200. The average values of R2 remain about the same regardless of the sample size, but a 

fewer number of 100,000 replications show a significant linear trend when the sample size 

decreases. Nevertheless, even with n = 200, over 91% exhibit a significant linear trend. 

 A potential structural change is investigated next. The same random walk time series 

generated by (1) are now estimated by OLS for a linear regression equation: 

(3)  zt = α1 + α2 Dt + β1 Tt + β2 Dt Tt + ε2t. 

In (3), Dt is a dummy variable taking a value of zero in the first half of the sample and one in the 

last half. A hypothesis if β2 = 0 is tested to investigate if the time trend significantly changes 

over the two sub-periods. 

 In the Monte Carlo experiments, the same data generated earlier are further estimated by 
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OLS. The results from (3) are provided at the bottom of Table 1. When n = 1,000, the average 

value of the absolute t-statistics for the estimate of β2 is 23.58924 and the average R2 is 0.69305. 

Moreover, 94.522% show a significant structural break. This average percentage drops as the 

number of observations gets smaller, but even when n = 200, still over 87% show a significant 

trend change. 

 The series generated thus far are pure random walk series. Such restrictive assumptions 

are relaxed to investigate more general I(1) series. In the next series of sampling experiments, 

either a drift term or an additional random component or both are added as in, 

(4) zt = δ + zt-1 + ut and yt = zt + vt, 

where ut and vt are mutually independent, iid normal deviates. The variance of ut is set to one, 

but that of vt, σ2, is allowed to vary. A time series yt of 1,000 observations is generated by 

following the same procedure as in the earlier experiments. The time series is regressed on a 

linear trend as in (2) to test for a significant trend or on a linear trend with dummy variables as in 

(3) to test for a significant structure change. 

 Table 2 reports the OLS results. When there is a positive drift, linear time trends appear 

to be more significant, as expected. In Case 3, all 100,000 replications show a significant 

deterministic linear trend. In all three situations with different parameter values, over 94% 

exhibit a statistically significant structural change over the two sub-periods. Both experiments 

shown in Tables 1 and 2 indicate that when an I(1) time series is inappropriately detrended, the 

linear deterministic time trend would appear to be statistically significant and spurious structural 

changes are induced as statistical artifacts. 

[Insert Table 2 about here] 
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3. Spurious Cointegration 

 When a linear combination of two or more I(1) series becomes I(0), then those series are 

said to be cointegrated. Since an I(1) time series appears to have a linear trend as shown above, 

the inappropriate detrending is expected to critically influence on whether or not I(1) series are 

cointegrated. Consider two time series that are generated by 

(5) z1t = z1t-1 + u1t, 

 z2t = z2t-1 + u2t, 

 y1t = z1t, 

 y2t = y1t + z2t, 

where z1t and z2t are two different random walk series. When u1t and u2t are uncorrelated, then z1t 

and z2t are not cointegrated. Likewise, y1t and y2t are not cointegrated. The reason why y2t is 

generated by adding y1t and z2t as in (5) is to make it a cointegration regression so that OLS is an 

adequate method to apply. 

 In the literature, the maximum likelihood estimation method by Johansen (1988, 1991) 

and Johansen and Juselius (1990) is commonly used in the test and the estimation of 

cointegration relationships. Yet, Engle and Granger (1987) use so-called the cointegration 

regression as in 

(6) y2t = α + β y1t + εt. 

If y1t and y2t are cointegrated, then the OLS residual series from (6) will be an I(0) time series, 

whereas if they are not cointegrated, then it will be an I(1) time series. The test of a unit root in 

the OLS residuals, by using the Dickey-Fuller procedure, will show whether or not y1t and y2t are 
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cointegrated. Throughout the paper, unit root test is conducted by the Dickey-Fuller procedure, 

although there are numerous extensions and variations in the literature.  

 In order to investigate the role of the inappropriate detrending on the cointegration, two 

I(1) time series are first generated by using (5). In one experiment, 2,000 observations are first 

generated by using the initial values of zero for z1t and z2t and only the last half of 1,000 

observations are used by regressing y2t on y1t. This cointegration test is conducted for the entire 

sample period and separately for the first and the last half of the sample period. The two time 

series are created such that they are not cointegrated in each and every one of those 100,000 

replications in either two sub-samples as well as in the entire sample period. This condition 

imposed in order to investigate the impact of the inappropriate detrending on cointegration and 

structural change. 

 Since time series are generated with no cointegration relationships and without 

detrending, results from only detrended time series are reported in Table 3. Each of two time 

series is separately detrended and the detrended y2t is regressed on the detrended y1t as in 

(7) det y2t = α + β det y1t + ε. 

After (7) is estimated by OLS, the residuals are tested for a unit root. If it is I(0), then detrended 

y’s are cointegrated. 

[Insert Table 3 about here] 

 In the entire period of 1,000 observations, 20.365% reveal that the two detrended series 

are spuriously cointegrated. Moreover, each of the two time series is again separately detrended 

in either half of the sub-samples. When sub-samples are analyzed for a possible cointegration by 

using (7), 23.476% of the first half and 23.338% of the last half show a significant spurious 
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cointegration. 

 A possible structural change is investigated next. Here a structural change is defined as a 

change in cointegration. A structural change exists if there is cointegration in the first half, but 

not in the last half, or vice versa. If there is a cointegration in both sub-sample periods or in 

neither sub-sample period, then there is no structural change. The results are provided at the 

bottom of Table 3. For Case 1, 64.104% show no structural change, because 5.0459% show 

cointegration in both sub-periods and 58.645% show no cointegration in either sub-period. Yet, a 

total of 35.896% of times, there is a structural change because 18.017% of cases change from 

cointegration to no cointegration and additional 17.879% of cases change from no cointegration 

to cointegration over the two sample periods. That is, over one-thirds of those 100,000 

replications tried, the detrending has improperly introduced a spurious structural change. 

 In the next two columns in Table 3, two additional sampling experiments are conducted 

by using, respectively, 500 and 200 observations. In each case, twice as many observations are 

first generated to discard the first half of them in order to eliminate or reduce the influence of the 

zero initial starting values in the data generation. The results are very similar to those in the 

earlier experiment. The percentages of the spurious cointegration and the percentages of the 

spurious structural change are about the same whether the number of observations is 1,000 or 

500 or 200. The inappropriate detrending does alter the properties of I(1) time series such a 

significant way as to create a spurious cointegration or a spurious structural change. 

 In the Monte Carlo experiments in Table 3, rather a simple data generation mechanism 

has been used. Both z1t and z2t are random walk series without any drift terms and y2t is a simple 

addition of those two random walk series. In Table 4, more complex schemes are tried in the data 
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generation. Either one or both time series have non-zero drift terms and a third random term, 

which is normally distributed, is added to y2t. All three cases in Table 4 have 1,000 observations. 

Otherwise, data generation and data analysis are exactly the same as in the earlier experiments. 

As can be seen in Table 4, the occurrences of a spurious cointegration change from one 

experiment to another. Yet, the percentages of the spurious cointegration are never below 20% in 

the entire samples or in either sub-sample periods. The percentage is about 30% in Case 2. 

[Insert Table 4 about here] 

 Likewise, the detrending spuriously introduces apparent structural changes in over 36% 

for Case 1. Changes from cointegration to no cointegration or those from no cointegration to 

cointegration are about the same because of symmetric data generation. Those fractions far 

exceed the nominal 5% in the test. In the experiments conducted in Tables 3 and 4, each of 

100,000 replications has been selected not to be cointegrated at the 5% significance level. If this 

pre-selection criterion had not been imposed, the cointegration cases would have been even 

greater than those reported in the tables. Such pre-selection would not, however, change the 

main conclusion of the impact of the inappropriate detrending on the spurious cointegration and 

spurious structural change. 

 

4. Appropriate Detrending 

 Only inappropriate detrending has thus far been investigated. Needless to say, when the 

underlying data generating process truly contains a linear deterministic trend, then such a trend 

has to be removed or incorporated in the cointegration analysis. Consider a situation: 

(8) zt = zi-1 + u1t, where u1t ~ N(0, 1) 
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 wt is detrended zt which is tested to be I(1) 

 y1t = λ Tt + wt and 

 y2t = 0.1 Tt + y1t + u2t, where u2t ~ N(0, 1). 

By design, the I(1) series of wt does not contain a linear deterministic trend because it is actually 

the outcome of detrended zt. When λ in (8) is zero, then y1t and y2t will not be cointegrated 

because their linear combination contains a linear deterministic trend. Both y1t and y2t are 

detrended to obtain det y1t and det y2t and those detrended series are analyzed for cointegration. 

If λ is not zero, then depending on its numerical value, y1t and y2t without detrending will 

sometimes be cointegrated. No matter what the value of λ is, detrended y1t and detrended y2t will 

be cointegrated by design. That is, the detrending is necessary and appropriate in the 

cointegration investigation. 

 In order to understand the influence of the numerical values of λ in the cointegration 

investigation, a data generation process in (8) is used in the following Monte Carlo sampling 

experiments. In Table 5, three cases are studied with different values of λ. In each case, 2,000 

observations are first generated with the initial value of zero in creating zt and as before the first 

1,000 observations are discarded in the analysis. A random walk series is detrended to obtain a 

trendless I(1) time series of wt. A linear deterministic trend, λ times Tt, is then added to this I(1) 

series to generate y1t. Finally, the linear time trend of 0.1 times Tt and the standard normal 

deviates of u2t are added to generate y2t as in (8) 

[Insert Table 5 about here] 

 Cointegration is investigated with and without detrending those two time series. As 

before, cointegration regression is estimated by OLS and the OLS residuals are studied to check 
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if they are I(1) or I(0). Table 5 shows the results. In all cases, detrended time series are 

cointegrated in each and every replication, as expected from the data generation, and as shown at 

the bottom of the Table 5. When the time series are not detrended, however, they are sometimes 

cointegrated or sometimes not cointegrated. Only 0.868% in Case 1 when λ 0.01, 25.073% in 

Case 2 with λ 0.05, and substantial 77.270% in Case 3 with λ 0.1 become cointegrated. Since 

time series are known to contain linear time trends, such trends should be removed before time 

series are investigated for their cointegration. Failure to detrend the time series often erroneously 

indicates they are not cointegrated. In Case 1, over 99% show no cointegration, although the 

time series are generated to be cointegrated. The series of experiments show that whether time 

series should be detrended or not must critically be based on how the true underlying time series 

are assumed to be generated. Naturally, the incorrect and inappropriate treatment of a linear time 

trend will produce incorrect cointegration conclusions. 

 In the literature, the impact of the detrending on unit-roots has been discussed by Hansen 

(1992), Gonzalo and Lee (1998), Hassler (2000), Perron and Rodriguez (2003), and many others. 

General conclusion is that researchers have to pay a close attention to the potential presence of 

deterministic trends. In this paper, we have extended their work to illustrate how inappropriately 

detrended time series would introduce a spurious cointegration and a spurious structural change. 

 

5. Foreign Exchange Rates 

Monthly exchange rates of the Japanese yen, British pound, and Italian lira, all in terms 

of the U.S. dollar, are from St. Louis Federal Reserve Bank database, FRED, from April January 

1986 to December 2001. The end period is dictated by the introduction of the euro in January 
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2002. Those three rates are shown in Figure 1.  

Many studies (e.g., Cushman, Lee, and Thorgeirsson, 1996; Diebold, Gardeazabal, and 

Yilmaz, 1994; Lajaunie and Naka, 1997; and Sephton and Larsen, 1991) have investigated 

whether various foreign exchange rates have a unit root and still many others (e.g., Copeland, 

1991; Hakkio and Rush, 1989; Karfakis and Parikh, 1994; and Rapp and Sharma, 1999) have 

studied if they are cointegrated.  

 Each series is investigated for its unit roots. Natural logarithmic transformation is taken 

for each exchange rate of 192 observations. All the analyses are performed by using RATS, 

Version 5, and CATS (Cointegration Analysis of Time Series), Version 1. All three exchange 

rates are tested to be I(1), having one unit root. In the following, those three logarithmically 

transformed exchange rates are denoted as, respectively, x1, x2, and x3. When x’s are regressed 

on a linear time trend and estimated by OLS, the trend is not significant for the pound with t-

value of 1.38, but are very significant the lira and the yen with t-statistics of, respectively, 19.90 

and −10.78. 

 When the lira is regressed on the yen and the pound, the OLS result of this cointegration 

regression is x3 = 11.3012 (0.2062) + 1.2114 (0.0537) x1 – 0.9645 (0.0452) x2 + et, R2 = 0.7809, 

where standard errors are shown in parentheses. The OLS residual is tested to be I(1) so that the 

three foreign exchange rates are not cointegrated. The same three series are used in the Johansen 

and Juselius (1990) maximum likelihood test. With the lag length of four and by using three 

different methods to treat the deterministic parts – CIMEAN, DRIFT, and CIDRIFT -- the series 

is tested not to be cointegrated at the 10% significance level by using the trace statistics. It 
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should be noted that this popular software for cointegration analysis uses detrending as a built-in 

default feature. Users should instruct the program not to detrend the series automatically. From 

both OLS and MLE, those three exchange rates are thus tested not to be cointegrated. 

Next, a linear time trend is added in the regression equation to yield, x3 = 8.8580 (0.2035) 

+ 0.001733 (0.0001083) Tt + 0.8720 (0.0410) x1 – 0.4522 (0.0435) x2 + e’t, R2 = 0.9072. The 

OLS residual is I(0) indicating that that the three exchange rates are cointegrated when the linear 

trend term is added.  

It should be mentioned that some trial-and-error experiments have been conducted to 

arrive at this contrasting cointegration result by trying different starting time periods. January 

1986 is the outcome of this experiment to demonstrate that detrending can and does make a 

difference in the cointegration conclusion. When the three detrended exchange rates are used in 

the Johansen/Juselius maximum likelihood estimation, the trace statistic does show a significant 

cointegration at the 10% significance level when the lag length of four and the DETTREND = 

CIMEAN are used. That is, both OLS and MLE show that detrended exchange rates are 

cointegrated whereas they are not cointegrated without the detrending. 

 Since we do not know for sure if the actual exchange rates do indeed contain a linear 

deterministic trend, we cannot definitively conclude on detrending inappropriateness or 

cointegration spuriousness. What the application here demonstrates is that detrending does make 

a difference in the study of cointegration. Those series not cointegrated without detrending do 

often become cointegrated with detrending. Researchers should be careful about the presence of 

the linear deterministic trend in the cointegration analysis. 
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6. Conclusions 

 Cointegration is an important time series property among I(1) time series. Cointegrated 

time series do not deviate from each other for a long time. It has long been established, and as 

shown in a series of Monte Carlo experiments here, the detrending changes the properties of the 

underlying nonstationary I(1) time series. The detrending introduces a spurious periodicity. More 

importantly, an I(1) time series, which is truly generated without containing a linear time trend 

would appear to have a statistically significant deterministic trend when an I(1) series is 

regressed on time trend. The inappropriate detrending would also spuriously introduce a 

structural change. When the sample period is divided into two sub-periods, as shown in a series 

of sampling experiments, the behavior of time trend appears to statistically and materially 

change over the two time periods. This apparent structural change is a statistical artifact 

generated by the inappropriate detrending. 

 Cointegration properties also change with the inclusion of the time trend. Even if the 

underlying I(1) time series are created not to be cointegrated, an inappropriate detrending would 

often make them to be cointegrated. In addition, the presence of the cointegration would appear 

to change from one sub-sample period to another. There would thus appear to be a structural 

change when time series are inappropriately detrended. The impact of the detrending in the study 

of cointegration is demonstrated with an application of three foreign exchange rates of the yen, 

pound, and lira, in terms of the U.S. dollar. The exchange rates are cointegrated with detrending, 

but not cointegrated without detrending. Since cointegration is important in understanding the 

long term behavior of nonstationary time series, researchers should pay a great attention to the 
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inclusion of the deterministic trend. 

 Our Monte Carlo experiments, like any such exercises, are limited in many dimensions. 

Only two time series are investigated in the cointegration and only limited variations are tried in 

the parameter values. Throughout, we have used rather the simple Dickey-Fuller procedure in 

the test of a unit root. There are many other test procedures. The use of the Dickey-Fuller 

procedure is justified, because the purpose of the sampling experiments is not to quantify the 

statistical properties of the inappropriate detrending, but to demonstrate the importance of the 

detrending procedure. It is well known that the inappropriate detrending changes the time series 

properties of nonstationary time series. In this study, cointegration and structural change are 

added into those statistical properties. 

 This paper has shown that whether a time series is trend-stationary or difference-

stationary, as discussed in Nelson and Kang (1984) and others, should be resolved prior to the 

investigation to check if nonstationary time series are cointegrated. 
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Table 1. Inappropriately Detrended Nonstationary Time Series. 

Data generation: zt = zt-1 + ut, where ut ~ N(0, 1) 
    
Estimation by OLS: 
 zt = α + β Tt + ε1t, where Tt = 1, 2, …, n. 
 
Estimation by OLS to test for a structural change: 
 zt = α1 + α2 Dt + β1 Tt + β2 Dt Tt + ε2t, 
 where Dt = 0 if Tt ≤ n/2 and Dt = 1 if Tt > n/2. 
 
    Case 1   Case 2   Case 3 
NOB (n)   1,000   500   200 
 
OLS estimation 
t(b)    -0.36678  0.04240  -0.02052 
    (45.4751)  (32.2215)  (20.1908) 
 
|t(b)|    35.57198  25.19745  15.78245 
    (28.3326)  (20.0825)  (12.5928) 
 
Fraction of significant b 0.96442  0.94932  0.91893 
 
R2    0.44749  0.44855  0.44571 
    (0.2982)  (0.2979)  (0.2986) 
 
 
OLS estimation for a potential structural change 
t(b2)    0.06488  -0.02407  -0.00501 
    (29.9283)  (21.0654)  (13.2601) 
 
|t(b2)|    23.58924  16.61684  10.43918 
    (18.4187)  (12.9472)  (8.1764) 
 
Fraction of significant b2  0.94522  0.92380  0.87688 
 
R2    0.69305  0.69312  0.69162 
    (0.2066)  (0.2065)  (0.2071) 
 
 
Note: Means are followed by standard deviations in parentheses computed over 100,000 
replications. Fractions are out of 100,000 replications. 
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Table 2. Inappropriately Detrended Nonstationary Time Series with Drifts. 

Data generation: zt = δ + zt-1 + ut, where ut ~ N(0, 1) 
   yt = zt + vt, where vt ~ N(0, σ2) 
Estimation by OLS: 
 yt = α + β Tt + ε1t, where Tt = 1, 2, …, n. 
 
Estimation by OLS to test for a structural change: 
 yt = α1 + α2 Dt + β1 Tt + β2 Dt Tt + ε2t, 
 where Dt = 0 if Tt ≤ = n/2 and Dt = 1 if Tt > n/2. 
 
    Case 1   Case 2   Case 3 
NOB (n)   1,000   1,000   1,000 
δ    0.0   0.1   0.5 
σ    0.5   0.0   0.5 
 
OLS estimation 
t(b)    -0.33629  126.32508  628.00449 
    (47.1445)  (56.2245)  (177.4439) 
 
|t(b)|    37.50828  126.37074  628.00449 
    (28.5627)  (56.1218)  (177.4439) 
 
Fraction of significant b 0.97017  0.99945  1.00000 
 
R2    0.47198  0.89743  0.99677 
    (0.2945)  (0.1188)  (0.0021) 
 
 
OLS estimation for a potential structural change 
t(b2)    -0.12707  0.38867  0.23378 
    (30.6641)  (29.1681)  (29.1435) 
 
|t(b2)|    24.29789  22.95720  22.94103 
    (18.7058)  (17.9969)  (17.9750) 
 
Fraction of significant b2  0.94846  0.94379  0.94442 
 
R2    0.71805  0.94599  0.99837 
    (0.1874)  (0.0663)  (0.0008) 
 
Note: Means are followed by standard deviations in parentheses computed over 100,000 
replications. Fractions are out of 100,000 replications. 
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Table 3. Inappropriate Detrending and Spurious Cointegration. 

Data generation: z1t = z1i-1 + u1t, where u1t ~ N(0, 1) 
   z2t = z2i-1 + u2t, where u2t ~ N(0, 1) 
   y1t = z1t and y2t = y1t + z2t 
   y1t and y2t are not cointegrated. 
Estimation of OLS: 
 det y2t = α + β det y1t + εt, where det yit is detrended yit. 
 
Unit root test for the residual from the OLS estimation by Dickey-Fuller test 
 
 
    Case 1   Case 2   Case 3 
NOB (n)   1,000   500   200 
 
 
Cointegration between det y1t and det y2t 
 
Entire period   0.20365  0.19901  0.19600 
      
First half   0.23476  0.23233  0.23147 
  
Second half   0.23338  0.23404  0.23288 
 
 
Structural change from the first half to the second half 
Yes is for cointegration and No is for no cointegration 
 
No structural change  0.64104  0.64241  0.64407 
 
Yes/Yes   0.05459  0.05439  0.05421 
No/No    0.58645  0.58802  0.58986 
 
Structural change  0.35896  0.35759  0.35593 
 
Yes/No   0.18017  0.17794  0.17726 
No/Yes   0.17879  0.17965  0.17867 
 
 
Note: Figures for cointegration or structural change are the fractions out of 100,000 replications. 
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Table 4. Inappropriate Detrending and Spurious Cointegration with Drifts. 

Data generation: z1t = δ1 + z1i-1 + u1t, where u1t ~ N(0, 1) 
   z2t = δ2 + z2i-1 + u2t, where u2t ~ N(0, 1) 
   y1t = z1t and y2t = y1t + z2t + γ u3t, where u3t ~ N(0, 1) 
 
   y1t and y2t are tested not to be cointegrated. 
 
Estimation of OLS: 
 det y2t = α + β det y1t + εt, where det yit is detrended yit. 
 
Unit root test for the residual from the OLS estimation by Dickey-Fuller test 
 
    Case 1   Case 2   Case 3 
NOB (n)   1,000   1,000   1,000 
δ1    0.0   0.0   0.1 
δ2    0.0   0.1   0.1 
γ    0.1   0.0   0.0 
 
Cointegration between det y1t and det y2t 
 
Entire period   0.20732  0.30577  0.24633 
      
First half   0.24300  0.29936  0.25134 
  
Second half   0.24173  0.29971  0.25292 
 
 
Structural change from the first half to the second half 
Yes is for cointegration and No is for no cointegration 
 
No structural change  0.63249  0.58101  0.62298 
 
Yes/Yes   0.05861  0.09004  0.06362 
No/No    0.57388  0.49097  0.55936 
 
Structural change  0.36751  0.41899  0.37702 
 
Yes/No   0.18439  0.20932  0.18772 
No/Yes   0.18312  0.20967  0.18930 
 
Note: Figures for cointegration or structural change are the fractions out of 100,000 replications. 
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Table 5. Appropriate Detrending and Cointegration. 

Data generation: zt = zi-1 + u1t, where u1t ~ N(0, 1) 
   wt is detrended zt which is tested to be I(1) 
   y1t = λ Tt + wt and y2t = 0.1 Tt + y1t + u2t, where u2t ~ N(0, 1) 
 
Estimation of OLS: 
 y2t = α + β y1t + ε1t. 
 det y2t = α’ + β’ det y1t + ε2t, where det yit is detrended yit. 
 
Unit root test for the residual from the OLS estimation by Dickey-Fuller test 
 
    Case 1   Case 2   Case 3 
NOB (n)   1,000   1,000   1,000 
λ    0.02   0.05   0.1 
 
Cointegration between y1t and y2t 
 
Entire period   0.00868  0.25073  0.77270 
      
 
Cointegration between det y1t and det y2t 
 
Entire period   1.00000  1.00000  1.00000 
 
 
Note: Figures for cointegration are the fractions out of 100,000 replications. 
 



Figure 1. Exchange Rate Movements
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