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1. INTRODUCTION 

 

 A normal form game can be played using a correlation device. The correlation device first 

sends private messages to each player according to a probability distribution and then the players 

play the original normal form game. The original game is therefore extended. In this extended 

game, a pure strategy for any player is a map from the set of messages to the set of pure strategies 

of the original game. A correlation device is called direct or canonical if the set of messages is 

identical to the set of pure strategies of the original game, for each player. A (direct) correlated 

equilibrium (Aumann, 1974, 1987) can best be described as a mediator whose recommendations the 

players find optimal to follow obediently. In other words, for a correlated equilibrium, the strategy 

of following the mediator’s recommendations constitutes a Nash equilibrium in the extended game.  

Consider for example, the two-player game (Chicken) in Figure 1a. Each of the two players 

has two strategies, namely, A and P.  

 A P 

A 0, 0 7, 2 

P 2, 7 6, 6 

Figure 1a 

The direct correlation device in Figure 1b is indeed a correlated equilibrium for this game, 

i.e., the obedient strategy profile1 (AP, AP) is a Nash equilibrium in the canonical extended game. 

 A P 

A 1/5 2/5 

P 2/5 0 

Figure 1b 

It is well known that an extended game, extended by a (direct) correlation device, may have 

                                                 
1AP represents the strategy of playing A when the recommendation is A and playing P when the recommendation is P.   
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equilibrium other than the obedient one. First of all, babbling  equilibrium always exists; i.e., 

ignoring the messages from the device altogether and playing a Nash equilibrium of the original 

game constitutes trivially a Nash equilibrium in any such extended game. For example, (AA, PP) is 

a Nash equilibrium in the extended game in the above example. There may also be non-babbling 

Nash equilibrium in which players do not follow the mediator’s suggestions. In the above example, 

the profile (PA, PA) in which the players play exactly the opposite of the recommended strategies is 

also a Nash equilibrium in the extended game. The other equilibrium may even dominate the 

obedient one, i.e., by playing the other Nash equilibrium, all players can obtain a higher payoff. 

Indeed, in the above example, the equilibrium (PA, PA) dominates the obedient equilibrium. A 

direct correlation device or a mediator therefore may face this multiple equilibrium problem.2 The 

question thus arises whether it is possible to find a device that can implement the given outcome, 

however, does not suffer from this multiple equilibrium problem.  

One should certainly mention here the recent advancement in the literature on mediated and 

unmediated (cheap) talk that can generate any correlated equilibrium of a given game (Aumann and 

Hart, 2002; Barany, 1992; Ben-Porath, 1998, 2002; Forges, 1990; Gerardi, 2000, 2001; Gossner, 

1998; Gossner and Vieille, 2001; Lehrer, 1996; Lehrer and Sorin, 1997; Urbano and Vila 2002a, 

2002b, 2002c). This literature uses sophisticated communication protocols or unmediated cheap talk 

that can take the place of a mediator. The central theme of this literature is that, depending on the 

specific conditions any correlated equilibrium can be obtained by a Nash equilibrium of a 

communication scheme. None of these papers however addresses the multiple equilibrium problem.  

This paper simply takes the first step towards understanding the multiple equilibrium 

problem by restricting the attention to a particular type of multiple equilibrium problem and a 

                                                 
2 The multiple equilibrium problem is well understood in other contexts, such as , implementation theory (Palfrey, 
1992), principal-agent theory (Mookherjee, 1984), differential-information economies (Postlewaite and Schmeidler, 
1986), mechanism design (Demski and Sappington, 1984). There also exists an extensive literature on mechanism 
design exploring mechanisms that can uniquely implement an outcome (Ma, 1988; Ma, Moore and Turnbull, 1988).   
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particular communication scheme. In a recent work Ray, Serrano and Vohra3 formally address and 

study the issue of (full and virtual) implementation of correlated equilibrium distributions. This 

paper studies a specific two-person game (Chicken ) and looks at a specific form of multiple 

equilibrium problem, involving disobedience. A player adopts a disobedient strategy if he always 

chooses the action that is not recommended by the mediator. A correlated equilibrium is said to 

suffer from the multiple equilibrium problem if the disobedient strategy profile is also a Nash 

equilibrium of the extended game and it generates (weakly) higher (ex-ante, expected) payoffs for 

both players. This paper asks the question whether there exists a communication scheme, more 

specifically, a non-canonical correlation device that can implement a correlated equilibrium and 

does not suffer from this multiple equilibrium problem. 

This exercise is clearly different from identifying an efficient correlated equilibrium (Ray, 

1996a) or characterising efficiency (Myerson, 2002). This paper tries to implement an equilibrium 

that is clearly not optimal in the first place. One might criticise the basic motivation of this research 

by asking: why should the players be interested in implementing such a sub-optimal outcome? The 

players should always select a correlation device that does not suffer from the multiple equilibrium 

problem (possibly using the concepts in Ray, 1996a; Myerson, 2002). One response to this fair 

criticism is that the correlated equilibrium that needs to be implemented could be the desire of a 

third party, or even the mediator.    

Although any communication scheme can be thought of to avoid the multiple equilibrium 

problem in this context, this paper considers only non-direct mediators or non-canonical devices. A 

non-direct mediator or a non-canonical device is a device in which the messages are not the 

strategies of the original game. The paper offers three different non-canonical structures (one with 

and two without a public message or a sunspot) each of which, together with a particular strategy 

profile of the non-canonical extended game, induces the direct correlated equilibrium in 

                                                 
3 Private communication; work in progress. 
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consideration. The non-canonical devices are characterised by certain parameters. For each of the 

non-canonical devices, one can precisely find the range(s) of the characterising parameter(s) such 

that the non-canonical extended game has the equilibrium that induces the correlated equilibrium, 

but not the other that corresponds to the disobedient equilibrium.    

The paper is organised as follows. The next section presents a couple of examples of non-

canonical devices to motivate this study. Section 3 collects all the relevant definitions. Section 4 

presents the basic game, the correlation devices, and all the findings. Section 5 concludes.  

 

2. EXAMPLES OF NON-CANONICAL DEVICES 

 

Consider the non-canonical device4 in Figure 2a, in which the message sets for two players 

are, respectively, {a, b, c} and {d, e, f}.  

 d e f 

a 0 0 1/7 

b 1/7 3/7 0 

c 2/7 0 0 

Figure 2a 

 Suppose this device is used to play a version of Chicken , as in Figure 2b.  

 A P 

A 4/3, 4/3 7, 2 

P 2, 7 5, 5 

Figure 2b 

Each player first gets a private message from the non-canonical device, and then plays the 

game. A pure strategy of a player in the extended game is a map from the set of messages to the set 

                                                 
4 First appeared in Ray (1996b).  
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of pure strategies of the original game. 

It is easy to check that the strategy profile (PAP , APA) is a Nash equilibrium in this non-

canonical extended game. This equilibrium strategy profile induces a probability distribution over 

the outcomes of the original game, as illustrated in Figure 2c.  

 A P 

A 1/7 3/7 

P 3/7 0 

Figure 2c 

 The distribution in Figure 2c can now be identified as a direct correlation device. It is well 

known as the revelation principle (Myerson, 1982, 1985) that this induced (direct) device is also a 

(direct) correlated equilibrium for the game in Figure 2b. However, note that, this correlated 

equilibrium suffers from the multiple equilibrium problem, as indeed, the disobedient strategy 

profile (PA, PA) is also a Nash equilibrium of the (canonical) extended game and it generates higher 

payoffs than the obedient equilibrium. It is more important to note that the non-canonical device in 

Figure 2a (that induces the canonical distribution in Figure 2c), does not suffer from this problem, 

as the strategy profile (APA, PAP), that corresponds to the disobedient profile in the canonical game 

is not an equilibrium in the non-canonical extended game. 

 The above example shows that it is possible to generate the obedient equilibrium and at the 

same time avoid the multiple equilibrium problem if one considers a non-canonical device such as 

the one in Figure 2a. One now might be interested in the structure of such non-canonical devices 

that would get rid of the multiple equilibrium problem. The device in Figure 2a does have a special 

structure. It is evident that the message profile (a, f) in this device is a public message or a sunspot. 

Introducing a public message or a sunspot in the non-canonical device is however not the only way 

to do this job, as the following example shows. 

Consider for example, the game in Figure 2b and the correlated equilibrium in Figure 2c. 
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One can induce the correlated equilibrium using the non-canonical device in Figure 2d that involves 

no sunspot. It is easy to verify that in this non-canonical extended game, the strategy profile (AAP, 

AAP)  is an equilibrium and it induces the direct correlated equilibrium in Figure 2c. However, the 

strategy profile (PPA, PPA) that corresponds to the disobedient equilibrium in the canonical game 

is not an equilibrium of this non-canonical extended game.  

 d e F 

a 0 1/14 3/14 

b 1/14 0 3/14 

c 2/7 1/7 0 

Figure 2d 

It is important to realise that the above non-canonical structures (as in Figures 2a and 2d) 

may not work to get rid of the multiple equilibrium problem for all such games. For example, for 

the game in Figure 1a and the correlated equilibrium in Figure 1b, one cannot find any non-

canonical device, structurally similar to that in Figure 2a or Figure 2d, that does not suffer from the 

multiple equilibrium problem, as shown later in this paper. 

            

3. FORMALITIES 

 

Fix any normal form game, G = [N, {Si}i∈N, {u i}i∈N] with set of players: N = {1,...., n}, finite 

pure strategy sets: S1,...., Sn; S = ∏i∈N S i, and payoff functions: u1,...., un; u i: S → ℜ, for all i. 

 

Definition 1. (i) A correlation device is an (n+1)-tuple, d = (M1,...., Mn, µ) where, Mi is a finite set 

of messages for player i and µ is a probability distribution over M  (= ∏i∈N Mi). The device selects a 

message profile m (= (m1,...., mn)) according to µ, and send the private message mi to each player i. 
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(ii) The extended game Gd is the game where the correlation device d  selects and sends messages to 

the players, and then the players play the original game G. A pure5 strategy for player i in the game 

Gd is a map s i: Mi → Si and the corresponding (ex-ante , expected) payoff is given by, ui
*(s 1,...., sn) 

= Σm∈M µ(m) u i(s 1(m1),...., s n(mn)).  

(iii) A direct correlation device, d , is a correlation device where Mi = S i. For such a device, d would 

also denote the probability distribution over S = ∏i∈N S i.    

 

Definition 2. In a given correlation device, a message profile m (= (m1,...., mn)),  is called a public 

message or a sunspot if µ(m) > 0, and the conditional probability6of ((m-i)) given mi is 1 for all i. 

 

Definition 3. (i) A correlated equilibrium of the game G  is a pair (d , (s i)i∈N), where the (pure or 

behavioral) strategy profile (s 1,...., s n) is a Nash equilibrium of the extended game Gd. 

(ii) A direct correlated equilibrium d of the game G is a correlated equilibrium where Mi = S i, and 

s i is the identity map, for all i. The corresponding payoff to player i is given by Σs∈S d(s) ui(s). 

(iii) A correlated equilibrium distribution of the game G is a probability distribution on S which is 

induced by a correlated equilibrium (d , (s i)i∈N). 

 

Remark 1. A direct correlated equilibrium can be identified with an element of ?(S). Clearly, it is 

also a correlated equilibrium distribution, induced by itself. Let C(G) denote the set of all correlated 

equilibrium distributions for the game G.  

 

Remark 2. Any Nash equilibrium and any convex combination of several Nash equilibrium of a 

                                                 
5 One can also think of behavioral strategies in the game Gd. A behavioral strategy for player i is a map from M i t o  ? (Si) 
and the (ex-ante, expected) payoff for player i corresponding to a behavioral strategy vector is given by, ui

*(s1,...., sn) = 
Σm∈M P(m)[Σs∈S{(Πj∈N s j(sjmj))ui(s1,..., sn)}]. Let us restrict ourselves to pure strategies only.   
6 Using the standard notion of conditional probability. 
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given game G, corresponds to a direct correlated equilibrium. Let N(G) denote the set of all 

distributions that correspond to any Nash equilibrium and let CONV(G) denote any convex 

combination of several Nash equilibrium. Clearly, N(G) ⊆ CONV(G) ⊆  C(G). Let Γ be the set of all 

games for which CONV(G) ⊂ C(G). Let us consider games only in Γ, i.e., games for which the set 

of correlated equilibrium is strictly bigger than the convex hull of Nash equilibrium outcomes.7 

Also, let us consider correlated equilibrium distributions that are outside the convex hull of Nash 

equilibrium outcomes, i.e., d ∈ C(G)\CONV(G). 

 

Definition 4. Given any game G ∈ Γ, and a direct correlated equilibrium8 d ∈ C(G)\CONV(G) for 

G, the set of inducible distributions, I(d), is the set of all distributions over S  that are induced by 

some (pure or behavioral) Nash equilibrium strategy profile (s 1,...., s n) of the extended game Gd. 

 

Remark 3. Clearly, any distribution in I(d) is a correlated equilibrium for the game G . Thus, I(d) ⊂  

C(G), for any game9 G ∈ Γ, and a direct correlated equilibrium d ∈ C(G)\CONV(G). 

 

Remark 4. As d ∈ C(G)\CONV(G) is a direct correlated equilibrium for the game G, the obedient 

strategy profile forms a Nash equilibrium extended game Gd. Hence, d ∈ I(d). 

 

Remark 5. For any given game G  ∈  Γ, and for any given direct device10 d ∈ C(G)\CONV(G), the 

strategy profile (of the extended game) that induces  a (pure or mixed) Nash equilibrium of the 

original game, is also a Nash equilibrium of the extended game. Particularly, for any game G ∈ Γ, 

and a direct correlated equilibrium d  ∈  C(G)\CONV(G) for G, N(G) ⊂ I(d). Note however that 
                                                 
7 Certain games are hereby excluded, such as, Prisoners’ Dilemma, Cournot Duopoly (see Yi, 1997). Also see Moulin 
and Vial (1978) in this context.  
8 Definition 4 and Remarks 3-5 are valid for any correlated equilibrium distribution d ∈ C(G). 
9 Remark 3 is valid for any game G. 
10 Remark 5 is valid for any canonical or non-canonical device d. 
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CONV(G) ⊄ I(d ), as not all convex combination of Nash equilibrium points can be induced from a 

given distribution d . Clearly, N(G) ⊂ I(d ) ∩ CONV(G). 

 

Remark 6. Following Remark 5, for any given game G ∈ Γ and for any given device d ∈  

C(G)\CONV(G), let us concentrate only on I(d )\{I(d) ∩ CONV(G)}, the set of induced correlated 

equilibrium other than the inducible convex combinations of Nash equilibrium of the original game. 

 

Definition 5. A direct correlated equilibrium d ∈ C(G)\CONV(G) of a game G ∈ Γ is said to suffer 

from the multiple-equilibrium problem if there exists an induced correlated equilibrium distribution 

d′ ∈ I(d)\{I(d) ∩ CONV(G)}, such that Σs∈S d′(s) ui(s) ≥ Σs∈S d(s) ui(s) for all i, with at least one 

strict inequality.  

 

This paper analyses 2x2 games only and a particular form of multiple equilibrium problem. 

Therefore the following two definitions are the only two required notions for the rest of the paper. 

 

Definition 6. (i) For a 2x2 game G ∈ Γ, and for a direct correlated equilibrium d  ∈  C(G)\CONV(G), 

the disobedient strategy profile in the extended game Gd is the profile in which each player always 

chooses the action that is not recommended by the mediator.  

(ii) For a 2x2 game G ∈ Γ, a direct correlated equilibrium d  ∈ C(G)\CONV(G), is said to suffer 

from the multiple equilibrium problem if the correlated distribution, induced by the disobedient 

strategy profile, d′ ∈  I(d)\{I(d ) ∩ CONV(G)}, and Σ s∈S d ′(s) ui(s) ≥ Σs∈S d(s) ui(s) for all i, with at 

least one strict inequality. 

 

Definition 7. Suppose for a given 2x2 game G ∈ Γ, a non-canonical correlation device induces a 
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direct correlated equilibrium that suffers from the multiple equilibrium problem. We would say that 

the non-canonical device itself does (does not) suffer from the multiple equilibrium problem as 

well, if the strategy profile that corresponds11 to the disobedient equilibrium of the direct extended 

game is (is not) an equilibrium in the non-canonical extended game. 

  

4. ANALYSIS 

 

This section studies a general version of the two-person game of Chicken as the basic game. 

Motivated by the example in the Introduction, it considers a particular direct correlation device 

which is characterised by a single parameter, p.  

 

The Game: Chicken 

Consider the two-player non-cooperative game of Chicken  as in Figure 3a, where12, 0 < a  < 

b < c < d. Each of the two players has two strategies, namely, A and P. This game has two pure 

Nash equilibrium, namely, (A, P) and (P, A) and a mixed equilibrium in which each player plays A 

with probability (d-c)/{(d-c) + (b-a )}.  

 A P 

A a, a  d , b 

P b, d c, c  

Figure 3a 

 

The Canonical Correlation Device 

 Motivated by the examples in the Introduction, we here present a particular form of a direct 

                                                 
11 There always exists such a strategy profile and can be easily identified by combining two maps.  
12 We have chosen strictly positive payoffs just for the sake of simplicity in calculations.  
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correlation device as in Figure 3b. The device is characterised by one parameter, p; 0 < p  < 1.  

 A P 

A p    (1-p )/2 

P (1-p )/2  0 

Figure 3b 

 Fix a game of Chicken (i.e., fix values of a , b, c and d  in the game in Figure 3a). 

Suppose now this game is played using a correlation device as in Figure 3b. Clearly for certain 

values of the parameter p, both the obedient and the disobedient strategy profile will be equilibrium 

of the canonical extended game. Note that, by the structure of the device and the payoffs in the 

original game (Chicken), the disobedient strategy generates higher payoffs than the obedient one, 

for both players. Thus, for a fixed game of Chicken, one can find a precise range of the parameter p , 

for which this correlated equilibrium suffers from the multiple equilibrium problem. 

 

Proposition 1. The (direct) correlation device in Figure 3b is a correlated equilibrium and also 

suffers from the multiple equilibrium problem if 0 < p ≤ Min [x, y], where, x = (d-c)/{(d -c) + 2(b-

a)} and y = (b-a)/{(b -a ) + 2(d-c)}. 

Proof. Assuming that the other player is following the strategy AP, it is obvious (by the symmetric 

structure of the device and the payoffs of the original game) that a player will play P when the 

recommendation is P and when the recommendation is A, will play A if ap + d (1-p)/2  ≥ bp + c(1-

p)/2, i.e., if p  ≤ x. Thus, the obedient profile (AP, AP) is a Nash equilibrium of the canonical 

extended game if p  ≤ x. Similar argument shows that the disobedient profile (PA, PA) is a Nash 

equilibrium if p ≤ y.          QED 

 

To understand the above Proposition, let us consider the examples already discussed earlier. 
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Example 1.1. Consider the game in Figure 1a. Here, a  = 0, b = 2, c = 6 and d  = 7. For these 

parameter values, x = 1/5 and y = ½. Therefore, any direct device as in Figure 3b will suffer from 

the multiple equilibrium problem if 0 < p  ≤ 1/5. As noticed earlier, for this game, the device in 

Figure 1b, which is characterised by p  = 1/5, does suffer from the multiple equilibrium problem. 

 

Example 2.1. Consider the game in Figure 2b. Here, a = 4/3, b  = 2, c = 5, d = 7, x = 3/5 and y = 1/7. 

Any direct device as in Figure 3b will suffer from the multiple equilibrium problem if 0 < p ≤ 1/7. 

As noticed earlier, for this game, the device in Figure 2c, which is characterised by p  = 1/7, does 

suffer from the multiple equilibrium problem. 

 

For the rest of the paper, let us hereby fix a game of Chicken  (i.e., fix values of a, b, c and 

d). Also, let us restrict ourselves to direct devices as in Figure 3b, with p ≤ Min [x, y] only, so that 

the correlated equilibrium in question does suffer from the multiple equilibrium problem.  

Let us now consider three different non-canonical correlation devices. In each of these 

devices, the message sets are respectively, {a , b, c} and {d , e, f}. The devices are characterised by 

certain parameters. In each of these non-canonical extended games, there is a strategy profile that 

induces the direct correlated equilibrium in consideration and there is another strategy profile that 

corresponds to  the disobedient equilibrium, (PA, PA) in the canonical extended game. Let us 

precisely find the range(s) of the characterising parameter(s) of the non-canonical devices for which 

the first strategy profile is an equilibrium of the non-canonical extended game but the second profile 

is not (i.e., the non-canonical device does not suffer from the multiple equilibrium problem). 

 

The Non-Canonical Device #1 (With a sunspot) 

Consider the non-canonical device in Figure 4. This device is motivated by the one in the 

Introduction (Figure 2a) and is characterised by the parameter ε  > 0. The device is a combination of 
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private messages and a sunspot as (a, f) is a public message or a sunspot.  

 d e f 

a 0 0 ε 

b p (1-p)/2 0 

c (1-p)/2 - ε   0 0 

Figure 4 

Note that in the non-canonical extended game, the strategy profile (PAP, APA) induces the 

direct correlation device in Figure 3b and the strategy profile (APA , PAP), corresponds to  the 

disobedient equilibrium in the canonical extended game.   

 

Proposition 2. (i) Suppose p  ≤ x < y. There does not exist any non-canonical device as in Figure 4 

for which the strategy profile (PAP, APA) is an equilibrium but the profile (APA, PAP) is not (i.e., 

the device does not suffer from the multiple equilibrium problem). 

(ii) Suppose p ≤ y < x. The non-canonical device as in Figure 4 does not suffer from the multiple 

equilibrium problem if 0.5(1 – p/y) ≤ ε  ≤ 0.5(1 – p /x). 

Proof. Let us first check if and when the strategy profile (PAP, APA) is a Nash equilibrium of the 

non-canonical extended game. Fix the strategy APA  of player 2. Now, for player 1, playing P is 

optimal when the message is a . When the message is b , playing A is optimal if ap + d (1-p)/2  ≥ bp + 

c(1-p )/2, i.e., if p ≤ x, which is indeed the case (recall that p ≤ Min [x, y]). Finally, when the 

message is c, playing P is optimal. Now fix the strategy PAP of player 1. For player 2, playing A is 

optimal when the message is f. When the message is e, playing P is optimal. Finally, when the 

message is d , playing A is optimal if ap + d ((1-p )/2 - ε) ≥ bp + c((1-p)/2- ε ), i.e., if ε  ≤ 0.5{1 – p/x}. 

Therefore, (PAP, APA) is an equilibrium if ε  ≤ 0.5{1 – p /x}. Similarly, the strategy profile (APA, 

PAP) is not an equilibrium if 0.5{1 – p/y} ≤ ε . If p  ≤ x < y, then it is easy to check that both 
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conditions can not be met simultaneously. For p ≤ y < x, one has the desired result.  QED 

 

Let us illustrate the above Proposition using the earlier examples.    

 

Example 1.2. Consider the game in Figure 1a and the correlated equilibrium in Figure 1b. Here p  = 

x = 1/5 < y = ½. Therefore, one cannot find any non-canonical device as in Figure 4 that does not 

suffer from the multiple equilibrium problem. 

 

Example 2.2. Consider the game in Figure 2b. Here, x = 3/5 and y = 1/7. As noticed earlier, any 

correlated equilibrium as in Figure 3b with 0 < p  ≤ 1/7, would suffer from the multiple equilibrium 

problem. One can find a non-canonical device as in Figure 4, with ε  ∈ [(1–7p)/2, (3–5p)/6], that 

would get rid of this problem. Note that the direct device in Figure 2c has p  = 1/7. For such a 

device, the desired range of ε  in the non-canonical device is (0, 8/21]. The device in Figure 2a has ε  

= 1/3 and therefore does not suffer from the multiple equilibrium problem, as noticed earlier. 

 

The Non-Canonical Device #2 (Symmetric, Without any Sunspots) 

Consider the non-canonical device in Figure 5, which is characterised by the single 

parameter α  ∈  (0, 1). Clearly, this device does not have any sunspots; also, there is an amount of 

structural symmetry in it. 

 d e f 

a 0 αp α (1-p)/2 

b (1-α )p 0 (1-α )(1-p )/2 

c (1-α )(1-p )/2 α(1-p)/2 0 

Figure 5 
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Note that in this non-canonical extended game, the strategy profile (AAP, AAP) induces the 

direct correlation device in Figure 3b and the strategy profile (PPA , PPA), corresponds to  the 

disobedient equilibrium in the canonical game.  

 

Proposition 3. For any p ≤ Min [x, y], a non-canonical device as in Figure 5 always suffers from the 

multiple equilibrium problem. 

Proof. Let us first check whether the profile (AAP, AAP) is a Nash equilibrium of the non-canonical 

extended game or not. Fix the strategy AAP of player 2. Now, for player 1, when the message is a , 

playing A is optimal if ap + d (1-p )/2  ≥ bp + c(1-p)/2, i.e., if p  ≤ x. Also, when the message is b , 

playing A is optimal if p ≤ x. Finally, when the message is c, playing P is optimal. By the symmetry 

of the game and the device, the above argument holds for player 2 and hence, the profile (AAP, 

AAP) is an equilibrium if p ≤ x. Similar argument shows that the profile (PPA, PPA) is also an 

equilibrium if p ≤ y. Hence the result holds.       QED 

 

The Non-Canonical Device #3 (Asymmetric, Without any Sunspots) 

Consider the non-canonical device in Figure 6, which is characterised by two parameters, α  

and β, α ≠ β and both α  and β ∈  (0, 1). The structure of this device is motivated by the one in 

Figure 2d. Clearly, this device, like the device #2, does not have any sunspots; however, unlike the 

device #2, it is not symmetric. 

 d e f 

a 0 αp α (1-p)/2 

b (1-α )p 0 (1-α )(1-p )/2 

c (1-β)(1-p )/2 β(1-p )/2 0 

Figure 6 
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Note that, here as well, the strategy profile (AAP, AAP) induces the direct correlation device 

in Figure 3b and the strategy profile (PPA, PPA), corresponds to  the disobedient equilibrium. 

 

Proposition 4. For any p ≤ Min [x, y], the non-canonical device as in Figure 6, does not suffer from 

the multiple equilibrium problem if αk1 ≤ β ≤ αk1 + (1 - k 1) but not αk 2 ≤ β ≤ αk2 + (1 - k2), where, 

k1 = {p (b-a)} / {(1-p )(d-c)/2} and k 2 = {p(d -c)} / {(1-p)(b-a)/2}. 

Proof. To check whether the profile (AAP, AAP) is a Nash equilibrium, fix the strategy AAP of 

player 2. It is easy to verify that for player 1, playing AAP is optimal if p  ≤ x, which is indeed the 

case. Now fix the strategy AAP of player 1. For player 2, playing P is optimal when the message is 

f. When the message is d , playing A is optimal if a (1-α)p + d(1-β)(1-p )/2 ≥ b (1-α)p + c(1-β)(1-p )/2, 

i.e., if β ≤ αk1 + (1 - k1). Finally, when the message is e, playing A is optimal if aαp  + dβ(1-p )/2 ≥ 

bαp + cβ(1-p )/2, i.e., if αk1 ≤ β. Therefore, the profile (AAP , AAP) is an equilibrium if αk 1 ≤ β ≤ 

αk 1 + (1 - k1). Similar argument shows that the profile (PPA, PPA) is also an equilibrium if αk 2 ≤ β 

≤ αk 2 + (1 - k2). Thus, the result holds.       QED 

 

 Let us revisit the earlier examples to illustrate the above Proposition. 

 

Example 1.3. Consider the game in Figure 1a and the correlated equilibrium in Figure 1b. Here p  = 

1/5, k1 = 1 and k 2 = 1/4. Therefore, one cannot find any α  and β which would satisfy the conditions 

in Proposition 4 and hence, for this example, it is not possible to construct a non-canonical device 

as in Figure 6 that would not suffer from the multiple equilibrium problem. 

 

Example 2.3. Consider the game in Figure 2b and the correlated equilibrium in Figure 2c. Here p  = 

1/7, k1 = 1/9 and k2 = 1. It is therefore easy to construct a non-canonical device as in Figure 6, 
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(following the condition in Proposition 4) that would get rid of the multiple equilibrium problem. 

Any α and β such that β ≠  α  and β ∈  [α/9, α/9 + 8/9] would generate the desired result. For 

example, one can consider α = ½ and any β ∈ [1/18, 17/18], other than ½. Note that, the device in 

Figure 2d is characterised by α = ½ and β = 1/3 and as noticed earlier, it indeed gets rid of the 

multiple equilibrium problem. 

 

5. REMARKS 

 

This paper studies the multiple equilibrium problem in normal form games played using 

correlation devices and asks the question whether there exists a communication scheme, more 

specifically, a non-canonical correlation device that can implement a correlated equilibrium and 

does not suffer from the multiple equilibrium problem. A couple of early examples do suggest that 

it is indeed the case. The question that then arises is what kind of non-canonical devices one needs 

to achieve this. One possible way is to include a sunspot in the non-canonical device, as one of the 

examples indicates. However, one perhaps can do the same job without a sunspot, as another 

example confirms. This paper analyses three different non-canonical structures, one with and two 

without a sunspot, to understand this problem.  

The paper does not provide any general result. It only considers a 2x2 game (Chicken) and a 

specific form of multiple equilibrium problem using a particular disobedient strategy. In this 

framework, sunspots in the non-canonical device turn out to be neither sufficient nor necessary to 

solve the problem. For some parameter values, device #1 (with a sunspot) does help, however, not 

for all games. Device #2 (without any sunspots) on the other hand, never gets rid of the problem, 

while device #3, which is an asymmetric version of the device #2, manages to do the job for some 

parameter values. There exist however, games and correlated equilibrium (Example 1) for which 

none of the non-canonical structures discussed in this paper would be enough to get rid of the 
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problem. One definitely needs a different structure, possibly with larger message sets for each 

player, for these games. 

It is worthwhile to mention that Ray (2001) has also discussed the multiple equilibrium 

problem in correlation devices to explain the failure of the revelation principle for coalition-proof 

correlated equilibrium. Using some conditions presented in that paper, Ray explained exactly how 

and where the multiple equilibrium problem becomes relevant.  

 For future research, one might consider a couple of different directions. First, as mentioned 

earlier, it is now well known that mediated and unmediated (cheap) talk can generate any correlated 

equilibrium of a given game. Particularly, any correlated equilibrium can be generated by a (one-

shot public) mediated talk (Lehrer 1996; Lehrer and Sorin 1997) or pre-play unmediated 

communication (Ben-Porath 1998). Both these schemes are valid for 2x2 games. It would therefore 

be interesting to analyse the games and the correlated equilibrium distributions discussed in this 

paper in their framework. Second, one reckons that the non-canonical structures (particularly, the 

device #1) discussed here might be useful to model and analyse communication between (two) 

agents in any group decision problem in the bounded rationality literature (Chapter 6, Rubinstein 

1998).  
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