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Abstract

In this note we consider several versions of the bootstrap and ar-
gue that it can be helpful in explaining and thinking about such pro-
cedures to use an explicit representation of the random resampling
process. To illustrate the point we give such explicit representations
and use them to produce some results about bootstrapping linear mod-
els that are, apparently, not widely known, at least in the econometric
literature. Among these are a demonstration of the equivalence, to
order n�1 of the covariance matrix of the bootstrap distribution of
the least squares estimator and the Eicker(1967)/White(1980) het-
eroscedasticity robust covariance matrix estimate. The method also
shows the precise relations between an Efron(1979) bootstrap proce-
dure and the Bayesian bootstrap of Rubin(1981)
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1 INTRODUCTION

The bootstrap is usually explained algorithmically, as a set of computational
instructions. (This description seems to apply to books, e.g. Efron and Tibshi-
rani(1993); survey articles, e.g. Horowitz(2001); and to textbooks, e.g. Wooldridge(2002).)
In the case of the Efron nonparametric bootstrap the algorithm would be some-
thing like

1. Randomly sample your data, with replacement, n times.

2. Compute the statistic of interest using your new data

3. Repeat steps 1 and 2 B times

4. Calculate the standard deviation of the B values of the statistic.

Justi�cation for the algorithm would then be provided by explaining that the
empirical distribution of the data, say Fn is an approximation to the true but
unknown distribution F and that repeated sampling from Fn is approximately
the same as repeated sampling from F which, in turn, is what is required to
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calculate a repeated sampling distribution. Further justi�cation would be pro-
vided by study of the exact and asymptotic properties of the random variable
calculated according to 4.
This way of explaining the bootstrap is di¤erent from the way in which

we normally explain statistical procedures. For example, in explaining least
squares estimation we would not write down an algorithm for calculation and
then try to give some intuition for what the algorithm does. Instead we write
down elements of a statistical model in which the sources of random variation
are explicitly denoted and identi�ed. We then show that a way of estimating
a parameter is by minimizing a sum of squares and that this method can have
desirable properties. Lastly, instructions for calculation of the least squares
estimate are provided.
We might call the approach described in the �rst paragraph an algorithmic

explanation and that of the second paragraph an explicit explanation. Both
approaches are, of course, valid. But a question is which is the more helpful. In
this note we shall give explicit descriptions of three bootstrap procedures and
show how a familiar and elementary calculation, the delta method, leads easily
to some interesting results and connections.

2 An Efron Bootstrap.

Consider �rst a bootstrap procedure, due to Efron(1979), in which we resample
rows of the data matrix.
Let Z; an n�m matrix, contain your data, where n is the number of individ-

uals in your sample; let t = t(Z) be a statistic whose value depends (only) upon
the data; and let v(1�n) be a n dimensional multinomial random variable. The
row vector v contains n� 1 zeroes and 1 one. If the 1 is in the j0th position in
the vector it means �cell� j has been selected. The process of selecting a row
from the matrix Z then has the explicit representation

vZ

and if the multinomial distribution is such that the probabilities of the the
n cells are the same, and thus equal to 1=n; the operation vZ is an explicit
representation of randomly selecting a row of Z::
To represent the operation of randomly sampling n times with replacement

we can use n independent, equal probability, multinomial variates represented
by n vectors v1:; v2:::::vn: and assemble these as rows of an n� n matrix V:

V =

266664
v1:
v2:
:
:
vn:

377775 ;
The matrix multiplication V Z produces another n�m matrix Z�:

Z� = V Z:
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Z� is a bootstrap replication of the data.
A statistic t(Z�) = t(V Z) calculated from a bootstrap replication has a

bootstrap distribution determined solely by that of V: The properties of the
bootstrap distribution depend on those of the random matrix V and upon the
data Z:

Example 1 The Linear Model
In the linear model y = X� + " with E(X 0") = 0; the data matrix Z is

Z = (y : X) and the bootstrap replication is

Z� = V Z = (V y : V X):

As an example of a statistic whose bootstrap distribution is to be studied con-
sider the least squares estimate b = (X 0X)�1Xy: A bootstrap replication of this
estimate is found by replacing y by V y and X by V X leading to

�� = (X 0V 0V X)�1X 0V 0V y

= (X 0WX)�1X 0Wy; for W = V 0V: (1)

The matrix W has a typical o¤-diagonal element equal to �kvkivkj for i 6= j:
This is identically zero because, for every k; vkivkj � 0 because all elements of
any vector vk: are either zero or one and there is only one 1: It follows that
W is a diagonal matrix and that any bootstrap replication of �� is a weighted
least squares estimate. The weights are the diagonal elements of W; of which
a typical one is �kv2ki: But this measures the number of times n independent
multinomial variates have a one in the k0th position Equivalently, it is the
number of successes in n Bernoulli trials with probability of a success �vik = 1
�equal to 1=n; so Wkk � B(n; 1=n) with expectation 1 and variance (n� 1)=n:
This implies, in particular, that

E(W ) = In:

The rather simple weighted least squares representation of a bootstrap repli-
cation of the least squares estimate, and the almost equally simple properties of
the random matrix W lead to an easy study of the properties of the bootstrap
distribution. For example, consider a delta method calculation of the mean and
variance of this distribution. Think of �� as a function of the n vector w which
contains the n (binomial) diagonal elements of W: So �� = ��(w) where the
expected value of w is 1; a vector of n ones. Taking the Taylor series expansion
of �� up to the second term gives

��(w) = ��(1) +

�
@��

@w0

�
w=1

(w � 1)

= b+
�
e0 
 (X 0X)�1X 0� @vecW

@w0
(w � 1)

where e = y �Xb is the least squares residual vector. The covariance matrix of
�� � b depends on that of w and, using the properties described above, this is

E(w � 1)(w � 1)0 = In �
1

n
Jn
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where �Jn is an n � n matrix of ones. Using this fact we �nd, after a little
algebra, that

V (�� � b) = (X 0X)�1X 0EX(X 0X)�1 where E = diagfe2i g:

Thus we conclude that the delta method approximate moments of �� are

E(��) = b; V (��) = (X 0X)�1X 0EX(X 0X)�1;

where b is the least squares estimate and (X 0X)�1X 0EX(X 0X)�1 is the Eicker/White
heteroscedasticity robust least squares covariance matrix estimate. (In the econo-
metric textbooks, if robust covariance matrix estimates and bootstrapping are
both mentioned the connection between these methods is rarely, if ever, men-
tioned.)
These remarks are subject to the quali�cation that, with positive probabil-

ity in this resampling scheme, the matrix X 0WX will be singular and �� not
de�ned. For example, a bootstrap replication can give n identical rows for X�

with positive probability and in this case X 0WX will have rank one. So, strictly,
we must consider the bootstrap distribution that we are examining as subject to
the condition that realizations of V for which X 0WX is singular are discarded.
Such a restriction will slightly alter the moment results that we are giving.

3 A BAYESIAN BOOTSTRAP

If we view the rows of the data matrix, Z; as realizations of independent multino-
mial variates on, say, L+ 1 points of support with probabilities f�lg; summing
to one for l = 0; 1; 2; ::L we have a likelihood for the data. In this model the
data provided by any one agent is a vector of k + 1 numbers, a row of Z; and
this vector is an element of a set of L + 1 such vectors. The application to
the regression model interprets the fzig as fyi; xig; that is, as rows of the data
matrix fy : Xg: This model does not restrict the conditional distribution of yi
given xi and in particular y need not have linear regression on x; nor need the
variance of y given x be independent of x: Thus it permits both non-linearity
and heteroscedasticty. The most substantive restriction of the model is that the
observations fyi; xig must be independent. It thus does not apply to models
with autocorrelated errors or regressors which are lagged dependent variables.
The Bayesian bootstrap, so named by its originator Rubin(1981), assigns

a speci�c prior to the vector of probabilities � = f�lg The method proceeds
by selecting a parameter of interest, say �; de�ned as a functional of the data
distribution, whose components are � and the points of support of z say fzlg:
The prior for � together with the multinomial likelihood of the data enables
computation of the posterior distribution of �: This in turn, because � is a
function of �; enables computation of the posterior distribution of �:
Speci�cally, the computation is as follows. The multinomial likelihood for

the data provided by agent i is `i(�) = �Ll=0�
jl
l where jl is the indicator of the
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event zi = zl: Multiplying n such terms gives the likelihood for the whole data
set

`(�) = �Ll=0�
nl
l where nl is the number of times fzig = zl:

The natural conjugate prior for � is the multivariate beta, or dirichlet, with
kernel

p(�) / �Ll=0��l�1l

in which the L + 1 parameters f�lg are positive and, of course, �Ll=0�l = 1: It
follows from Bayes�theorem that the kernel of the posterior density of � is

p(�jz) / �Ll=0�nl+�l�1l (2)

This is again a dirichlet distribution.
For any parameter � = �(�) we can calculate its posterior distribution by

sampling from (2) and forming � for each realization of �: By repeating this
calculation many times an abitrarily accurate approximation to the posterior
distribution of � may be formed.
Sampling from (2) may be accomplished by simulating L + 1 independent

gamma variates with shape parameters equal to (nl + �l) and unit scale para-
meters. Call these fglg and form

�l =
gl

�Lj=0gj
for l = 1; 2; :::L: (3)

Then � is dirichlet distributed (with �0 = 1� �Lj=1�j):
The remaining issue is the choice of the f�lg and in the Bayesian bootstrap

these are set to zero giving an improper version of the dirichlet prior. The e¤ect
of this is to produce (e¤ectively) zero realizations for points in the support of
z that have nl = 0; that is, that were not observed in the sample. This in
turn means that the relevant points of support are the distinct values of z that
appear in the data, and, in particular, if all z values in the data are distinct
then expectations such as �Ll=0yl�l may be equivalently written as �

n
i=1yi�i:

Example 2 The Linear Model and the Bayesian Bootstrap
To see the Bayesian bootstrap in action and to study analytically the distri-

bution consider an application to the linear model.
Let zj = (yj xj) where xj is the j0th row of X. De�ne the functional � by

the condition that
EX 0(y �X�) = 0:

Thus,
� = [E(X 0X)]�1E(X 0y)

where a typical element of E(X 0X) is �ni=1xilxim�i and a typical element of
E(X 0y) is �ni=1xilyi�i: (De�ned in this way � is the coe¢ cient vector in the
linear projection of y on X.) Thus we can write � as

� = (X 0PX)�1X 0Py
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where P = diagf�ig: But the f�ig can be represented as in (3) so we can write

�� = (X 0GX)�1X 0Gy (4)

where G is an n�n diagonal matrix with elements that are independent gamma(1),
or unit exponential, variates because when �l = 0 and nl = 1 the random vari-
ables fgig are unit exponentials.
As G varies from realization to realization so does � and this variation is

the Bayesian bootstrap (posterior) distribution of �: Note that, just as in the
Efron bootstrap, realizations of � are equivalent to calculations of a weighted
least squares estimate whose weight matrix, G; is on average, equal to the iden-
tity matrix. This is because the mean of a unit exponential variate is one, so
E(G) = In: In fact the di¤erences between (4) and (1) are rather small. Both W
and G are diagonal matrices whose diagonal elements are non-negative random
variables. The fwig are binomial variates with means 1 and variances (n�1)=n;
the diagonal elements of G; fgig are exponential variates with means 1 and vari-
ances 1:The Bayesian boostrap can be thought of as a smoothed version of the
Efron bootstrap in which every row of the data matrix appears in every bootstrap
replication but di¤erent rows receive di¤erent weights in each recalculation. (It
thus avoids the di¢ culty with the Efron boostrap noted earlier that, with some
positive probability, �� will not exist. The Bayesian bootstrap �� exists with
probability one.)
As in the Efron bootstrap the delta method can be used to �nd the approximate

mean and variance of the posterior or bootstrap distribution, giving the expansion
of ��(g) about the expectation of g; which is 1:

�� = b+
�
e0 
 (X 0X)�1X 0� @vecG

@g0
(g � 1):

A calculation similar to that for the Efron bootstrap, though somewhat simpler,
then gives the approximate moments

E(��) = b; V (��) = (X 0X)�1X 0EX(X 0X)�1

which are identical to those of the Efron bootstrap.
The Efron and Bayesian boostrap distributions are identical, to this order of

approximation. Both have a mean equal to the least squares estimate and both
have the Eicker/White heteroscedasticity robust covariance matrix.

4 THE EFRON RESIDUAL BOOTSTRAP

As Efron and Tibshirani note, �bootstrapping is not a uniquely de�ned concept�
and there is a second Efron bootstrap which derives from resampling the model
residuals. In a model with covariates in X and dependent variable in y model
residuals take some estimate of the relation between y and X, and form a
residual vector, e: The vector e is resampled as e� and the corresponding y
vector, say y�; is calculated. Using y�; X the statistic of interest is calculated
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and the procedure repeated B times. Again the simplest context is the linear
model and the explicit representation is given in the following:

Example 3 Bootstrapping Residuals in the Linear Model
Residuals are easy to de�ne in the linear model, in particular e = y � Xb

provides the least squares residual vector. In the same way as for the earlier
bootstraps a randomly resampled residual vector is e� = V e: Then the implied y
vector is

y� = Xb+ e�:

A bootstrap replication of the least squares estimate is then

�� = (X 0X)�1X 0y�

= (X 0X)�1X 0Xb+ (X 0X)�1X 0V e

= b+ (X 0X)�1X 0V e:

Unlike the �rst two bootstraps this is linear in its random component, V in
this case, and its bootstrap distribution is easily calculated. In particular, from
the fact that the rows of V are independent multinomials with equal probabilities
it follows that

E(V ) =
1

n
Jn and E(V ee0V ) =

�
�ie

2
i

n

�
In = s

2In: (5)

(The second result here requires that �iei = 0 so the model must contain an
intercept.) These results imply that

E(��) = b and V (��) = s2(X 0X)�1:

So, as is well known, the covariance matrix of the Efron residual bootstrap dis-
tribution is identicial to the standard least squares covariance matrix and the
distribution is not robust to heteroscedasticity.

5 CONCLUSIONS

We have argued that there is some merit, both pedagogical and for research,
to giving a more explicit presentation of bootstraps. Results on the properties
of the bootstrap distribution can be easier to understand and to explain. To
illustrate this we considered the linear model and described how one might
explain the bootstrap distribution in that simple context.
This exposition lead to the easy derivation of several results. The �rst is

that the bootstrap that resamples rows of the data matrix has a covariance
matrix equal to the Eicker/White heteroscedasticity robust covariance matrix
estimate �to O(1=n): It is well known that this bootstrap is much less dependent
on model assumptions than the bootstrap that resamples residuals and it is,
perhaps, not surprising that the procedure turns out to be robust against failure
of homoscedasticity (Textbook discussions of bootstrapping and robustness with
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which I am familiar typically see no connection between them and they are
discussed in widely separated parts of the book.).
The bootstrap that resamples data rows is equivalent, to O(1=n); to the pos-

terior distribution corresponding to a multinomial likelihood and an improper
dirichlet prior. This is a particular case of a general result due to Lo(1987)
in which the large sample equivalence of the Efron and Bayesian bootstraps is
proved. One implication of this equivalence is the following. It is sometimes
said that one ought to resample residuals �the third method we considered in
the examples � because resampling data rows does not appear to correspond
to a repeated sampling distribution in which X is held �xed. But resampling
rows is equivalent to a Bayes procedure which is, of course, conditional on the
entire data set, both y and X: This fact suggests that this argument in favour
of resampling residuals is dubious.
Finally we should note this paper provides yet another situation in which

Bayesian and frequentist procedures give numerically very similar answers but
the philosophical interpretation of these answers is very di¤erent. The Bayesian
bootstrap shows exactly the posterior uncertainty about the coe¢ cients in a
linear projection of y on X in a speci�c (multinomial/dirichlet) model. The
(resampling rows) frequentist boostrap estimates the uncertainty in the least
squares estimate of the coe¢ cients in a possibly heteroscedastic linear model.
These are quite di¤erent objectives.
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7 Appendix

We have used the Taylor series expansion of ��(g) or ��(w) several times and
since this may not be obvious to readers we here sketch the derivation.
Consider ��(g) = (X 0GX)�1X 0Gy where G is a diagonal matrix with diago-

nal elements equal to fgig contained in a n vector g: Then ��(1) = (X 0X)�1X 0y =
b and

�� = b+
@(X 0GX)�1X 0Gy

@g0
(g � 1):

Next,

@(X 0GX)�1X 0Gy

@g0
=

@vec(X 0GX)�1X 0Gy

@g0

= (1
 (X 0GX)�1)
@vecX 0Gy

@g0
+ (y0GX 
 Ik)

@vec(X 0GX)�1

@g0
;

(using
@vecAB

@g0
) = (Iq 
A)

@vecB

@g0
+ (B0 
 In)

@vecA

@g0
when A is n� p and B is p� q):

Next we use

@vecA�1

@vec(A)0
= �(A�1)0 
A�1 and

@vec(X 0GX)

@g0
= (X 0 
X 0)

@vecG

@g0

to get

@vec(X 0GX)�1

@g0
= �(X 0GX)�1 
 (X 0GX)�1X 0 
X 0 @vecG

@g0
:

This then leads to

@(X 0GX)�1X 0Gy

@g0
= (1
 (X 0GX)�1)(y0 
X 0)

@vecG

@g0

�(y0GX 
 Ik)((X 0GX)�1 
 (X 0GX)�1)(X 0 
X 0)
@vecG

@g0

=
�
y0 
 (X 0GX)�1X 0 � (y0GX(X 0GX)�1 
 (X 0GX)�1)(X 0 
X 0)

	 @vecG
@g0

=
�
y0 
 (X 0GX)�1X 0 � y0GX(X 0GX)�1X 0 
 (X 0GX)�1X 0	 @vecG

@g0

=
�
(y0 � y0GX(X 0GX)�1X 0)
 (X 0GX)�1X 0	 @vecG

@g0

=
�
(y �X��)0 
 (X 0GX)�1X 0	 @vecG

@g0

=
n
"�

0

 (X 0GX)�1X 0

o @vecG
@g0

;

and at g = 1 "� = e = y �Xb this reduces to

@��

@g0
= (e0 
 (X 0X)�1X 0)

@vecG

@g0
:
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Thus

�� = b+ (e0 
 (X 0X)�1X 0)
@vecG

@g0
(g � 1)

as required.
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