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Abstract. We provide a mechanism that approximately implements
the Mas-Colell bargaining set in subgame perfect equilibrium. The
mechanism is based on the definition of the Mas-Colell bargaining set,
and respects feasibility in and out of equilibrium.

Resumen. Este trabajo propone un mecanismo que implementa aprox-
imadamente el conjunto de negociación de Mas-Colell en equilibrio per-
fecto en subjuegos. El mecanismo está basado en la definición del con-
junto de negociación de Mas-Colell, y respeta la factibilidad dentro y
fuera del equilibrio.
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Andreu Mas-Colell remarked to one of us that the bargaining set
does not deserve its name until its bargaining foundations are provided.
Indeed, although the different versions of the bargaining set (for exam-
ple, Aumann and Maschler (1964), Davis and Maschler (1963, 1967),
Mas-Colell (1989), Dutta, Ray, Sengupta and Vohra (1989)) have been
suggested to handle non-credible blocking by coalitions, a criticism
often raised against the core, the non-cooperative implementation of
bargaining sets has only recently been accomplished.
Serrano and Vohra (2001) show that several notions of bargaining

sets for exchange economies cannot be Nash implemented since they
do not satisfy Maskin monotonicity. The first attempts to investigate
the bargaining foundations of bargaining sets are Einy and Wettstein
(1999) and Perez-Castrillo and Wettstein (2000). While the former pa-
per suggests mechanisms that violate feasibility out of equilibrium, the
latter assumes the existence of extra players to overcome the same prob-
lem. However, Serrano and Vohra (2001) provide a feasible extensive
form mechanism to implement the Aumann-Davis-Maschler (ADM)
bargaining set in subgame perfect equilibrium. That mechanism is
closely tied to the definition of the ADM bargaining set, and its sub-
tleties make it clear that, not surprisingly, the precise details of the
mechanism do matter for the result. The purpose of this note is to
provide a modification of that mechanism to implement the Mas-Colell
bargaining set in subgame perfect equilibrium.
Suppose there are l commodities and a set of consumersN = {1, . . . , n}.

A pure exchange economy E is defined as E = {(Xi, ui, ωi)i∈N}, where
Xi ⊆ R

l, ui : Xi �→ R and ωi ∈ Xi refer to consumer i’s consumption
set, utility function and endowment respectively. We shall assume that
for every i ∈ N , ωi > 0. We will use the convention �, >,≥ to order
vectors.
Let N denote the set of all non-empty subsets (coalitions) in N . For

S ∈ N , we use −S to denote the complement of S. Given a collection
of vectors or sets, one for each consumer, we will use subscripts to
refer to their restrictions to a particular coalition. For example, XN =∏

i∈N Xi, XS =
∏

i∈S Xi, and given (xi) ∈ XN , xS = (xi)i∈S and x−S =
(xi)i/∈S. We will denote by uS(xS) the profile of utilities (ui(xi))i∈S.
For the grand coalition we will use u(x) to denote uN(xN ).
We shall assume that the designer knows the endowments of the

consumers but not their utility functions. Thus Xi and ωi will remain
fixed and economies will be distinguished simply by the utility functions
of the consumers. Let E denote the class of economies in which for all
i ∈ N , the following assumptions are made:
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A1. ∀i ∈ N, ui(.) is strictly monotonic, in the sense that ui(xi) >
ui(x

′
i) if xi > x

′
i.

A2. ∀i ∈ N, ui(.) is continuous.

Each coalition S has a feasible set of consumption plans, AS = {x ∈
XS :

∑
i∈S xi ≤

∑
i∈S ωi}.

An allocation x ∈ AN is efficient if there does not exist x′ ∈ AN

such that u(x′) > u(x). An allocation x ∈ AN is individually rational
if u(x) ≥ u(ω).
Given x ∈ AN , an objection is a pair (S, yS) satisfying:

(i) yS ∈ AS;
(ii) uS(yS) > uS(xS).

Given x ∈ AN and an objection (S, yS), a counterobjection is a pair
(T, zT ) satisfying:

(i) zT ∈ AT ;
(ii) uk(zk) > uk(yk)∀k ∈ S ∩ T
(iii) uk(zk) > uk(xk)∀k ∈ T\S.
We say that an objection is justified if there does not exist a counter-

objection to it. The following definition was introduced in Mas-Colell
(1989).1 The (Mas-Colell) bargaining set B(E) of an economy E is the
set of efficient and individually rational allocations against which there
does not exist a justified objection.
An extensive game form or mechanism is defined as a game tree with

possibly simultaneous moves, i.e, as an array Γ = (N,K, g), where N
is the set of players, K a game tree and g : Z �→ AN is the outcome
function, where Z denotes the set of terminal nodes of the tree K. We
will use g(z)i to denote consumer i’s commodity bundle corresponding
to the allocation g(z). The set of nodes of the tree K is denoted T . The
initial node is t0. Let M

t
i denote the set of choices available to player

i at node t and let Mi denote the set of strategies of player i. Given
an economy E = {(Xi, ui, ωi)}, the mechanism Γ defines an extensive
form game (Γ,E), where the payoff to the players corresponding to the
strategy profile m is u(g(m)).
A subgame perfect equilibrium of a game (Γ,E) is a strategy profile

m̄ ∈ MN such that the restriction of the strategies to every subgame
constitutes a Nash equilibrium in the subgame. Let SPE(Γ,E) denote
the set of all allocations corresponding to subgame perfect equilibria of
the game (Γ,E).
A mechanism in extensive form Γ is said to implement in subgame

perfect equilibrium the bargaining set in all economies over the class E
if SPE(Γ,E) = B(E) for all E ∈ E .
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We shall construct a mechanism that is closely tied to the story un-
derlying the Mas-Colell bargaining set. It can be seen as a multi-stage
bargaining game with the following features. There is a pre-bargaining
stage (the “conversation stage”), where a status quo is agreed upon
before further negotiations. This stage also determines the protocol
in further negotiations. In the next stage, an agent makes a proposal
to a coalition (a potential ‘objection’), to be sequentially ratified. A
veto results in the status-quo while unanimous acceptance leads to the
next stage in which potential ‘counterobjections’ are possible. A failed
counterobjection imposes a penalty on the proposer. In equilibrium,
all agents announce the same allocation, which is in the bargaining set,
and the first proposal involves this status-quo allocation proposed to
the grand coalition. This mechanism can be viewed as adding an ad-
ditional stage to the extensive form mechanism constructed in Serrano
and Vohra (1997) for implementing the core correspondence.
Our mechanism is related to the one proposed in Serrano and Vohra

(2001) for implementing the Aumann-Davis-Maschler bargaining set.
However, there are stubtle differences. The main difficulty involved
in using the mechanism in Serrano and Vohra (2001), or any obvious
modification thereof, to implement the Mas-Colell bargaining set stems
from the way in which counterobjections are specified. Recall that a
counterobjection used in defining B(E) is required to make some mem-
ber of the coalition strictly better-off (in contrast to counterobjections
in the ADM sense, where it suffices for the members of the counter-
objecting coalition to be exactly indifferent). For example, suppose
x /∈ B(E) and (S, y) is a justified objection to x. While there does not
exist a counterobjection (in the sense of B(E)) to (S, y), it is possible
that there exists a coalition T and z ∈ AT such that ui(zi) = ui(yi)
for all i ∈ S ∩ T and uj(zj) = uj(xj) for all j ∈ T \ S. In the kind
of mechanism described in Serrano and Vohra (2001), x will be an
equilibrium outcome, supported by strategies in which members of T
accept the counterproposal (T, z) if the objection (S, y) is made, and
the justified objection is, therefore, not made. It should be clear that
imposing a small cost on the counter proposer can deter such frivolous
counter proposals.2 We shall formalize this idea by introducing an ex-
tensive form mechanism Γ′

δ with discounting, where δ ∈ (0, 1) denotes
the common discount factor. We shall show that for δ close to 1, this
mechanism approximately implements the Mas-Colell bargaining set in
subgame perfect equilibrium. The set of limit points of SPE outcomes
as δ converges to 1 yields the closure of B(E). Indeed, one cannot do
better. While the SPE payoff correspondence is upper hemicontinuous
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at δ = 1, the Mas-Colell bargaining set is not closed in general (see
Serrano and Vohra (2001) for an example).
We need some additional notation before defining our mechanism.

For every i, pick εi ∈ R
l
+ such that ωi − εi ∈ R

l
+. This is possible since

ωi > 0 for all i. Let Π denote the set of all permutations of N , i.e.
one-to-one functions from N to N . Given π = (πi), where πi ∈ Π for
every i ∈ N , define p(π) to be the composition of the permutations (πi),
i.e., p(π) = π1(π2(. . . (πi(. . . πn) . . .). The i-th element of p(π) will be
denoted p(π)i. Notice that for every i ∈ N , given π−i and π

∗ ∈ Π, there
exists π′i ∈ Π such that p(π′i, π−i) = π

∗. In particular, any i ∈ N can
make a unilateral change in πi to make him/herself the first player in
the order p. We shall interpret p(π) to be an endogenously determined
protocol in our extensive form game.
The mechanism consists of four stages played in three periods. The

pre-bargaining stage (stage 0) and stage 1 occur in period 1. Stage 2
occurs in period 2, and stage 3 occurs in period 3. Discounting takes
place across periods. We describe the rules period by period.

Period t = 1.

Stage 0. Every player i chooses simultaneously from the choice set
M0

i = AN×Π. A typical choice of player i will be denotedm0
i = (x

i, πi).
Note that xi refers to player i’s announcement of an allocation, i.e.,
xi = (xi

j)j∈N . We will generally use superscripts to denote an agent’s
announcement of a profile.
Let m0 = (m0

i ) represent the profile of stage 0 messages and let
1(m0) = p(π)1 and n(m

0) = p(π)n denote the first and the last players
according to the order p(π).
If for any i and j, xi �= xj , the outcome is that player n(m0) receives

ωn(m0) − εn(m0), and all other players receive their initial endowments.
If xi = xj = x∗ for all i and j in N , proceed to stage 1. In this case we
will refer to x∗ as the status-quo.

Stage 1. Player i = 1(m0) chooses a coalition S containing i, and
y ∈ AS. After player i’s proposal, all players in N \ {i} must respond.
Responses occur sequentially. First, the members of S respond in the
order induced by p(π) and then the players in N \ S, using the same
protocol.

(1.a) If the proposal is made to S = N , players in S \ {i} can either
accept it or default. If a player defaults in this case, the game
ends and the status quo x∗ is implemented immediately. If all
accept the proposal, the game goes to stage 2.a.

(1.b) If the proposal is made to S �= N , players in S \ {i} can accept,
reject or default. Players in N \ S can either accept or reject.
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If a player in S \{i} defaults, the game ends and the status quo
x∗ is implemented in period 2. If every player in N \{i} accepts
the proposal, the game goes to stage 2.a. If a player rejects the
proposal, the game moves to stage 2.b. In this case, let j be
the first rejector.

Period t = 2.

Stage 2.a. Player i must either sign on to the proposal or default. If
he signs on, the outcome is (y, ωN\S). If he defaults, the outcome is x∗.

Stage 2.b. Player j names a coalition T that does not weakly contain
S, but contains j and at least one other player, and a proposal z ∈
AT .

3Then, according to the protocol induced on T\{j} by the message
profile of stage 0, the other players in T respond sequentially. They
may accept or reject the proposal of player j. If any player in T \ {j}
rejects the proposal, player j receives 0. The outcome for the other
players depends on the following two cases:

(i) If the first rejector belongs to S ∩ T , the final outcome is
(y, 0j, (ωk)k/∈S∪{j}) if j /∈ S, or ((yk)k∈S\{j}, 0j, (ωk)k/∈S) if j ∈ S.

(ii) If the first rejector belongs to T\S, the final outcome is (x∗−j, 0j).

If all players in T \{j} accept the proposal z, the game moves to Stage
3.

Period t = 3.

Stage 3. Player j makes the final choice whether to sign on to the
counterproposal or to default. If he signs on, the final outcome is
(z, ω−T ). If he defaults, the final outcome is x

∗.

Payoffs from the mechanism are assigned as follows: if in the outcome
that occurs in period t = 1, 2, 3 player k ∈ N receives a bundle xk, his
payoff is δt−1uk(xk).
Thus, there is no discounting between the pre-bargaining stage and

the time when a player would default and revert to the status quo. The
novelty of our rules is that, if a proposal is accepted, it takes until the
next period for the proposer to ratify it or not. In addition, although
the first proposal may be made to subcoalitions, every player inN votes
on it. While the players in the coalition have the additional option of
reverting to the status quo, players outside can only resort to making
a counteroffer if they do not like the proposal. Finally, the second
proposal of stage 2.b is only voted on by the players in the coalition to
which the counterproposal has been made. This, and the zero payoff
to the proposer if the counterproposal is rejected, are the asymmetries
that the counterproposal stage has with respect to the first proposal
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stage. These are related to the asymmetries of the bargaining set in
treating objections and counterobjections.
Two remarks are in order: (1) all outcomes specified in the mech-

anism Γ′
δ are feasible, in and out of equilibrium; and (2) the wasteful

features of the rules in stages 0 and 2 can be remedied if there are
at least three agents, by allocating the wasted resources to a different
agent.

Let C ⊆ AN be a subset of allocations. Denote by cl(C) the closure
of C. We can now state and prove our result.

Theorem 1. The mechanism Γ′
δ approximately implements in subgame

perfect equilibrium the Mas-Colell bargaining set B(E) as δ → 1 in the
class of economies E . That is, over the class of economies E :

(I) B(E) ⊆ lim infδ SPE(Γ
′
δ,E).

(II) lim supδ SPE(Γ
′
δ,E) ⊆ cl(B(E)).

Proof of Theorem 1: Part (I): We begin by showing that if x∗ ∈
B(E), then x∗ ∈ SPE(Γ′

δ,E) for δ close enough to 1, i.e., x
∗ ∈ lim infδ

SPE(Γ′
δ,E). Consider a strategy profile m̄ defined as follows:

(i) m̄0
i = (x

∗, πe) for all i, where πe denotes the identity permuta-
tion.

(ii) Consider a subgame following a status quo y∗ agreed upon in
stage 0. If y∗ ∈ B(E), every player i proposes (S, y) = (N, y∗)
at every node of stage 1 where he has to make a proposal. If
y∗ /∈ B(E), every player i makes a proposal that, given the
continuation strategies, maximizes his payoff.

(iii) Consider a subgame following a status quo y∗ agreed upon in
stage 0 and a proposal (S, y) made by player i. If y∗ ∈ B(E)
and (S, y) = (N, y∗), player k ∈ N \ {i} defaults. Otherwise,
he responds by backward induction, taking into account the
continuation equilibrium. If (S, y) is accepted by N \ {i}, in
stage 2.a player i signs on if and only if ui(yi) ≥ ui(y

∗
i ).

(iv) Consider a subgame following a status quo y∗ agreed upon in
stage 0 and a stage 1 proposal (S, y) made by player i and re-
jected by player j. Then player j proposes one of the best (from
his point of view) counterproposals (T, z), given the continua-
tion strategies.

(v) In every subgame in stage 2.b following a status quo y∗ agreed
upon in stage 0, a proposal (S, y) rejected by j, and a counter-
proposal (T, z), each respondent k responds as follows.
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Suppose all respondents following k, if any, accept the pro-
posal. If k ∈ T ∩ S, k accepts if and only if either one of the
following conditions holds:

uj(zj) ≥ uj(y
∗
j ), and δuk(zk) ≥ uk(yk),

or

uj(zj) < uj(y
∗
j ), and δuk(y

∗
k) ≥ uk(yk).

If k ∈ T \ S, then k accepts if and only if
uj(zj) ≥ uj(y

∗
j ), and δuk(zk) ≥ uk(y

∗
k).

Suppose k′ is the first respondent following k who rejects the
counterproposal. If k ∈ T ∩ S, then k accepts if and only if
k′ ∈ T ∩S. If k ∈ T \S, then k accepts if and only if k′ ∈ T \S.
This completes the description of all responses to a counter-

proposal in stage 2.b.
(vi) in stage 3, following a status quo y∗ agreed upon in stage 0,

a proposal (S, y), a counterproposal (T, z) made by j and ac-
cepted by T \{j}, player j accepts if and only if uj(zj) ≥ uj(y

∗
j ).

Obviously, (vi) is consistent with subgame perfection since stage 3
is a final stage with a one-person decision problem. By backward in-
duction, it is also easy to see that (iii), (iv) and (v) are also consistent
with subgame perfection. Here, continuity of utility functions and the
fact that the acceptance thresholds are defined with weak inequalities
ensure the existence of a strategy that maximizes the proposer’s payoff
in the subgame that starts in stage 2.b.
To see that (ii) corresponds to an equilibrium, by construction it

follows that this is the case if y∗ /∈ B(E). Suppose then that y∗ ∈ B(E)
and consider a deviation by player i, who proposes (S, y). There are
four potentially possible continuations after this deviation:

(a) If every player in N \ {i} accepts (S, y), it must be an objec-
tion (this is without loss of generality: either (S, y) or a small
perturbation thereof is an objection). Since y∗ ∈ B(E), there
exists a counterobjection (T, z), where S is not a subset of T .
Hence, for δ close enough to 1, any player in T has an incentive
to reject (S, y) and propose (T, z), which will be accepted in
stages 2.b and 3. But this contradicts the hypothesis that all
players accept (S, y).

(b) A player k ∈ S defaults. But in this case the status quo y∗ is
imposed in period 2 and the deviation is not profitable.

(c) A player j rejects the proposal (S, y), proposes (T, z) in stage
2.b, and i /∈ T . In the continuation, j’s counterproposal must
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be accepted by T \ {j}, as otherwise he would not be at a best
response rejecting (S, y). But then, player i will receive either
ωi or y

∗
i , so the deviation is not profitable.

(d) A player j rejects the proposal (S, y), proposes (T, z) in stage
2.b, and i ∈ T . But then there exists k ∈ S, k /∈ T . By the same
argument as in (c), the counterproposal (T, z) will be accepted
by T \{j}. Then, player k would receive in period 3 either ωk or
y∗k. Therefore, he could deviate and default in stage 1, imposing
the status quo in period 2.

We have shown that all four cases are either impossible or unprof-
itable continuations for player i. Hence, the strategies specified in (ii)
are a best response in this subgame.
It is easy to see that (i) corresponds to best responses by all players

in stage 0. It follows, therefore, that for sufficiently small discounting
this profile constitutes a subgame perfect equilibrium whose outcome
is g(m̄) = x∗: hence, x∗ ∈ lim infδ SPE(Γ′

δ,E).
Part (II): We now proceed to show that if m̄ is the limit of a sequence

of subgame perfect equilibria of (Γ′
δ,E) as δ → 1, then g(m̄) ∈ cl(B(E)),

i.e., lim supδ SPE(Γ
′
δ,E) ⊆ cl(B(E)).

Consider a sequence of subgame perfect equilibria m̄(δ) with g(m̄(δ)) =
z̄(δ) satisfying that limδ→1 z̄(δ) = g(m̄) = z̄. Suppose m̄0

i (δ) =
(xi(δ), πi(δ)).

Claim 1. For all δ and for all i, j ∈ N , xi(δ) = xj(δ).
Suppose not. Then player j = n(m̄0(δ)) receives ωj − εj . How-

ever, this player can gain by changing πj(δ) to π
′
j such that j �=

p(π−j(δ), π
′
j)n. This deviation from m̄j(δ) will result in j receiving

ωj instead of ωj − εj , which contradicts the hypothesis that m̄(δ) is a
subgame perfect equilibrium.

In the sequel we refer to the status quo agreed in stage 0 as x∗(δ)
and its limit as δ → 1 as x∗. A consequence of the proof of claim 1 is
that, for any δ, any SPE outcome must be individually rational.

Claim 2. u(z̄) ≥ u(x∗).
Suppose not. Then, there exists j ∈ N and δ close enough to 1 such

that uj(z̄j(δ)) < uj(x
∗
j (δ)).

Notice that given π−j(δ), by a suitable choice of π
′
j , player j can

make sure that j = p(π−j(δ), π
′
j)1. Suppose that by such a choice j

becomes the first player in the order p and then proposes (N, x∗(δ)) in
stage 1. To avoid delay in going to stage 2.a, every player in N \ {j}
will want to default, resulting in the outcome x∗(δ). This contradicts
that z̄(δ) is a SPE outcome and the claim follows.
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Claim 3. u(z̄) = u(x∗).
Suppose not. Then, by Claim 2, u(z̄) > u(x∗). Then, there exists

δ close enough to 1 for which u(z̄(δ)) > u(x∗(δ)). By monotonicity of
preferences, there must exist z′ ∈ AN and i ∈ N such that u(z′) �
u(x∗(δ)) and ui(z

′
i) > ui(z̄i(δ)). Suppose i changes her strategy to

become the first player according to the protocol and proposes (N, z′).
For δ close enough to 1, this proposal will be accepted by all the other
players since δuj(z

′
j) > uj(x

∗
j (δ)) for all j ∈ N and is, therefore, a

profitable deviation for player i. But this contradicts the hypothesis
that z̄(δ) is a SPE outcome.

A consequence of Claim 3 and its proof is that the limit of any
sequence of SPE outcomes must be efficient.

The proof of the following claim is a simple application of backwards
induction, and we omit it.
Claim 4. Let δ close enough to 1. Consider a subgame in stage 3
following a proposal (S(δ), y(δ)) and a counterproposal (T (δ), z(δ)),
where both proposals have been accepted unanimously. If uj(x

∗
j (δ)) >

uj(zj(δ)), then in stage 3, player j must reject, and the equilibrium
outcome in this subgame must be x∗(δ).

To complete the proof, suppose z̄ /∈ cl(B(E)). Consider a SPE out-
come z̄(δ) for δ arbitrarily close to 1. Of course, z̄(δ) /∈ cl(B(E)).
Let (S, y) be a justified objection against z̄(δ) (or equivalently, against
x∗(δ), the equilibrium outcome).
Let player i satisfy ui(yi) > ui(x

∗
i (δ)). Let player i deviate from the

equilibrium strategies by changing his permutation in stage 0 so as to
become the proposer in stage 1. Let player i announce (S, y) in stage
1. We will show that this proposal is accepted by every j ∈ N \ {i},
contradicting that the strategy profile behind z̄(δ) is a SPE. We show
in the next claim that no player in N \ {i} will reject this proposal
made by player i.

Claim 5. Suppose (S, y) is a justified objection to z̄(δ). Further,
suppose x∗(δ) is the status quo agreed upon in stage 0, u(z̄(δ)) =
u(x∗(δ)), and that player i has made in stage 1 the proposal (S, y) in
the game where δ is arbitrarily close to 1. Then no player j ∈ N \ {i}
rejects the proposal (S, y).
Suppose the Claim is false. Then j ∈ N\{i} counters with a proposal

(T, z). We will now show that this counterproposal will not be accepted
by all the responders. This will prove that player j must not reject
(S, y) in a subgame perfect equilibrium, a contradiction to our first
assumption. There are two cases to consider:
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(a) there exists k �= j, k ∈ T \ S such that uk(x
∗
k(δ)) ≥ uk(zk) or

there exists k �= j, k ∈ S ∩ T such that uk(yk) ≥ uk(zk).
Let k be the last responder for whom the above condition holds.

Suppose the counterproposal is accepted by all the responders. Then
the final outcome for player k is either zk or x

∗
k(δ) in stage 3. In either

case, player k can do better by rejecting the proposal. This proves that
the proposal z will not be accepted by all the players in T \ {j}.
(b) for all k �= j, k ∈ T \ S, uk(x

∗
k(δ)) < uk(zk) and for all k �= j,

k ∈ S ∩ T , uk(yk) < uk(zk). Since x
∗(δ) /∈ cl(B(E)) and (S, y) is a

justified objection, this must mean that uj(zj) < uj(x
∗
j (δ)). Then, we

know from claim 4 that the final outcome must be x∗(δ) in stage 3. By
rejecting the counterproposal, any k ∈ T , k �= j can obtain either yk or
x∗k(δ), depending on whether k ∈ S or k /∈ S. In either case, rejecting
the proposal is better than proceeding to stage 3 and receiving x∗(δ).
We have shown that according to the equilibrium strategies in m̄(δ),

a counterproposal by j will be rejected. And this will yield 0 to player j.
On the other hand, accepting the proposal (S, y) made by player i and
playing optimally in the continuation guarantee player j to received at
least a utility of δ2uj(ωj) > 0. Clearly then (S, y) will not be rejected
by j, and this completes the proof of Claim 5.
Clearly, to save discounting costs no player in S \ {i} will default

after (S, y). Therefore, the proposal (S, y) is accepted and player i’s
deviation is profitable, which is a contradiction to the fact that z̄(δ) is
a SPE outcome. �
The implementation of the consistent bargaining set seems a more

ambitious task, one which is left as an important open problem for
future research. The reason is that the game called for should not fix a
finite horizon. An extension of our mechanism along these lines seems
to take us part of the way. In this mechanism, after the pre-bargaining
stage, a sequence of proposals to coalitions is made. The members of
the proposed coalition can choose first whether they default or not.
To default terminates the game with either the status quo or with the
implementation of a proposal made earlier to the defaulting player. If
no player in the called coalition defaults, every player (including those
outside of the coalition) votes on accepting or rejecting the proposal. If
all accept, the proposer signs on to it in the next period or defaults to
one of the previous rejected proposals where he was involved. If there
is a rejection, the rejector must make a new proposal to a coalition the
next period.
This mechanism yields individually rational and efficient allocations

as SPE outcomes as δ → 1. The full analysis of this mechanism seems,
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however, far from being simple. Our conjecture is that the implemen-
tation of the consistent bargaining set can be obtained with a game
along the lines suggested, where the option of reverting to previous sta-
tus quos is introduced. Alternatively, one should explore other natural
variants of coalitional bargaining procedures and compare their sets of
equilibrium outcomes to the different versions of bargaining sets.

Endnotes

1. We abuse language slightly, as Mas-Colell (1989) did not require
efficiency or individual rationality, which made his result of equivalence
with Walrasian allocations the more surprising. Both requirements
appear in Vohra (1991).

2. This problem can be avoided by modifying the definition of B(E)
to require counterobjections to hold with a weak inequality ‘≥’ instead
of ‘�’ (and imposing other restrictions on a counterobjection), as in
Zhou (1994).

3. The restriction that S not be contained in T makes no difference for
the definition of the Mas-Colell bargaining set. Specifically, as shown in
Einy and Wettstein (1999), if x ∈ B(E) and S is an objecting coalition,
there always exists a counterobjecting coalition T such that S is not
contained in T .
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