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1 Introduction

Since Hamilton (1989) introduced regime switching models and demonstrated their ability to de-

scribe the salient business cycle features of aggregate output, their use has grown dramatically.

While regime switching models are still used extensively to model aggregate macroeconomic time

series such as aggregate output and industrial production that display radically different behav-

ior during “boom” and “bust” periods, they have also been applied successfully in the modeling of

many important financial time series ranging from stock market returns (Turner, Startz and Nelson

(1989)), to foreign currencies (Engel and Hamilton (1990)) and interest rates (Gray (1996)).1

Aside from their widespread use in empirical work, models that incorporate regime switching

in economic fundamentals (e.g., dividends, consumption or GDP) have recently shed light on some

puzzling aspects of financial markets that are difficult to reconcile in single regime models. Cechetti,

Lam and Mark (1990,2000) have shown that when economic fundamentals switch between persis-

tent high and low growth regimes, long horizon stock returns exhibit the kind of negative serial

autocorrelation that has been documented by Fama and French (1988) and others. Regime switch-

ing models have also been used to explain the weak correlation between changes in volatility and

excess returns over time.2 Whitelaw (2000) employs a model with high and low growth regimes

in consumption to show that the simple monotonic relationship between expected returns and

volatility in static models (CAPM) need not hold in dynamic, multi regime settings. In particular,

Whiltelaw shows that accounting for regime switching in fundamentals results in excess returns

that vary little with volatility, thus bridging the gap between theory and empirical examinations of

the time series relationship between risk and return. In this way, regime switching models present

an empirically relevant modeling framework that make a close connection with theoretical models.

In this paper we make several important contributions to the theoretical and empirical regime

switching literature. First, building on the work of Hamilton (1996), we provide a set of diagnostics

and a test that can be used as a means of qualitatively and quantitatively assessing the plausibility

of the normality assumption in regime switching models. Second, we show that when normality is

falsely imposed, the resulting quasi maximum likelihood (QMLE) estimator is inconsistent. Third,

we propose a semiparametric extension of Hamilton’s (1990) EM algorithm to estimate regime

switching models in the presence of unspecified deviations from normality. In this sense our work

is related to that of Engle and Gonzalez-Rivera (1991) who generalize traditional Gaussian ARCH

models to more flexible semiparametric settings.

Empirically, we focus on a two regime model of the U.S. short term interest rate. The proposed

test rejects the normality assumption at all conventional significance levels. In particualar, we find

that interest rate changes are characterized by one low volatility regime that is well approximated
1A short list macroeconomic related references include: Diebold and Rudebusch (1996), Durland and McCurdy

(1994), Filardo (1994).
2Glosten, Jagannathan and Runkle (1993) document the weak time series relationship between risk and return.
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by normality and one high volatility regime that is negatively skewed and leptokurtic relative to a

normal distribution.

Regime switching models are typically constructed using the following specification,3

yt = x
0
tβr + σ(zt, γr)εr,t; r = {0, 1} (1.1)

in which the parameters governing the conditional mean (x
0
tβr) and variance (σ

2(zt, γr)) are allowed

to differ across regimes. The regime is unobserved and is determined as the outcome of a markov

chain process in which the current regime, rt, only depends on the lagged value of the (unobserved)

regime, rt−1. Specifically, conditional on rt−1 the probability of transiting from one regime to

another is specified as Pr(rt|rt−1). These are often referred to as the transition probabilities of the
process and in the two regime case they are denoted as P00 and P11, respectively4.

In nearly all empirical work, the distribution of εr,t is assumed to be iid and Gaussian(0,1).5 This

assumption precludes the possibility of any excess skewness or kurtosis in the regime conditional

distribution of y, denoted as fr(yt|xt, zt). Consequently, any departure from normality in the

unconditional distribution, f(yt|xt, zt), can solely be attributed to the effect of switching between
different regimes. Allowing for the possibility of significant departures from normality in the regime

conditional distribution is important for two reasons. First, from an econometric perspective, a

more accurate description of the uncertainty within a regime will necessarily yield better informed

and more accurate estimates of the unobserved regime of the economy. More accurate estimates of

the latent regime imply superior parameter estimation as well as more forecasting power for future

regimes. Second, and more importantly, departures from normality in the regime conditional

distribution have important economic implications in their own right. Consider, for example,

a two regime model for stock returns in which each distribution is specified as Gaussian with

mean µr and regime specific variance σ
2
r. Suppose further that the more volatile regime is also

characterized by significant negative skewness and excess kurtosis. This type of information would

be crucial for assessing portfolio risk and would also be important from an asset pricing perspective.

In particular, this pattern in the regime conditional distributions of stock returns would have

interesting implications for option prices in the kinds of regime switching option pricing models

that have been recently explored by Bollen, Gray and Whaley (2000) and Campbell and Li (2001).

Exploring the regime conditional distribution is related to the question of choosing the number

of regimes. A number of authors such as Hansen (1992), Garcia (1998) have taken up the question

of how many regimes are required to adequately model the distribution of y. This line of research

conditions on within regime normality and then tests the null of K regimes against the alternative
3 In this paper we only consider two regime models. Two regime models dominate the regime switching literature

and restricting attention to the two regime case simplifies exposition and notation considerably. Extensions to multi
regime settings are straightforward.

4Also note that Pr(rt = 1|rt−1) ≡ P01 = 1− P00 and Pr(rt = 0|rt−1 = 1) ≡ P10 = 1− P11
5Two important exceptions are Hamilton and Susmel (1994) and Perez-Quiros and Timmerman (2000).
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of K + 1 regimes. Our approach takes the opposite tack. We condition on the number of regimes

and ask to what extent the Gaussian assumption is consistent with the observed data. In each

case, the goal is to provide a means for assessing how to improve the regime switching model’s

characterization of the data. In this sense, both lines of research are complementary.

The remainder of the paper is organized as follows. Section 2 discusses Gaussian regime switch-

ing models, their applications to interest rate processes and why it is necessary to consider more

general alternatives. Section 3 develops the test of normality and applies it to the U.S. short term

interest rate. Section 4 discusses quasi maximum likelihood estimation (QMLE) of regime switching

models and shows that the resulting estimator is inconsistent. Section 5 discusses model identifica-

tion and outlines a framework for estimating the regime conditional distribution in a distribution

free context and applies it to the U.S. short term interest rate. Section 6 concludes. All proofs may

be found in the appendix.

2 The Structure of Regime Switching Models

2.1 Gaussian Regime Switching Models

In this section we summarize the key points regarding the construction and estimation of Gaussian

regime switching models.

Regime switching models are often specified as:

Pr(rt = 0|rt−1 = 0) = P00 (2.1)

Pr(rt = 1|rt−1 = 1) = P11
yt = x0tβr + σrεr,t

εr,t ∼ fr(·) (iid).

In the case of Gaussian models, f0(·) = f1(·) = N(0, 1). Interesting and important variations on

the standard model above are the inclusion of time varying transition probabilities, Prr,t = Φ(z0tγr),
as in Diebold, Weinbach, and Lee (1994) and more complex volatility specifications that allow for

volatility dynamics within each regime as in Gray (1996). While these are important extensions, we

focus on the simple structure above to facilitate an intuitive exposition of the model while avoiding

unnecessary complexity and notation.

Recalling that the regime is unobserved, the distribution of yt conditional on the past informa-

tion set, Ωt−1, takes the form:

f(yt|Ωt−1; θ) = π1t|t−1φ
µ
yt − x0tβ1

σ1

¶
+ π0t|t−1φ

µ
yt − x0tβ0

σ0

¶
(2.2)
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where π1t|t−1 = 1− π0t|t−1 = Pr(rt−1 = 1|Ωt−1; θ) and θ = (β0,β1,σ0,σ1, P00, P11) and φ represents

the standard normal pdf. Expressions for πrt|t−1 are obtained by Bayes’ Rule

π1t|t−1 = π1t−1|t−1P11 + π0t−1|t−1(1− P00), (2.3)

π1t|t =
π1t|t−1φ

³
yt−x0tβ1

σ1

´
f(yt|Ωt−1) ,

and, πrt|t+τ is similarly defined. Specifically, when τ is negative, πrt|t+τ represents a forecast of the
probability that regime r will be realized in τ periods. When τ is positive, πrt|t+τ represents a
smoothed or updated inference of the probability that regime r was in fact realized τ periods ago.

Much of the analysis that follows will make use of these smoothed probabilities. At this point we

stress that the formulae for constructing πrt|t+τ are sensitive to the choice of regime conditional
distribution. A different choice of fr(·) will lead to a different sequence of πrt|t+τ . This simple
observation will be a key ingredient in much of what follows in this paper.

The construction of the likelihood facilitates parameter estimation by MLE, using the log like-

lihood
P
ln(f(yt|Ωt−1; θ)). The model’s parameters may then be estimated by setting the score of

the likelihood to zero using traditional optimization routines. Although setting the score to zero

delivers parameter estimates, Hamilton (1990) shows how the MLE can be constructed using an

application of the EM algorithm of Dempster, Laird and Rubin (1977). In the case of the model

specified above, it can be shown that application of the EM algorithm results in the following set

of recursive equations for l = 1, 2...,

Algorithm 2.1

blr =
³
X

0
rXr

´−1
X

0
rYr; r = {0, 1} (2.4)

s2,lr =
1Pbπrt|T

³
Yr −X 0

rbr

´0 ³
Yr −X 0

rbr

´
; r = {0, 1}

P lrr =

P
Pr(rt = r, rt−1 = r;ΩT , θl−1)P

Pr(rt = r;ΩT , θ
l−1)

; r = {0, 1}

where Xr =
qbπrt|T ·X, Yr =qbπrt|T · Y , Y and X are defined in the usual way and A· B denotes

element by element multiplication. The equations are iterated upon until the difference between

successive values of θl is small. Lastly, note that the recursive nature of the estimation (EM)

algorithm arises because of the need to construct bπrt|T (which depends on θl−1) before computing
θl =

¡
βl0,β

l
1,σ

l
0,σ

l
1, P

l
00, P

l
11

¢
.6 Accordingly, the recursion begins by choosing an initial parameter

vector θ0 computing bπrt|T , then computing θ1 and so on until convergence is achieved.
6The formulae for πrt|T and Pr(rt = r, rt−1 = r;ΩT , θ) are a set of highly nonlinear recursions. The exact form of

these recursions may be found in Hamilton (1990).
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2.2 Estimating Conditional Moments in a Regime Switching Setting

As summarized above, Hamilton (1990) shows that the MLE of the Gaussian regime switching

model (2.4) is equivalent to a weighted regression where the weights are the smoothed state proba-

bilities. Accordingly, given the smoothed probabilities, the MLE problem can be reduced to a GLS

regression. The main difference between the weights used in this context and more traditional GLS

weights, is that in a regime switching setting the weights,
q
πrt|T , do not only play an efficiency

enhancing role but rather they guarantee consistency. Below we state a related result that will

serve as a key insight underlying the remainder of the paper.

Lemma 2.2 Let zt = [yt, xt]
0. Given a regime switching model of the form in (2.1) E

³
πrt|t+τm(zt)

´
=

πrE (m(zt)|r) for any τ ≥ 0 and r = {0, 1}.

Proof. See Appendix.
The lemma is a population statement. In population, weighting the data with the appropriate

regime probabilities enables one to uncover the moments of the regime dependent distributions even

though the regimes are unobserved regardless of the form of fr(·). For example, settingm(zt) = x0txt
yields E

³
πrt|t+τx

0
txt

´
= πrE (x0txt|r) and setting m(zt) = x0tyt yields E

³
πrt|t+τx

0
tyt

´
= πrE (x0tyt|r)

and their ratio reveals βr. Also setting m(zt) = (yt − x0tβr)2 yields E
³
πrt|t+τ (yt − x0tβr)2

´
=

πrE
³
(yt − x0tβr)2 |r

´
= πrσ

2
r. The lemma provides an intuitive basis for the EM algorithm when

f0(·) = f1(·) = N(0, 1). In a Gaussian, single regime, framework maximum likelihood estimation

simply sets population moments (β,σ) to their sample counterparts. In the regime switching

setting, MLE sets regime specific population moments (βr,σr) to their regime weighted sample

counterparts. Moreover, the only reason to iterate more than once in the EM algorithm is due to

uncertainty over πrt|T . If π
r
t|T were observed alongside the data, MLE could be carried out in a

single iteration of the EM algorithm.

The intuition behind the lemma can be understood within the context of importance sam-

pling. Consider the problem of computing Eg [z] =
R
zg(z)dz vis-a-vis Monte Carlo integration. In

many cases, generating random draws from g(·) is too burdensome so we draw K random variates

from a well chosen “importance sampler” h(·) and approximate Eg [z] by 1
K

P
z gh(z). Ultimately,

as the law of large numbers takes hold, the finite summation converges to integration and we

obtain: 1K
P
z gh(z) →

R
z g(z)h(z)h(z)dz = Eg(z). In the current context, we would like to computeR

m(zt)fr(zt)dzt but are precluded from doing so because we are unable to sample from fr(·).7
While we can’t directly observe fr(·), f(zt|Ωt−1) is revealed to the econometrician through the
sample {zt}t=Tt=1 . Accordingly, f(zt|Ωt−1) may be used as an importance sampler in conjunction
with πrt|t+τ to recover

R
m(zt)fr(zt)dzt. As f(zt|Ωt−1) plays the role of the importance sampler,

πrt|t+τ plays the role of the ratio between the density of interest, fr(zt), and the importance sampler
7Note that since the distribution of xt is independent of the regime in model (2.1), fr(zt) = fr(yt|xt)f(xt)
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f(zt|Ωt−1). This can be seen by using Bayes’ Rule to re-write πrt|t+τ in a manner that is propor-
tional to fr(zt)

f(zt|Ωt−1) . Heuristically, the lemma is related to importance sampling in the sense that
we use πrt|t+τ to focus our attention on the observations that were most likely generated from the

regime of interest.

The lemma provides a formal justification for using regime weighted averages to approximate

moments of the regime dependent distributions. In particular, the within regime sample skewness

(bSr) and kurtosis ( bKr) are defined as follows:
bSr = 1bσ3rPbπrt|T

Xbπrt|T (bεr,t)3; r = {0, 1} (2.5)

bKr = 1bσ4rPbπrt|T
Xbπrt|T (bεr,t)4; r = {0, 1}. (2.6)

These expressions are the natural generalization of their single regime counterparts and can be

easily computed once the model has been estimated assuming that fr(·) is N(0,1). Namely, if
πrt|T = 1 for all t then Sr and Kr are identical to the sample skewness and kurtosis. These sample
statistics can be used in the same way that sample skewness and kurtosis are used in a single regime

framework to gauge the size and nature of departures from normality. In particular, under the null

hypothesis that the regime conditional distribution is Gaussian, we should expect to find values of

Sr and Kr − 3 that are close to zero. Furthermore, the estimates of within regime skewness and
kurtosis can be used to construct an informal Jarque-Bera test statistic

JBr =

PT
t=1 bπrt|T
6

ÃbS2r + ( bKr − 3)24

!
, (2.7)

which may be used as a preliminary means of checking the adequacy of the within regime normality

assumption before proceeding with the more formal testing procedure that we develop in the next

section8.

2.3 A Jarque-Bera Test for Regime Switching Models

Hamilton (1996) introduces a framework for hypothesis testing in regime switching models that

relies on the Lagrange Multiplier (LM) principle. In the current context we are interested in

testing a variant of model (2.1) in which fr(·) is assumed to be a member of the Pearson class of
distributions. Below we formally state the null and alternative hypotheses.

8We note that as long as a constant is included in xt−1 then
PT

t=1 bπrt|Tbεr,t = 0. Accordingly, there is no need to
demean bεr,t
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• H0 : yt is generated by model (2.1) with

εr,t ∼ fp(z;ar) (iid)

d ln fp(z;ar)

dz
=

ar,1 + z

ar,2 + ar,3z + ar,4z2

and ar,3 = ar,4 = 0 for r = 0, 1.

• HA : At least one term (a0,3, a0,4, a1,3, a1,4) is non-zero.

Following Hamilton (1996), we evaluate the restricted score of the above model and then com-

pute

LM ≡ JBRS = T
"
1

T

TX
t=1

ht(bθ)#0 hbI(bθ)i−1 " 1
T

TX
t=1

ht(bθ)# (2.8)

where ht(bθ) represents the restricted score vector and bI(bθ) represents a consistent estimator of
the model’s information matrix. Under the maintained assumptions in Hamilton (1996) the test

statistic is asymptotically distributed χ2(4). We also note that while the test is developed for the

null hypothesis of within regime normality across both regimes, the null hypothesis can easily be

modified to test for within regime normality in one of the two regimes. The resulting tests are then

asymptotically distributed χ2(2). Below we present expressions for the score and discuss estimation

of the information matrix.

Hamilton (1996) shows that the score of the likelihood, with respect to all parameters except

the transition probabilities, can be represented as,

hit,r(θ) ≡
∂ log f(yt|Ωt−1; θ)

∂θir
= ψit,rπ

r
t|t +

t−1X
τ=1

ψiτ ,r

³
πrτ |t − πrτ |t−1

´

where ψit,r ≡ ∂ log f(yt|Ωt−1,rt=r;θ)
∂θir

represents the score of the regime conditional likelihood with

respect to one of the parameters. Below we provide the score of the regime conditional likelihood.

The derivation of these results can be found in Jarque and Bera (1982).

ψ1t,r ≡
∂ log f(yt|Ωt−1, rt = r; θ)

∂βr
=

(yt − x0t−1βr)x0t
ar,2

ψ2t,r ≡
∂ log f(yt|Ωt−1, rt = r; θ)

∂ar,2
=

−1
2ar,2

+
(yt − x0tβr)2

2a2r,2

ψ3t,r ≡
∂ log f(yt|Ωt−1, rt = r; θ)

∂ar,3
=
−(yt − x0tβr)3

3a2r,2

ψ4t,r ≡
∂ log f(yt|Ωt−1, rt = r; θ)

∂ar,4
=

(yt − x0tβr)4
4a2r,2

− 3
4
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Lastly, the expression for the score of the likelihood with respect to P00 (h5t,0) is given by,

∂ log f(yt|Ωt−1; θ)
∂P00

= P−100 Pr(rt = 0, rt−1 = 0|Ωt; θ)− (1− P00)−1 Pr(rt = 1, rt−1 = 0|Ωt; θ)

+P−100
t−1X
τ=2

[Pr(rτ = 0, rτ−1 = 0|Ωt; θ)− Pr(rτ = 0, rτ−1 = 0|Ωt−1; θ)]−

(1− P00)−1
t−1X
τ=2

[Pr(rτ = 1, rτ−1 = 0|Ωt; θ)− Pr(rτ = 1, rτ−1 = 0|Ωt−1; θ)] +

Pr(r1 = 0|Ωt; θ)− Pr(r1 = 0|Ωt−1; θ)
(1− P00)

for t = 2, ..., T and
Pr(r1 = 0|Ω1)−

h
(1−P11)

(2−P11−P00)
i

(1− P00)
for t = 1. The expression for the score with respect to P11 (h5t,1) can be obtained analogously. Col-

lecting these expressions together yields the score of the likelihood, ht(θ) ≡
£
h1t,0, ..., h

5
t,0, h

1
t,1, ..., h

5
t,1

¤0
from which the LM test can be constructed.

In nonlinear models LM tests are often difficult to interpret. Exactly, what is being tested by

the LM test? In light of the previous lemma, the LM test can be easily interpreted. The LM test

simply checks whether E
¡
hir,t
¢
= 0 by checking a standardized sample average of hir,t. In the case

of h3r, this amounts to checking whether

E

µ
πrt|t

(εr,t)
3

3σ2r

¶
| {z }

a

+
t−1X
τ=1

E

µ
(εr,τ )

3

3σ2r

³
πrτ |t − πτ |t−1

´¶
| {z }

b

= 0

or not. Under the null hypothesis, a ∝ πrE
¡
ε3r,t|r

¢
which is zero. Secondly, b ∝ E

³
ε3r,τE

³
πrτ |t − πrτ |t−1|Ωt−1

´´
which is also zero under the null hypothesis since E

³
πrτ |t|Ωt−1

´
= πrτ |t−1 as long as τ ≤ t − 1 by

the law of iterated expectations. The first part of the score measures the degree of skewness within

regime r while the second part of the score measures whether the dynamics of the regime switching

model are misspecified. The intuition for h4t,r is similar. Viewed in this light, the LM test emerges

as a means of simultaneously measuring deviations from within regime normality (a) as well as

departures in the dynamic structure of πτ |t implied by the model (b).
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3 Quasi Maximum Likelihood Estimation of Regime Switching

Models

As noted earlier, nearly all empirical regime switching models assume Gaussianity of the regime

conditional distribution. In the presence of misspecification, the validity of this procedure rests

on the consistency properties of the QML estimator. Even if misspecification yields inappropriate

interval and density forecasts, the QMLE procedure could still be useful if it is consistent for the

mean and variance parameters (βr,σr) of a regime switching model. Unfortunately, the QMLE

procedure is not consistent. The intuition behind this result is as follows. Consider a simple model

in which only the mean differs across both regimes. The QMLE estimator for the regime dependent

mean can be represented as: bµr ∝ 1

T

Xbπrt|T yt; r = {0, 1} (3.1)

where bπrt|T has been constructed assuming εr,t is N(0,1). The estimate of µr is the result of a GLS
regression of y on a constant using the weights

³bπrt|T´ 12 . Since εr,t is not normally distributed the
weights used in the GLS regression are misspecified. In this context, the weights guarantee both

efficiency and consistency. As a result their misspecification creates the potential for an inconsistent

QMLE. We may think of bπrt|T as bπr,∗t|T+ηt where bπr,∗t|T is the smoothed probability one would calculate
under correct specification and ηt reflects the specification error. Accordingly, the estimator for µr
takes the form: bµr ∝ 1

T

Xbπr,∗t|T yt + 1

T

X
ηtyt; r = {0, 1}. (3.2)

Using the consistency properties of a correctly specified MLE, the first summation converges to

a constant proportional to µr. Hence, whenever y and η are correlated, µr will be inconsistently

estimated. In this way, the inconsistency of the QMLE can be understood in terms of the classic

econometric problem that arises whenever a regressor is correlated with the residual. We formalize

this notion in the following proposition.

Proposition 3.1 QMLE estimation of regime switching models as specified in (2.1) leads to in-
consistent estimates of the model parameters (β0,β1,σ0,σ1, P00, P11).

Proof. See Appendix.
The formal proof proceeds by counterexample. A single regime switching process is defined

such that the QMLE is inconsistent. It is important to stress that while this result formally shows

that assuming within regime normality is not an innocuous assumption there may well be cases

where the QMLE is consistent. Establishing consistency will hinge on demonstrating that there is

no correlation between the specification error, η, and y.
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4 Semiparametric Estimation

Below we discuss semiparametric identification of regime switching models and then we propose a

method for estimating regime conditional distributions that allow for unspecified departures from

normality9.

4.1 Model Identification

In what follows we consider a specific version of model (2.1) in which the distribution of εr,t is allowed

to exhibit unspecified departures from normality and xt only contains a constant. While this is a

restrictive assumption many of the following results can be tediously (though easily) extended to

cases where the conditional mean depends on a set of covariates. Additionally, the main focus of

this paper is how to identify and estimate the shape of the regime conditional distribution fr(εr,t)

and so we focus on a model in which this is the only object to be estimated. Before discussing model

estimation it is important to consider model identification. Given the generality of the model under

consideration it is not immediately clear that one model can always be distinguished from another

“false” model. In fact it is easy to construct an example in which the true model is indistinguishable

from a second false model. Consider the following simple model (M).

yt = εr,t

ε0,t ∼ f0(·) (iid).
ε1,t ∼ f1(·) (iid).
P00 = 1− P
P11 = P

A straightforward consequence of the fact that P11 = 1−P00 is that the distribution of yt is simply
a static mixture of f0(yt) and f1(yt) with weights 1− P and P ,

f(yt|Ωt−1) = f(yt) = (1− P )f0(yt) + Pf1(yt).
9Throughout, we use the term semiparametric to mean that the process for the regimes is taken parametrically (i.e.,

K-regime Markov), but the distribution of the observable, conditional on the regime is modeled nonparametrically.
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Now consider an alternative model (fM) in which the within regime distributions are simply convex
combinations of the previous within regime distributions,

yt = εr,teε0,t ∼ (1− δ)f0(·) + δf1(·) (iid).eε1,t ∼ (1− γ)f0(·) + γf1(·) (iid).
P00 = 1− eP
P11 = ePeP =

−δ
γ − δ

+
P

γ − δ

for some values of (δ, γ) inside the unit square. Algebraic manipulation readily yields that ef(yt|Ωt−1) =
f(yt|Ωt−1). Accordingly, the true model (M) is distributionally equivalent to the alternative model
(fM). This simple example highlights the fact that a necessary condition for model identification is
that the regimes must exhibit some form of persistence, i.e. P00 6= 1−P11. Persistent regimes imply
that the conditional density (f(yt|Ωt−1)) exhibits dynamics necessary for identification. Below we
state a proposition concerning the sufficiency of this restriction for identification of a certain class

of two state regime switching models.

Proposition 4.1 Suppose fr(yt|Ωt−1) = fr(yt) ≡ fr(εr,t) for r = 0, 1 with f0 6= f1 and that

P00 6= 1 − P11 then the model M = {f0, f1, P00, P11} is identified in the sense that there does not
exist another model fM = { ef0, ef1, eP00, eP11} such that f(yt|Ωt−1) = ef(yt|Ωt−1) except for the trivial
re-classification of regimes fM = {f1, f0, P11, P00} i.e., re-labeling regime 1 as regime 0 and vice
versa.

Proof. See Appendix.
While the details of the proof are not instructive and hence relegated to the appendix, its basic

structure is helpful in understanding the primary source of identification. The proof proceeds first

by demonstrating that any alternative model fM must posses the following properties,

ef0(yt) = (1− δ)f0(yt) + δf1(yt) (4.2)ef1(yt) = (1− γ)f0(yt) + γf1(yt)eπ1t+1|t = − δ

(γ − δ)
+

1

(γ − δ)
π1t+1|t

where (δ, γ) lie in the unit square. The first and second property establish that all feasible al-

ternative models are simply rotations of the true model and the last property imposes a linear

structure between the one-step ahead forecast probabilities of the true and alternative model. The

remainder of the proof exploits the dynamic structure of πt+1|t and shows that the only values of
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(δ, γ) consistent with the law of motion for π1t+1|t imposed by the regime switching structure are
(1, 0) and (0, 1).

Having established that misspecification of fr(·) yields an inconsistent QMLE and the conditions
under which regime switching models with general structures for fr(·) are identified (i.e., P00 6=
1−P11); we now introduce a semiparametric estimator for the regime switching model (M) that is
robust to within regime non-normality.

4.2 The Discrete Case

First we consider a simple class of regime switching models to motivate the intuition behind

the more general estimation procedure. Consider a two regime model in which the support of

y is discrete. Using the previous notation, the model can be characterized as M = {p0 ≡
{pk,0}K0

k=1, p1 ≡ {pk,1}K1
k=1, P00, P11} where pk,r ≡ Pr(y = yk|r).10 Conditional on the history of

states R ≡ {r0, r1, ..., rT}, the likelihood takes the form,

p(YT , R; θ) = ρr0p(r1|r0)...p(rT |rT−1)(p1,0)n10 ...(pK0,0)
nK0,0 ...(p1,1)

n1,1 ...(pK1,1)
nK1,1 (4.3)

where ρr0 refers to the initial probability of being in regime one or zero, p(rt|rt−1) refers to one of
P00, 1− P00, P11 or 1− P11; nk,r is the number of times yk was observed during regime r = {0, 1}
and

P
k,r

nk,r = T . Since the underlying regime, rt, is latent so too is the entire history R and as

a result we must integrate R out of the likelihood leaving us with the following expression for the

likelihood.

p(YT ; θ) =
X
R

p(YT , R; θ) (4.4)

where
P
R
denotes summation over every possible history of regimes. In principle, θ, could be

obtained by directly maximizing the above expression. In practice, however, this is intractable. A

sample of only 20 observations would require the computation of 220 ≈ 106 different summands.
While this representation of the likelihood is not useful for computation, it is useful, as first noted by

Hamilton (1990), in implementing the EM algorithm as a means of computing maximum likelihood

estimates. Below we briefly outline the mechanics of the EM algorithm as it relates to this problem

and we direct interested readers to Hamilton (1990) and Dempster, Laird and Rubin (1976) for

further details.
10Note that this model contains no conditional mean or volatility dynamics apart from those generated by the

regime switching channel. This can be relaxed by allowing pk,r to depend on the value of an indicator variable X.
Accordingly, the model can be re-stated in terms of pj,k,r ≡ Pr(y = yk|r,X = xj).
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4.2.1 Model Estimation

The EM algorithm proceeds by solving a sequence of maximization programs of the form:

max
θl+1∈Θ

Q(θl+1;YT , θl) = max
θl+1∈Θ

X
R

ln(p(YT , R, θl+1)) · p(YT , R, θl) (4.5)

where θl was obtained from a previous iteration or an initial value. The procedure continues until θl
converges. Dempster, Laird and Rubin show, under general conditions, that the algorithm converges

to a maximum of the likelihood. In particular they show that satisfying the first-order conditions of

(4.5) is equivalent to satisfying the first-order conditions of (4.4) and that each successive iteration

of (4.5) results in an increase in the value of the likelihood (4.4).

In the case under consideration here, Q(θl+1;YT , θl) can be decomposed as:X
R

ln(ρl+1r0 ) · p(YT , R, θl) +
X
R

TX
t=1

ln(pl+1(rt|rt−1)) · p(YT , R, θl) (4.6)

X
R

KX
k=1

TX
t=1

1{yt = yk}1{rt = r} ln(pl+1k,r ) · p(YT , R, θl)

and Q(θl+1;YT , θl) is maximized subject to the constraint that each regime conditional distribution

sums to unity (
KP
k=1

pk,r = 1; r = {0, 1}). Note that Q(θl+1;YT , θl) is separable in terms of the
initial regime probability (ρr0), the transition probabilities (p(rt|rt−1)) and the regime conditional
distributions (pk,r). Furthermore, the constraints do not involve any parameters except for those

related to the regime conditional distributions (pk,r). As a result, the first order conditions for

ρr0 and p(rt|rt−1) can be solved independently of those for pk,r. Following Hamilton (1990) it is
shown in the appendix that the following recursions characterize the EM algorithm for the model

parameters

Algorithm 4.2

P l+100 =
TX
t=2

Pr(rt = 0, rt−1 = 0|ΩT , θl) · [
TX
t=2

Pr(rt−1 = 0|ΩT , θl)]−1 (4.7)

P l+111 =
TX
t=2

Pr(rt = 1, rt−1 = 1|ΩT , θl) · [
TX
t=2

Pr(rt−1 = 0|ΩT , θl)]−1 (4.8)

ρl+1r0 = Pr(r0 = 0|ΩT , θl) (4.9)

bpl+1k,r =
1

TP
t=1
bπrt|T

TX
t=1

1{yt = yk}bπrt|T (4.10)

where Pr(rt = r, rt−1 = r|ΩT , θl), Pr(rt−1 = 1|ΩT , θl) and Pr(r0 = 1|ΩT , θl) are posterior probabil-
ities that are conditioned on the full information set ΩT . The expressions for these objects can be

found in Hamilton (1990).
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The recursion for all model parameters is initiated with an initial value θ0 ≡
¡
p00, p

0
1, P

0
00, P

0
11, ρ

0
r0

¢
and the equations constituting Algorithm 4.2 are iterated upon until convergence is achieved.

Although the MLE for pk,r is a recursive set of nonlinear equations, the expression for pk,r is quite

intuitive. In the case that the regimes are observable, the MLE for pk,r would simply be a histogram,

pk,r =
P
1{yt=yk}1{rt=r}P

1{rt=r} . In the case that regimes are unobserved, we replace 1{rt = r} with the
posterior probability that regime r was realized at time t. This form of the estimator also accords

with the intuition behind Lemma 2.2. Once convergence is achieved the estimator takes the form,bpk,r = 1P bπrt|T Ph
1{yt = yk}bπrt|T i. Under the true parameters θ0 we have shown in Lemma 2.2 that

E
h
1{yt = yk}πrt|T

i
[πr]−1 = E [1{yt = yk}|rt = r] = pk,r. The MLE simply replaces population

parameters θ0 with their estimates bθ and computes sample averages.
In light of the previous discussion concerning model identification, as long as P00 6= 1−P11 the

model M = {p0 ≡ {pk,0}K0
k=1, p1 ≡ {pk,1}K1

k=1, P00, P11} is asymptotically identified. Given, asymp-
totic identification and other regularity conditions (see for example, Handbook of Econometrics,

Ch. 38, Vol. 4 ) the MLE is both consistent and asymptotically normal. Accordingly, standard

errors may be computed as usual. We should note that the claim of asymptotic normality stands

in stark contrast to the Gaussian case, i.e. model (2.1) with fr(·) = N(0, 1). In the Gaussian case
one can show that the maximum of the likelihood does not exist, (i.e. no Type I MLE exists). The

non-existence arises from allowing the variance parameters to exist in the half open interval (0, c].

In every sample, if the mean of regime 1, for example, is set to y1 and σ1 is allowed to converge to-

wards zero then the likelihood becomes unbounded. As a result, no maximum exists. Kiefer (1978)

shows that a consistent Type II MLE exists (i.e., asymptotically there exists a unique solution to

the FOC in a closed neighborhood around the true parameter values.) in the case P00 = 1− P11,
but that result has not yet been extended to the case considered here (P00 6= 1 − P11). The con-
struction of the model in this context escapes this problem by considering a discrete support which

guarantees that the likelihood is always bounded by unity.

4.3 The Continuous Case

Now we turn our attention to the more complex task of constructing estimators for θ ≡ {θ1, θ2} ≡
{P00, P11}, {f0(yt), f1(yt)} without nesting fr(yt) within a finite dimensional parametric family.
Before describing the proposed estimation procedure we build some intuition for the estimator by

considering a locally weighted likelihood approach to estimating a simple univariate density. In a

nonparametric setting, it is difficult to think about maximizing a likelihood since the likelihood is

only available if we have a parametric form for f(yt; θ). Instead of thinking about the likelihood

f(YT ; θ), we will define the notion of a pseudo-likelihood ef(YT ; θ). Consider the case in which y is
an iid multinomial random variable. Abstracting from the regime switching set up, the likelihood
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of T observations can be written as:

p(YT ; θ) = (p(y1))
n1(p(y2))

n2 ...(p(yk))
nK

where p(yk) is the probability of observing y = yk and nk is the number of times yk was observed

over T periods. Note that we can also represent p(YT , θ) in the following manner:

p(YT ; θ) =
KY
j=1

TY
t=1

p(yj)
w
j
t

where the weighting function, wkt , takes the particular form wkt = 1(yt = yk). Now consider

the case where we wish to estimate f(y) and the support is continuous. Consider a partition of

y, {y1, y2,...,yK} and the associated partition of function values {f(y1), f(y2), ..., f(yK)}, also let
∆yk ≡ yk − yk−1. Now we define the sample pseudo likelihood as follows:

ef(YT ; θ) = KY
j=1

TY
t=1

f(yj)
w
j
t

where wkt is a weighting function. A convenient choice for the weighting function is w
k
t =

1
hK(

|yt−yk|
h )∆yk

where K(·) is a symmetric density. Note that if we were to choose the weighting function wkt =
1(yt = yk) and y was in fact discrete then the pseudo likelihood, ef(YT ; θ), and the actual likelihood,
p(YT ; θ), would coincide. Before extending this analysis to the regime switching case, it is interest-

ing to note the relation between MLE of p(YT ; θ) and maximization of ef(YT ; θ). In the first case we
wish to choose θ = {p1, p2, ..., pK} to maximize p(YT ; θ) subject to the constraint that

KP
k=1

pk = 1.

The resulting MLE is simply bpk = nk/T , i.e. a histogram estimator. Now in the case of the pseudo

likelihood our objective is to choose θ = {f(y1), f(y2), ..., f(yK)} in order to maximize ef(YT , θ)
subject to the constraint

KP
k=1

f(yk)∆yk = 1. Accordingly, we set up the lagrangian and take first

derivatives:

L = log( ef(YT ; θ))− µ( KX
k=2

f(yk)∆yk − 1)

∂L

∂f(yk)
=

1

f(yk)

TX
t=1

wkt − µ∆yk.

Using the constraint we can see:

µ =
KX
k=1

TX
t=1

wkt ,

and if we recall that wkt =
1
hK(

|yt−yk|
h )∆yk where K(·) is a symmetric density and if we assume

that the partition on y is taken to be very fine then:

µ =
TX
t=1

KX
k=1

1

h
K(
|yt − yk|
h

)∆yk =
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TX
t=1

KX
k=1

1

h
K(
zt,k
h
)∆zk ≈

TX
t=1

∞Z
−∞

1

h
K(ut)dut · h =

TX
t=1

1

µ = T.

Now setting the derivative of the lagrangian to zero:

1

f(yk)

TX
t=1

wkt = µ∆yk

1

f(yk)

TX
t=1

1

h
K(
|yt − yk|
h

)∆yk = µ∆yk

1

f(yk)

TX
t=1

1

h
K(
|yt − yk|
h

) = T

bf(yk) = 1

Th

TX
t=1

K(
|yt − yk|
h

).

The resulting estimator is the standard Nadarya-Watson kernel density estimator. Viewed in this

light, it can be seen that maximizing a pseudo likelihood produces a smoothed histogram as a

density estimator in contrast to the discrete support case, in which case, the MLE is the traditional

histogram.

4.3.1 Model Estimation

Now our aim is to incorporate the pseudo likelihood into the regime switching context. We define

the pseudo regime conditional likelihood as follows:

ef(YT , R; θ) = ρr0p(r1|r0)...p(rT |rT−1)
k=KY
k=1

TY
t=1

f(yk|r = 0)w
0,k
t

k=KY
k=1

TY
t=1

f(yk|r = 1)w
1,k
t (4.11)

where now the weight function takes the form, wr,kt = 1
hK(

|yt−yk|
h )1{rt = r}∆yk. The unconditional

pseudo likelihood is simply given by ef(YT ; θ) =P
R

ef(YT , R, θ). Note that the pseudo-likelihood is
composed of two parts. The first is completely parametric and represents the probability of a given

regime path (R). The second component is nonparametric and represents the pseudo-likelihood of

YT given R. We maximize ef(YT ; θ) in the same manner as we maximized p(YT ; θ) in the discrete
case, namely we employ the EM algorithm.
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As in the discrete case, note that ln( ef(YT , R; θ)) can be separated into three components:
ln( ef(YT , R; θ)) = ln(ρr0) +

TP
t=2
ln(p(rt|rt−1)) +

TP
t=1

1P
r=0

KP
k=1

wr,kt log(f(yk|r)). The first component
represents the contribution to the likelihood from the initial regime probability, the second reflects

the contribution from the transition probabilities and the third the contribution from the regime

conditional pseudo-likelihood for y. Since the log pseudo likelihood is additively separable and

since only the portion representing the contribution from fr(yk) differs from the parametric case,

determining the initial regime vector and the transition probabilities does not differ from the discrete

case (Algorithm 4.2).

All that remains is to obtain expressions for {f0(y1), ..., f0(yK); f1(y1), ..., f1(yK)}. We show in
the appendix that the appropriate recursion for f(yk|r) is given by:

bf l+1(yk|r) = 1

h

TX
t=1

K(
|yt − yk|
h0

)
bπrt|TP
t
bπrt|T . (4.12)

Estimation proceeds by choosing, P 000, P
0
11, f

0
0 (·), f01 (·) and then iterating on the above equation

as well as the recursions for P lr,r. The fully semiparametric estimator "smooths out" the discrete

estimator through the use of a smooth weighting function K( |yt−yk|h0
) rather than the discontinuous

weighting function 1(yt = yk). Here we note that while it is quite intuitive, this estimator is

considerably more complex than the estimator in the discrete case due to the fact that part of the

model space is finite dimensional, θ1 = (P00, P11), and part is infinite dimensional, θ2 = (f0(·), f1(·)).
Here we make no claim to establish consistency rates or asymptotic distribution theory for the fully

semiparametric estimator. We only remark that due the significant nonlinear nature of the model

that this is a challenging task that we leave to future research.

5 U.S. Short Term Interest Rate: Empirical Results

5.1 Motivation and Model Specification

Interest rates have received considerable attention in the regime switching literature, Ang and

Bekaert (2001), Bansal and Zhou (2002), Dahlquist and Gray (2000), Garcia and Perron (1996),

Gray (1996), Cai (1994). The widespread application of regime switching models to interest rates

stems from the natural association between the notion of regimes that underlie the econometric

model and the large economy-wide shocks that have strong and persistent influences on the behavior

of interest rates. In this way, the regime structure of the model is more than a mere device used to

filter the data. For example, Ang and Bekaert (2001) argue that the regime classification in a two

regime model of U.S. nominal short term rates corresponds reasonably well with business cycles.

Bansal and Zhou (2002) draw a similar conclusion in their regime switching analysis of the U.S.
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term structure. Dahlquist and Gray (2000) argue that the regimes identified in their study of a

sample of EMS countries reflects changes in monetary policy regimes as central banks attempt to

maintain pre-specified currency target zones. In this way, the regime structure of the model makes

a close connection with the economics of interest rate determination.

In what follows we will focus on the following model of the weekly U.S. short term rate between

1970 and 1994:

∆it = α0r + α1rit−1 + σrεt; r = {0, 1} (5.13)

εr,t ∼ fr(·) (iid)

where P00 and P11 are defined as in (2.1) and fr(·) refers to a well-behaved, smooth density function.
The specification described above with f0(·) = f1(·) = N(0, 1) corresponds to Gray’s (1996) study of
the one-month U.S. Treasury bill rate rate. The specification allows for mean reversion in interest

rates that varies across regimes. Table 1 reproduces Gray’s model estimates. For comparative

purposes we use the exact same data used by Gray throughout the paper. Figure 1 presents plots

of the U.S. short rate (it) between 1970 and 1994, the weekly difference in the short rate (∆it), the

estimated smoothed probability of regime 0 (bπ0t|T ) and a histogram of ∆it. Readers interested in a

more detailed description of the data are referred to Gray (1996).

Figure 1 About Here

Before discussing the model results we highlight some important features of the data. Looking

at the time series plot of ∆it, it is apparent that the series displays considerable and persistent

heteroscedasticity. The periods surrounding the OPEC oil crises, the Volcker monetary policy

regime and the period surrounding the October stock market crash of 1987 all display increased

variability. Looking at the histogram of ∆it, it appears that the most striking feature of the

unconditional distribution is extreme leptokurtosis (b2=28.4). As the time series switches between

periods of high and low variability the unconditional distribution inherits a tall peak near the origin

and thick tails.

Table 1 About Here

Examining Table 1 shows that the two regimes are characterized by high levels of persistence

(P00, P11 > 0.95) and widely differing levels of volatility (σ0 = 0.6716, σ1 = 0.1496). Examining the

plot of ∆it and bπ0t|T in Figure 1 shows that the model identifies regime 0 almost exclusively with
the aforementioned instances of increased interest rate variability. The model fails to recognize any

meaningful mean dynamics given the small estimates of the autoregressive parameters. Addition-

ally, the intercept parameters are indistinguishable from zero across both regimes, implying that

the short term interest rate may be loosely characterized as a driftless, heteroscedastic random
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walk. In what follows, we will make use of a simplified version of model (5.13) which assumes that

α0,0 = α0,1 = α1,0 = α1,1 = 0.

A conclusion that mean reversion is unimportant based on the estimates of a parametric model

needs to be reconciled with the fact that model estimates are inconsistent if (as we will shortly

argue) fr(·) is misspecified. The rationale for abstracting from any conditional mean dynamics

is as follows. First, though the QMLE may not be consistent it is not completely uninformative.

Even contemplating a range of mean reversion parameters within two QMLE standard errors of

the sample estimates would not imply very strong mean reversion. Second, the question of mean

reversion in interest rates is simply beyond the scope of this paper. Rather, our main goal is to

explore whether or not there are any interesting regime dynamics in higher order moments (i.e.,

skewness and kurtosis) in the distribution of short term interest rate shocks.

The assumption that volatility is constant once the regime has been controlled for is, perhaps,

more objectionable. Any attempt to characterize the regime conditional distribution of interest

rate shocks should explicitly recognize any within regime volatility dynamics. Moreover, excess

kurtosis or skewness in fr(·) may easily be confused with unmodeled volatility dynamics. Many
researchers who have previously explored interest rates in a regime switching context have allowed

for within regime volatility dynamics. Popular specifications of the regime conditional volatility

function include low order ARCH specifications, σr(t) = ωr(t) + αr(t)ε
2
t−1, as in Cai (1994) and

regime dependent CIR processes, σr(t) = ωr(t) + βr(t)
√
it−1, as in Dahlquist and Gray (2000) as

well as more complex GARCH specifications as in Gray (1996) and Ang and Bekaert (2000). It

should be noted, however, that while within regime volatility dynamics are often included it is not

clear that they are necessary once regime dependent level effects in volatility have been recognized

as in the above specification (5.13). Gray (1996) reports, “[t]he squared standardized residuals

[exhibit] no evidence of serial correlation. The simple regime switching model can capture much of

the stochastic volatility of short term interest rates.” In all of the studies cited above, the evidence

for complex volatility dynamics is sharply reduced after controlling for regime effects in the level

of volatility. In light of these findings, we take the simple regime switching specification (5.13)

to be an adequate point of departure for our exploration into the regime conditional distribution

of interest rate shocks. Before considering semiparametric alternatives to the parametric regime

switching model we investigate the validity of the within regime normality assumption using the

extended Jarque-Bera test.

5.2 Empirical Results of the Normality Test

Before considering the extended JB test (JBRS), we examine the estimated within regime skewness

and kurtosis as well as the informal Jarque-Bera statistics as an informal way of checking the

adequacy of the normality assumption.

19



Table 2 About Here

Table 2 contains point estimates of within regime skewness and kurtosis as given by equations

(2.5), (2.6) as well as the informal JB statistics. Examining these estimates shows that the amount

of skewness within each regime is small relative to the estimated kurtosis. The kurtosis in the

low volatility regime (bSr = 3.70) is roughly consistent with normality. The estimated kurtosis in
the high volatility regime (bSr = 8.5), however, seems too extreme to reconcile with the normality
assumption.

Evidence of excess kurtosis in the more volatile regime may help to explain one of the simple

regime switching models largest shortcomings. The lower panel of Table 1 reports the estimated

value of unconditional kurtosis generated by the parametric regime switching model (K=9.62).

Estimation uncertainty aside, this value seems too small relative to the sample estimate of uncon-

ditional kurtosis from the data ( bK=28.38). Note that in a Gaussian regime switching model with
a constant mean and switching variances (i.e, the restricted form of model (5.13)) unconditional

kurtosis is given by,

b2 =
a

b
, (5.14)

a = 3π1(1− π1)(σ20 − σ21)
2,

b =
£
σ20 + π1(σ21 − σ20)

¤2
,

where π1 denotes the ergodic (unconditional) probability of regime 1.11 Notice that the only

mechanism for generating excess kurtosis is by varying π1 or σ20 − σ21. Allowing for the possibility

of within regime excess kurtosis in the distribution of εr,t can improve the model’s ability to match

the amount of kurtosis in the data. It is straightforward to show that allowing for excess kurtosis

within each regime leads to the following expression for unconditional kurtosis,

b02 = b2 + π0
µ
σ20
σ2

¶2
b02 + π1

µ
σ21
σ2

¶2
b12, (5.15)

where σ2 = σ20 + π1(σ21 − σ20) and b
r
2 =

E[ε4r]
E[ε2r]

2 − 3 where εr represents the residual from regime

r. Observe that the unconditional kurtosis within each regime, br2, is amplified by the square of

the ratio of the regime conditional to the unconditional variance
³
σ2r
σ2

´
. In a two regime setting,

this implies that the regime with the larger within regime variance will have a substantially larger

effect on unconditional kurtosis. Accordingly, Gaussian regime switching estimates of unconditional

kurtosis that fall short of the kurtosis in the data may signal that the more volatile regime is also

more leptokurtic.

Turning attention to the extended JB tests in Table 2, the JB0RS and JB
1
RS statistics test the null

of normal residuals within regime 0 and 1, respectively, and are asymptotically distributed χ2(2).
11Timmerman (2000) provides expressions for the moments of regime switching models.
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The JBRS statistic tests the null of normal residuals across both regimes and is asymptotically

distributed χ2(4). Examining the JB0RS statistic (338.12) casts further doubt on the normality

assumption. While the corresponding normality test for regime 1 (JB1RS) also rejects the null at

any reasonable significance level, the size of the discrepancy is much larger for regime 0 (338.12 vs.

92.42) than for regime 1. Qualitatively, based on these tests, the normality assumption appears to

be a more reasonable approximation to the distribution of the residuals for regime 1 than for regime

0. It is important to note, however, that while the data rejects a model of within regime normality

(JBRS = 428.68), comparing the size of the modified JB test to the standard (single regime) JB

test (see Figure 1) computed from the raw data (JB = 34, 465) suggests that introducing multiple

regimes goes a long way towards improving the model’s specification.

5.3 Estimation Results When fr(·) is Discrete
We investigate the regime dependent distribution of interest rate shocks (∆it) using the discretized

regime switching model.12 The model is defined as M = {p0, p1, P00, P11} and is estimated using
Algorithm 4.2. 13 The initial parameter θ0 was taken to be the one implied by the results of the

parametric model (See Table 1).

Table 3 About Here

Figure 2 About Here

Table 3 shows model estimates and the probabilities that would obtain under normality using

Gray’s (1996) estimates from Table 1.14 Figure 2 plots an overlay of the estimated histograms

and the normal density implied by Gray’s (1996) estimates. The estimated histograms confirm the

qualitative results of the extended Jarque-Bera tests. The table shows that the less volatile regime

accords closely with normality while the more volatile regime appears considerably more peaked

in the middle and thinner in the tails than the corresponding normal distribution. It also appears

that the difference between the distribution of ∆it in the volatile regime is driven by more than a

few outliers. If this were the case, one would not expect such persistent deviation from normality

in the center of the distribution.

These results suggest that higher order moments (e.g., skewness and kurtosis) of interest rate

shocks (∆it) vary across regimes. This calls into question simple location scale (e.g, GARCH(p,q))

models of interest rate shocks that only assume time variation in conditional volatility. Models

such as Hansen’s (1994) Autoregressive Conditional Density (ACD), provide for richer dynamics
12We discretize the domain of∆it into the following setD = {(−∞,−0.80), [−0.80,−0.60), [−0.60,−0.40), ..., [0.80,∞)}
13 In all empirical applications we take r0 to be an independent draw from the ergodic distribution of regimes, i.e.

Pr(r0 = 1) =
(1−p00)

2−P11−P00 , hence ρr0 is not treated as a free parameter.
14As noted previously, α0,r,α1,r are set to zero.
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that account for time variation in volatility, skewness and kurtosis but are hampered by the need

to specify a separate time series model for each moment. This modeling strategy typically results

in a large number of parameters to be estimated. The current model builds on the ACD approach

by allowing for variation in higher order moments that are driven by a single shock (rt).

While these results are suggestive of a regime that is reasonably approximated by normality and

one that is not, it is difficult to compare previous results that employ continuous distributions with

the current discrete model. We now turn to the estimation results for the case of continuous regime

conditional distributions in order to make a more complete comparison with earlier research.

5.4 Estimation Results When fr(·) is Continuous
Figure 3 shows plots of the two regime dependent distributions for the weekly change in the U.S.

short rate using the method outlined above overlayed against the normal distribution implied by

Gray’s (1996) estimates. The estimation algorithm was begun by using the final estimates from the

discrete model in the previous section as the initial parameter vector (P00, P11, f0(∆it), f1(∆it)).

Then, the modified EM algorithm was carried out until convergence was achieved. In effect, Figure

3 simply smooths out the histogram estimates from Figure 2. The less volatile regime’s estimated

distribution fits rather closely with the associated Gaussian distribution except near the peak.

The more volatile regime shows more significant signs of misspecification. The continuous density

estimates confirm what the earlier analysis has shown. The less volatile regime is well characterized

by a Normal distribution but the more volatile regime exhibits negative skewness and thicker

tails than a normal density. Again, these results suggests that interest risk is only adequately

characterized by the variance of interest shocks during periods of low volatility. During periods of

excessive interest rate variability higher order moments are also important in characterizing interest

rate risk. In particular, these empirical findings would be of importance to the pricing of interest

rate sensitive securities. These results suggest that pricing would critically depend on whether or

not (or the relative likelihood) the economy was in the midst of a calm or volatilie interest rate

regime.

Figure 3 About Here

6 Conclusion

This paper has developed a set of diagnostic tools and tests that can be used to shed light on the

plausibility of the normality assumption in a regime switching model. These diagnostics, when

applied to U.S. short term interest rate shocks (∆it), cast doubt on the normality assumption in

a two regime model. An extension of the Jarque-Bera test to the two regime setting rejects the
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null of normality at all reasonable significance levels. Additionally, we show that QML estimation

of regime switching models is inconsistent. In light of the need for more general alternatives to

the Gaussian regime switching model, we show that semiparametric alternatives are identified and

propose two different estimators. When these estimators are applied to the U.S. short rate series

the estimator of the more volatile regime reveals a distribution that is negatively skewed and

leptokurtic relative to the normal distribution. Other researchers who have examined and rejected

the Gaussian framework for the short rate (e.g., Thompson (2000)) have argued that a process with

unconditionally fat tails such as a Levy process would provide a better approximation to the short

rate process. These findings suggest that fat tailed innovations are only relevant during the more

volatile regime. Accordingly, we suggest a model that allows for considerable excess kurtosis only

during periods of high volatility.
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A Appendix

A.1 Proof of Lemma 2.2

Lemma 3.1 Let zt = [yt, xt]
0. Given a regime-switching model of the form in (2.1) E

³
πrt|t+τm(zt)

´
=

πrE (m(zt)|r) for any τ ≥ 0 and r = 0, 1.
Proof.
The proof is shown for the case τ = T−t. Generalizing the proof for any τ ≥ 0 is straightforward.

Let Zj = (z1, z2, ..., zj).

πrt|T = Pr(rt = r|ZT )

πrt|T = f(ZT |rt = r)
·

πr

f(ZT )

¸
πrt|T = πr

·
f(Zt−1|rt = r)
f(Zt−1)

¸ ·
fr(zt|Zt−1)
f(zt|Zt−1)

¸" i=TY
i=t+1

f(zi|rt = r, Zi−1)
f(zi|Zi−1)

#

Consider each term of the form f(zi|rt=r,Zi−1)
f(zi|Zi−1) . It will be convenient to demonstrate:

E

·
f(zi|rt = r, Zi−1)
f(zi|Zi−1) |Zi−1

¸
= 1

The result follows from observing:

E

·
f(zi|rt = r, Zi−1)
f(zi|Zi−1) |Zi−1

¸
=

∞Z
−∞

µ
f(zi|rt = r, Zi−1)
f(zi|Zi−1)

¶
f(zi|Zi−1)dyi =

∞Z
−∞

f(zi|rt = r, Zi−1)dyi = 1

setting f(zi|rt=r,Zi−1)
f(zi|Zi−1) = θi we have

E
h
πrt|Tm(zt)

i
= πrE

"
m(zt)

Ã·
f(Zt−1|rt = r)
f(Zt−1)

¸ ·
fr(zt|Zt−1)
f(zt|Zt−1)

¸" i=TY
i=t+1

θi

#!#
Repeated application of the law of iterated expectations yields:

E
h
πrt|Tm(zt)

i
= πrE

··
f(Zt−1|rt = r)
f(Zt−1)

¸
E

·
m(zt)

µ·
fr(zt|Zt−1)
f(zt|Zt−1)

¸¶
|Zt−1

¸¸
=

πrE

·f(Zt−1|rt = r)
f(Zt−1)

¸ ∞Z
−∞

m(zt)

µ·
fr(zt|Zt−1)
f(zt|Zt−1)

¸¶
f(zt|Zt−1)dzt

 =

πrE

··
f(Zt−1|rt = r)
f(Zt−1)

¸
E [m(zt)|rt = r, Zt−1]

¸
=
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πr
Z

Zt−1

[f(Zt−1|rt = r)]E [m(zt)|rt = r, Zt−1] =

πrE [m(zt)|rt = r]

A.2 Proof or Proposition 4.1
Proposition 4.1 QMLE estimation of regime-switching models as specified in (2.1) leads to in-
consistent estimates of the model parameters (β0,β1,σr,σ1, P00, P11).

Proof. We construct an example of a regime-switching process for which the Gaussian QMLE is
inconsistent. The proof consists of showing that the true model parameters θ0 = (β0,β1,σr,σ1, P00, P11)
do not constitute a fixed point of the EM algorithm. Consider the following two regime-switching
model, r = {0, 1}

yt = εr,t

ε0,t ∼ 2Φz≥0(·)
ε1,t ∼ 2Φz≤0(·)
P00 = P11 =

1

2

where 2Φz0 refers to the (left or right) truncated standard normal distribution. As a result, note
that σ20 = σ21 = 1− 4φ(0)2 and µ0 = 2φ(0), µ1 = −2φ(0). Moreover, we endow the econometrician
with the knowledge that σ0 = σ1 = 1− 4φ(0)2 and P00 = P11 = 1

2 . Accordingly, the only goal is to
estimate µ0, µ1.

Recall that under the assumed normality of εr,t the MLE for the regime-dependent means,µ0, µ1,
is a fixed point of the following set of equations:

bµ0 =
1

1
T

Pbπ0t|T 1T
Xbπ0t|T yt

bµ1 =
1

1
T

Pbπ1t|T 1T
Xbπ1t|T yt

the proposition is proved by showing that, in large samples, {bµ0, bµ1} = {µ0, µ1} is not a fixed point
of the above system of equations (recall that σ0,σ1, P00, P11) are known to the econometrician.
Consider the first equation.

bµ0 =
1

1
T

Pbπ0t|T 1T
Xbπ0t|T yt

Since P00 = P11 =
1
2 the model reduces to a static mixture model. Accordingly, past and future

values of yt provide no information about the value of rt beyond that contained in yt. As a result,
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we have π0t|T = π0t|t (see Hamilton, 1994). Using this fact, we can re-express the above equation as:

bµ0 =
1
T

Pbπ0t|tyt
1
T

Pbπ0t|t =
AT
BT

We wish to show that given {µ0, µ1}, Plim(bµ0) 6= µ0. We evaluate Plim(bµ0) by appealing to
Slutsky’s Rule (i.e. Plim(ATBT ) =

Plim(AT )
Plim(BT )

). First consider Plim(AT ).

Plim(AT ) = Plim(
1

T

Xbπt|tyt) = E ¡bπt|tyt¢
by Kolmogorov’s strong law of large numbers. We now evaluate E

¡bπt|tyt¢.
E
¡
πt|tyt

¢
=

Z bπ0t|tyt (φz≥0(yt) + φz≤0(yt))
2

dyt =Z
yt

φ(yt;µ0,σ)

φ(yt;µ0,σ) + φ(yt;µ1,σ)
(φz≥0(yt) + φz≤0(yt))dyt =Z

ytφ(yt;µ0,σ)R(yt)dyt = E0 (ytR(yt)) = cµ0; for some finite c

where φ(yt;µ,σ) represents the normal pdf with mean µ and variance σ2, R(yt) =
φz≥0(yt)+φz≤0(yt)

φ(yt;µ0,σ)+φ(yt;µ1,σ)

and E0 refers to the expectation taken with respect to φ(·;µ0,σ) . Before proceeding with the proof
we note some useful properties of R that are straightforward to verify. First, R(yt) is symmetric
about 0 and R0(yt)0 as yt0.

Turning our attention to BT we wish to calculate Plim(BT ) = Plim( 1T bπ0t|t) = E ³bπ0t|t´.
E
³bπ0t|t´ = Z φ(yt;µ0,σ)R(yt)dyt = E0 (R(yt))

The proof is completed by showing that E0 (R(yt)) 6= c. We proceed by contradiction. Suppose
that E0 (R(yt)) = c. If this is the case then it must also be the case that

E0 (ytR(yt)) = E0 (yt)E0 (R(yt))

which implies that yt and R(yt) are uncorrelated. Since the expectation is taken with respect to
φ(·;µ0,σ) we can invoke Stein’s Lemma (see Cochrane, (2001)) to compute Cov0(yt, R(yt)). Stein’s
Lemma dictates that if yt is normally distributed then Cov0(yt, R(yt)) = E0 (R

0(yt))σ2yt . Since
R0(yt) = −R0(−yt), R0(yt) > 0 whenever yt > 0 and since µ0 > 0 it follows that E0 (R0(yt)) > 0
which contradicts the maintained assumption that yt and R(yt) are uncorrelated, thus completing
the proof .

At this point we note two characteristics of the DGP which may be questionable to some
readers. First, since P00 = P11 = 1

2 there is no difference between the conditional and unconditional
distribution of yt. As a result, one could argue that recovering µr is not interesting. Instead the
only parameter of interest is µ0+µ1

2 . The transition probabilities are chosen so that we can make
use of πrt|t instead of π

r
t|T in the proof which greatly simplifies the analysis. It would be tedious but

trivial to extend the proof to the case where P00 = P11 = 1
2+ε in which case µ0 is of direct interest.

Secondly, the DGP consists of two distributions with only partial support. This assumption is
maintained to simplify the proof and the proof can easily be extended to the case where each
distribution has full support.
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A.3 Proof of Proposition 5.1
First we note that the proof below only strictly applies to the case where the only element of xt−1.
Extending this proof to the case of a linear conditional mean only changes the details and not the
basic structure of the proof.

Proposition 5.1 Suppose fr(yt|Yt−1) = fr(yt −X 0
t−1βr) ≡ fr(εr,t) for r = 0, 1 with f0 6= f1 and

that P00 6= 1 − P11 then the model M = {f0, f1, P00, P11} is identified in the sense that there does
not exist another model fM = { ef0, ef1, eP00, eP11} such that f(yt|Yt−1) = ef(yt|Yt−1) except for the
trivial re-classification of regimes fM = {f1, f0, P11, P00} i.e., re-labeling regime 1 as regime 0 and
vice versa.

The proof depends on three useful lemmas. They are given below and proven at the end of the
proof.

Proof.

Lemma A.1 If an observationally equivalent model, fM = { ef0, ef1, eP00, eP11}, exists then the follow-
ing conditions must hold. ef0(y) = (1− δ)f0(y) + δf1(y) (A.6)ef1(y) = (1− γ)f0(y) + γf1(y) (A.7)

eπ1t+1|t = − δ

(γ − δ)
+

1

(γ − δ)
π1t+1|t (A.8)

for some constants δ, γ.

At this point we note that if δ = γ then ef0 = ef1 in which case the model is reduced to a single-regime
model which is ruled out from the beginning. Accordingly, in what follows, we always assume δ 6= γ.

Lemma A.2 If an observationally equivalent model, fM = { ef0, ef1, eP00, eP11}, exists then eP01 has
the following two representations:

eP01 = γ − P11
δ − γ

if δ 6= 0 (A.9)

and eP01 = P01 − δ

γ − δ
if δ 6= 1 (A.10)

for the same δ, γ in the previous lemma.

Lemma A.3 If an observationally equivalent model, fM = { ef0, ef1, eP00, eP11}, exists then eP11 has
the following two representations:

eP11 = eP01γ(P11 − P01 − 1) + δ(P11 − P01 − 1) + P01(1 + eP01)
δ(P11 − P01 − 1) + P01 (A.11)

and eP11 = δ(P01 − 1) + P11(1− δ)

γ(1− δ) + (γ − 1)δ (A.12)
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for the same δ, γ in the previous lemma.
The remainder of the proof proceeds as follows. First we show that the only possible values of

δ are 0 and 1. Then we show that given δ, γ is either 1 or 0. These facts along with the formulae
provided in lemmas A.2 and A.3 finish the proof.

Suppose that δ is neither 0 or 1. Lemma 2 then requires that the following equality be satisfied.

γ − P11
δ − γ

=
P01 − δ

γ − δ

Algebraic manipulation shows that this condition is tantamount:

P11 (δ − γ) = P01 (δ − γ)

Suppose that δ 6= γ. In this case the above condition implies P11 = P01 which is contrary to the
maintained hypothesis. The only other way to satisfy the above condition is if δ = γ. When δ = γ

then lemma 1 shows that ef0 = ef1 in which case ef(yt+1|Yt) is not affected by the history {y1,y2, ..., yt}
but under the assumption that P11 6= P01 and f0 6= f1, f(yt+1|Yt) is affected by the history
{y1, y2, ..., yt}. Consequently it can not be the case that f(yt+1|Yt) = ef(yt+1|Yt). Accordingly, the
only permissible values of δ are 0 and 1.

Next we show that whenever δ = 1 then γ = 0 and vice versa. Suppose that δ = 1. In this case
lemma 3 requires that:

eP01γ(P11 − P01 − 1) + (P11 − P01 − 1) + P01(1 + eP01)
P11 − 1 =

(P01 − 1)
(γ − 1)

Also recall that lemma 2 requires that:

eP01 = (1− P11)
(1− γ)

These two conditions imply that:
γ (P11 − P01) = 0

This can only be satisfied if γ = 0 since P11 6= P01 by assumption.
Now suppose that δ = 0. In this case lemma A.3 requires that

eP01δ(P11 − P01 − 1) + δ(P11 − P01 − 1) + P01(1 + eP01)
δ(P11 − P01 − 1) + P01 =

P11
γ

and lemma 2 requires that: eP01 = P01
γ

These two conditions imply that:

(γ − 1)
γ

(P11 − P01) = 0

Since P11 6= P01 by assumption it must be the case that γ = 1.
Now we have shown that the only admissible (δ, γ) pairs are (1, 0) and (0, 1). Appealing to

the equations in lemmas 2 and 3 readily shows that when (δ, γ) = (1, 0) then eP11 = 1 − P01 andeP01 = 1 − P11. Likewise, when (δ, γ) = (0, 1) then eP11 = P11 and eP01 = P01. This completes the
proof.
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Proofs of Lemma A.1, A.2, and A.3 are provided below.
Proof of Lemma A.1
Suppose an observationally equivalent model (fM) exists then it must be the case that

f(yt+1|Yt) = ef(yt+1|Yt),∀yt+1, Yt
This condition is simply the definition of observational equivalence. If the conditional distributions
differ over any part of the support or for any history Yt then the two models are indeed discernible
from each other. The conditional distribution in a regime switching model is given by:

f(yt|Yt−1) = π1t|t−1f1(yt) + (1− π1t|t−1)f0(yt)

where π1t+1|t is given by the following recursion:

π1t|t =
π1t|t−1f1(yt)

π1t|t−1f1(yt) + π0t|t−1f0(yt)

π1t+1|t = P11π
1
t|t + P01π

0
t|t

Accordingly, observational equivalence implies:

f0(yt+1) + π1t+1|t(f1(yt+1)− f0(yt+1)) = ef0(yt+1) + eπ1t+1|t( ef1(yt+1)− ef0(yt+1))
or

π1t+1|t =
( ef0(yt+1)− f0(yt+1))
(f1(yt+1)− f0(yt+1)) +

( ef1(yt+1)− ef1(yt+1))
(f1(yt+1)− f0(yt+1))eπ1t+1|t

Moreover, for any two distinct histories the pair
³
π1t+1|t, eπ1t+1|t´,³π1,0t+1|t, eπ1,0t+1|t´ lie on a straight

line for any yt+1. Accordingly, it must be the case that

( ef0(yt+1)− f0(yt+1))
(f1(yt+1)− f0(yt+1)) = δ

and
( ef1(yt+1)− ef1(yt+1))
(f1(yt+1)− f0(yt+1)) = γ − δ

for some constants δ and γ. This proves equation (3) of Lemma 1. Manipulation of the two
equations above yields:

ef0(yt+1) = δf1(yt+1) + (1− δ)1f0(yt+1)ef0(yt+1) = γf1(yt+1) + (1− γ)f0(yt+1)

This completes the proof of Lemma A.1
Proof of Lemma A.2
To economize on notation in what follows we write f instead of f(·).
Begin by assuming that the state probabilities are linearly related. Using the fact that πt+1|t =

Pπt|t +Q(1− πt|t) it must necessarily be the case that:

eπ1t|t = (P01 − δ + (δ − γ) eP01)
(γ − δ)( eP11 − eP01) +

(P11 − P01)
(γ − δ)( eP11 − eP01)πt|t
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Note that this expression is always valid since P11 6= P01 it must necessarily be the case thateP 6= eP01 also δ = γ is also inconsistent with the true model since it is assumed that f0 6= f1 and if
δ = γ then ef0 = ef1. Now we use the fact that π1t|t = π1

t|t−1f1(yt)
π1
t|t−1f1(yt)+π

0
t|t−1f0(yt)

and rewrite the above

relationship in terms of eπ1t|t−1 and π1t|t−1. The resulting expression can be written as follows:

Aeπ1t|t−1 +Bπ1t|t−1 + Ceπ1t|t−1π1t|t−1 +D = 0

where the coefficients are given by:

A =
ef1f0(γ − δ)( eP11 − eP01) + κ( ef1 − ef0f0

(γ − δ)( eP11 − eP01)
B =

ef0{(f0 − f1)κ− f1(P11 − P01)}
(γ − δ)( eP11 − eP01)

C =
ef1(f1 − f0)(γ − δ)( eP11 − eP01) + ( ef0 − ef1){κ(f1 − f0) + f1(P11 − P01)}

(γ − δ)( eP11 − eP01)
D =

−κ ef0f0
(γ − δ)( eP11 − eP01)

κ = P01 − δ + (δ − γ) eP01
In order to maintain the relationship eπ1t+1|t − 1

(γ−δ)π
1
t+1|t +

δ
(γ−δ) = 0 it must be the case that:

B

A
= − 1

(γ − δ)

C = 0

and
D

A
=

δ

(γ − δ)

an implication of these restrictions is that D
B = −δ. We examine this implication in more detail

below. Using the fact that ef0 = (1− δ)f0 + δf1 and ef1 = (1− γ)f0 + γf1 along with the constraint
that DB = −δ we find that: eP01 = af1 + bf0

cf1 + df0

where:
a = δ(δ − P11)

b = P01(δ − 1) + δ(1− δ)

c = δ(δ − γ)

d = δ(1− δ) + γ(δ − 1)
Now, to ensure that eP01 is a constant its dependence on f0 and f1 must vanish. To eliminate

this dependence it must be the case that

a = c eP01
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b = d eP01
These relationships can be expressed as:

δ(δ − P11) = eP01δ(δ − γ)

and
P01(δ − 1) + δ(1− δ) = eP01{δ(1− δ) + γ(δ − 1)}

We rewrite the above expressions in terms of eP01.
eP01 = (δ − P11)

(δ − γ)
if δ 6= 0

and eP01 = P01(δ − 1) + δ(1− δ)

δ(1− δ) + γ(δ − 1) if δ 6= 1

This completes the proof of Lemma A.2.
Proof of Lemma A.3 Using equation (3) from Lemma A.1 we have:

E(eπ1t+1|t) = − δ

(γ − δ)
+

1

(γ − δ)
E(π1t+1|t)

It is easy to show that E(eπ1t+1|t) = π1∗ = P01
1−P11+P01 . Accordingly, we have:eP01

(1− eP11 + eP01) = − δ

(γ − δ)
+

1

(γ − δ)

P01
1− P11 + P01

Algebraic manipulation yields

eP11 = eP01γ(P11 − P01 − 1) + δ(P11 − P01 − 1) + P01(1 + eP01)
δ(P11 − P01 − 1) + P01

Next we provide another expression for eP11. We claim that the following expression is valid.

eP11 = δ(P01 − 1) + P11(1− δ)

γ(1− δ) + (γ − 1)δ
We prove the assertion in the following steps. First recall that earlier we showed that Aeπ1t|t−1 +
Bπ1t|t−1 + Ceπ1t|t−1π1t|t−1 +D = 0 and that in order to preserve linearity between eπ1t|t−1 and π1t|t−1
we require that C = 0. Setting C = 0 and re-arranging terms yields the following:

eP11 = af1 + bf0
cf1 + df0

where

a = P11 − δ + eP01δ
b = eP01(1− δ) + δ − P01
c = γ

d = 1− γ
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Now the argument proceeds in the same way as Lemma 2. In order to ensure that eP11 is constant
we need to restrict the coefficients as follows:

a = eP11c
b = eP11d

equating coefficients and collecting terms results in two expressions for eP01.
eP01 =

eP11γ − P11 + δ

δeP01 =
eP11(1− γ)− δ + P01

(1− δ)

Equating the two expressions results in the following expression for eP11.
eP11 = δ(P01 − 1) + P11(1− δ)

γ(1− δ) + (γ − 1)δ
This completes the proof of Lemma A.3

A.4 Proof of Algorithm 5.2
In this section we provide some details on the mechanics of the EM algorithm used in estimation.
A note about notation. In this section of the appendix we replace the notation for the time-t
information set Ωt with Yt since we abstract from any role for covariates.

A.4.1 The Parametric Case

First we consider the parametric case of section 4.2. Suppose that the support of y is discrete.
Further label the two state dependent probability distributions p1 ≡ {pk,0}Kk=1 and p1 ≡ {pk,1}Kk=1.
Conditional on a regime path R = {r1, r2, ..., rT}, the likelihood takes the following form:

p(YT , R; θ) = ρr0p(r1|r0)...p(rT |rT−1)(p1,0)n10 ...(pK,0)nK,0 ...(p1,1)n1,1 ...(pK,1)nK,1

where θ represents all model parameters, P00, P11, p0, p0, nk,r is the number of times yk was observed
during state r and

P
k,r

nk,r = T . Instead of summing over all possible regime paths, R, to construct

the likelihood, the EM algorithm is employed. Recall from section ?? that the EM algorithm
proceeds by iteratively maximizing the following function:

Q(θl+1;YT , θ
l) =

X
R

ln(ρr0) · p(YT , R, θl)

+
X
R

TX
t=1

ln(p(rt|rt−1)) · p(YT , R, θl)

+
X
R

KX
k=1

TX
t=1

1{yt = yk}1{rt = r} ln(pkr) · p(YT , R, θl)
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Q(θl+1;YT , θ
l) is maximized subject to the constraint that each state conditional distribution

sums to unity (
KP
k=1

pkr = 1; r = 0, 1). Note that Q is separable in terms of the initial state

probability (ρr0), the transition probabilities (p(rt|rt−1)) and the state conditional distributions
(pkr). Furthermore, the constraints do not involve any parameters except for those related to the
state conditional distributions (pkr). As a result, the first order conditions for ρr0 and p(rt|rt−1)
can be solved independently of those for pkr. Moreover, the first order conditions relating to the
transition probabilities and the initial state probability are identical to those in Hamilton (1990).
Accordingly, we do not reproduce the algebraic manipulations used to solve for these parameters.
The interested reader may consult Hamilton (1990) for the full details. Setting the FONC relating
to Pr,r and ρr0 yields the following recursion:

P l+1r,r =
TX
t=2

Pr(rt−1 = 1, rt−1 = 1|YT , θl) · [
TX
t=2

Pr(rt−1 = 1|YT , θl)]−1

ρl+1r0 = Pr(r0 = 1|YT , θl)
Turning our attention to the parameters governing the state conditional distributions (pkr) we

find that the first order conditions take the following form:

∂Q(θl+1;YT , θ)

∂pkr
:
X
R

TX
t=1

½
1

pkr
1{yt = yk}1{rt = r}

¾
· p(YT , R, θl) = µr

1X
rt=0

TX
t=1

½
1

pkr
1{yt = yk}1{rt = r}Pr(rt = r|Y, θl)

¾
=

µr
p(YT , θ

l)

TX
t=1

n
1{yt = yk}Pr(rt = r|YT , θl)

o
= pkr

µR
p(YT , θ

l)

The constant, µr
p(YT ,θ

l)
, is pinned down by summing over the support of the distribution.

KX
k=1

TX
t=1

n
1{yt = yk}Pr(rt = r|YT , θl)

o
=

µr
p(YT , θ

l)

KX
k=1

pkr =
µr

p(YT , θ
l)

µr
p(YT , θ

l)
=

TX
t=1

Pr(rt = r|YT , θl)

Now we find the solution for pkr,

pl+1kr =

TP
t=1

©
1{yt = yk}Pr(rt = r|YT , θl)

ª
TP
t=1
Pr(rt = r|YT , θl)

The algorithm is completed by providing expressions for Pr(rt = r, rt−1 = r;YT , θ
l) and Pr(rt =

r;YT , θ
l) ≡ bπrt|T . The formulae describing these objects can be obtained from Appendix B of

Hamilton (1990), or by making use of the approximation of Kim (1999).
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A.4.2 The semiparametric case

We briefly discuss how the likelihood (and EM algorithm) are modified in the semiparametric case.
Conditional on a regime path, R, we define the pseudo regime conditional likelihood as follows:

ef(YT , R; θ) = ρr0p(r1|r0)...p(rT |rT−1)
TY
t=1

p0(y1)
w0,1t ...

TY
t=1

p0(yK)
w0,Kt

TY
t=1

p1(y1)
w1,1t ...

TY
t=1

p1(yK)
w1,Kt

where now the weight function wr,kt = 1
hK(

|yt−yk|
h )1{rt = r}∆yk. Our approach will be to take

the exact same approach to maximizing ef(YT , θ) as we did to maximizing p(YT , θ), namely we will
employ the EM algorithm.

Now we characterize the solution to the problem of maximizing eQ(θl+1;Yt, θl).
First note that ln( ef(YT , R; θ)) can be separated into three parts: ln( ef(YT , R; θ)) = ln(ρr0) +

TP
t=2
ln(p(rt|rt−1))+

TP
t=1

1P
r=0

KP
k=1

wr,kt ln(fr(yk)). The first part represents the contribution to the likeli-

hood from the initial state probability, the second piece reflects the contribution from the transition
probabilities and the third the contribution from the state conditional pseudo-likelihood for y. Since
the last piece is the only section of the log pseudo likelihood which differs from the parametric case,
determining the initial state vector and the transition probabilities do not differ from the parametric
case. Namely,

P l+1r,r =
TX
t=2

Pr(rt = 1, rt−1 = 1|YT , θl) · [
TX
t=2

Pr(Rt−1 = 1|YT , θl)]−1

ρl+1r0 = Pr(r0 = r|YT , θl)
The only part of the pseudo likelihood that differs from the parametric case is the last term
which contains the parameters {f0(y1), ..., f0(yK); f1(y1), ..., f1(yK)}. Now we take the deriva-

tive of eQ(θl+1;YT , θl) with respect to fr(yk) and recognize the constraints KP
k=1

f0(yk)∆yk = 1 and

KP
k=1

f1(yk)∆yk = 1.

Recall,
Q(θl+1;YT , θ

l) =
X
R

ln( ef(YT , R, θl+1)) · ef(YT , R, θl)
∂Q

∂fr(yk)
=
X
R

TX
t=1

½
1

fs(yk)

1

h
K(
|yt − yk|
h

)1{rt = r}∆yk
¾
· ef(YT , R, θl) =

1X
rt=0

TX
t=1

½
1

fr(yk)

1

h
K(
|yt − yk|
h

)1{rt = r}∆yk Pr(rt = r|YT , θ)
¾
· ef(YT , θl) =

TX
t=1

½
1

fs(yk)

1

h
K(
|yt − yk|
h

)∆yk Pr(rt = r|YT , θ)
¾
· ef(YT , θl)

Now recognize the constraint:

TX
t=1

½
1

fs(yk)

1

h
K(
|yt − yk|
h

)∆yk Pr(rt = r|Y, θ)
¾
· ef(Y, θl)− µr∆yk = 0
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Using the constraint
KP
k=2

fr(yk)∆yk = 1 we can pin down the constant:

µref(YT , θl) =
X
t

X
k

1

h
K(
|yt − yk|
h

)∆yk Pr(rt = r|YT , θ)

and using the fact that K(·) is a density we can reduce µref(YT ,θl) toX
t

Pr(rt = r|YT , θ)

Now setting the first derivative of the lagrangian to zero :

TX
t=1

½
1

fr(yk)

1

h
K(
|yt − yk|
h

) Pr(rt = r|YT , θ)
¾
=
X
t

Pr(rt = r|YT , θ)

dfr(yk)l+1 = 1

h

TX
t=1

K(
|yt − yk|
h

)
Pr(rt = r|YT , θl)P
t
Pr(rt = r|YT , θl)
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Table 1: Gaussian Regime Switching Model

Estimates and Model Statistics

Regime 0 Regime 1

Constant (α0,r) 0.1687 -0.0057
(0.1398) (0.0180)

Auto-regressive Parameter (α1,r) -0.0190 0.0015
(0.0149) (0.0032)

Standard Deviation (σr) 0.6716 0.1496
(0.0778) (0.0344)

Transition Probability (P00, P11) 0.9680 0.9905
(0.0088) (0.0024)

Log - Likelihood 111.1109

Model Statistics

Long-Run Probability (π) 23% 77%

Regime Duration 31.25 weeks 105.26 weeks

Unconditional Mean (µ) 0.00 0.00

Unconditional Std. Dev. (σ) 0.36 0.36

Unconditional Skewness (
√
b1) 0.00 0.00

Unconditional Kurtosis (b2) 9.62 9.62

Table 1: The top panel presents parameter estimates from Gray (1996): ∆it = α0,r + α1,rit−1 +
σrεt,Pr(rt = j|rt−1 = j) = Pjj and the bottom panel presents implied model statistics. Standard
errors appear in parentheses.
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Table 2: Regime Skewness, Kurtosis

and Normality Tests

Regime 0 Regime 1

Skewness -0.80 0.09

Kurtosis 8.50 3.70

JB0 396.16 —

JB1 — 21.31

Normality Tests

JB0RS 338.12 —

JB1RS — 92.42

JBRS 428.68 428.68

Table 2: The top panel displays estimates of within-regime skewness and kurtosis along with the
informal Jarque-Bera tests. The bottom panel displays the formal normality tests. The null model
is ∆it = µr+σrεr,t JB

0,1
RS are asymptotically distributed χ

2(2). The asymptotic 5% and 1% critical
values of the test are 5.99 and 9.21 respectively. JBRS is asymptotically distributed χ2(4). The
asymptotic 5% and 1% critical values for the test are 9.49 and 13.28 respectively.
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Table 3: Histogram Regime Switching Estimates

Regime 0 Regime 1

∆it 1 2 2-1 1 2 2-1

(−∞,−0.8) 0.074 0.126 -0.053 0.000 0.000 0.000
(0.015) (—)

[−0.8,−0.6) 0.035 0.072 -0.037 0.000 0.000 0.000
(0.011) (—)

[−0.6,−0.4) 0.108 0.092 0.016 0.001 0.003 0.002
(0.018) (0.002)

[−0.4,−0.2) 0.110 0.1085 0.0011 0.069 0.0835 -0.015
(0.017) (0.008)

[−0.2, 0.0) 0.143 0.117 0.026 0.4302 0.404 -0.0262
(0.022) (0.022)

[0.0, 0.2) 0.190 0.116 0.074 0.412 0.415 -0.003
(0.027) (0.022)

[0.2, 0.4) 0.156 0.105 0.052 0.079 0.090 -0.012
(0.023) (0.001)

[0.4, 0.6) 0.090 0.087 0.003 0.005 0.004 0.001
(0.017) (0.003)

[0.6, 0.8) 0.027 0.066 -0.039 0.000 0.000 0.000
(0.009) (—)

[0.8,∞) 0.068 0.111 -0.043 0.000 0.000 0.000
(0.014) (—)

P00, P11 0.9789 0.9916
(0.009) (0.003)

Log-Likelihood -1863.50

Table 3: Column 1 reports parameter estimates. Standard errors are reported in parentheses. In
the case that the parameter estimate is 0, no standard error is reported. Column 2 reports the
probability that would be expected under normality. Column 2-1 shows the difference between
columns 1 and 2.
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Figure 1: This figure summarizes the one-month U.S. Treasury bill rate between 1970-1994. The
figure displays (left to right) a time-series plot of the weekly change in the Treasury bill rate, a
time-series plot of the weekly level of the Treasury bill rate, a histogram of the weekly change, and
lastly the smoothed probability of regime 0.
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Figure 2: The graph above displays the estimated regime histograms (solid) for ∆it along with the
associated normal distribution (dashed) implied by Gray’s (1996) estimates. The top panel displays
Regime 0 and the bottom panel displays Regime 1. Note that the horizontal axes are identical but
the vertical axes are not.
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Figure 3: The graph above displays the estimated regime 0 (top panel) and regime 1 (bottom
panel) distribution of weekly changes in the one-month U.S. Treasury bill rate (solid line) versus
the Gaussian distribution implied by Gray’s (1996) estimates (dotted line). Note that the axes are
not identical.
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