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Abstract

We re-examine the evidence on the new Phillips curve model of Gali and Gertler (Journal of

Monetary Economics 1999) using inference procedures that are robust to weak identification. In

contrast to earlier studies, we find that US postwar data are consistent both with the view that

inflation dynamics are forward-looking, and with the opposite view that they are predominantly

backward-looking. Moreover, the labor share does not appear to be a relevant determinant of

inflation. We show that this is an important factor contributing to the weak identification of

the Phillips curve.
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1 Introduction

The new Keynesian Phillips curve (NKPC) is a forward-looking model of inflation dynamics, ac-

cording to which short-run dynamics in inflation are driven by the expected discounted stream of

real marginal costs. Researchers often use a specification that includes both forward-looking and

backward-looking dynamics (Buiter and Jewitt (1989), Fuhrer and Moore (1995), Gaĺı and Gertler

(1999)):

πt = λst + γfEtπt+1 + γbπt−1 + εt (1)

where πt denotes inflation, st is some proxy for marginal costs, Et denotes mathematical expecta-

tion conditional on information up to time t, and εt is an unobserved innovation process, namely

Et−1εt = 0.

In a seminal paper, Gaĺı and Gertler (1999) proposed a version of this model in which the forcing

variable st is the labor share and the structural parameters λ, γf , γb are functions of some deeper

parameters: the fraction of backward-looking price-setters, the average duration an individual

price is fixed (the degree of price stickiness) and a discount factor. Using postwar data on the U.S.,

Gaĺı and Gertler (1999) reported that real marginal costs are statistically significant and inflation

dynamics are predominantly forward-looking. They found γb to be statistically significant but

quantitatively small relative to γf . In terms of their deep parameters, they reported that 60-80% of

firms exhibited forward-looking behavior, and the average duration over which prices remain fixed

was 6 to 7 quarters.

Mavroeidis (2005) argued that the above results are unreliable because the model appears to

be weakly identified. He showed that the possibility of weak identification cannot be ruled out a

priori, and that usual pre-tests of identification, such as the ones proposed by Cragg and Donald

(1997) and Stock and Yogo (2003) are inappropriate in this context and can be misleading.

In this paper, we address the issue of identification, by re-evaluating the conclusions of Gaĺı and

Gertler (1999) using estimation and inference methods that are partially or fully robust to failure

of identification. These procedures include the tests proposed by Stock and Wright (2000) and
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Kleibergen (2005), which are applicable to Euler equation models estimated using the Generalized

Method of Moments (GMM). Identification-robust tests are not yet available for full-information

likelihood-based inference on this model. Therefore, we take a limited-information approach and

use the continuously updated GMM estimator (CUE) proposed by Hansen (1996), instead of the

most commonly used 2-step GMM estimator, as advocated by Stock, Wright, and Yogo (2002).

We use the same data as Gaĺı and Gertler (1999). Our main findings are as follows. In

accordance with Gaĺı and Gertler (1999), we find some evidence that forward-looking dynamics

in inflation are statistically significant at the 10% level. Unlike them, we find that postwar US

inflation history is consistent both with a purely forward-looking Phillips curve as well as with

a model in which the majority of firms are backward-looking. Moreover, we do not find strong

evidence that real marginal costs drive inflation.

Gaĺı and Gertler (1999) report that the sum of the backward and forward-looking coefficients

is not significantly different from one. This restriction corresponds to the assumption that the

discount factor in their model is known (and equal to one). Using identification-robust tests, we

corroborate the above finding, but we also find that imposing that restriction does not improve the

identifiability of the remaining parameters of the model.

The above results confirm the criticism of Mavroeidis (2005) regarding the poor identifiability

of the parameters of the NKPC. They also help explain the large differences in empirical estimates

reported by other researchers using alternative methods (Fuhrer (1997), Jondeau and Le Bihan

(2003), Linde (2005)).

Ma (2002), Dufour, Khalaf, and Kichian (2006) and Nason and Smith (2005) also apply

identification-robust methods to the NKPC, and report identification problems. The present study

differs from those papers in several respects. First, it provides simulation evidence on the finite

sample properties of the identification-robust statistics when applied to the NKPC. Second, in

addition to the Anderson-Rubin and conditional score test used in the other papers, the present

study makes use of the conditional likelihood ratio test, which is sometimes more powerful than the

other identification-robust tests, see Andrews and Stock (2005). Third, the paper establishes some
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additional results on the identification of the NKPC which help understand the source of weak

identification. Specifically, identification failure will arise when the labor share is not relevant as a

forcing variable for inflation. Fourth, the paper examines a common restriction on the parameters

of the NKPC (that the discount factor is known) and finds that it is insufficient to resolve the

identification problem. Finally, the present study differs from the aforementioned papers also in

terms of specific assumptions made on the model. Dufour, Khalaf, and Kichian (2006), impose

the restriction that there is no error term in Eq. (1), i.e., that the NKPC is an “exact” rational

expectations model in the language of Hansen and Sargent (1991). This restriction enables them

to avoid using a heteroskedasticity and autocorrelation consistent (HAC) weighting matrix. One

could think of this as a strict version of the NKPC, which is not the one typically encountered in

applied work (see, e.g., Lubik and Schorfheide (2004) or Smets and Wouters (2003)). Moreover, it

is relatively easy to test (and reject) the exact form of the model.1 So, it is important to re-examine

the conclusions on the NKPC without imposing that assumption. Nason and Smith (2005) do not

impose exactness, and therefore use a HAC weighting matrix, but they impose the restriction that

the labor share is exogenous (so the model has a single endogenous regressor). This restriction is

also uncommon (Gaĺı and Gertler (1999) do not impose it), and somewhat unrealistic since the

labor share is a proxy for the true marginal costs, which are unobserved.

The structure of the paper is as follows. We begin by describing the model and the identification-

robust methods in section 2. Before engaging in the empirical analysis, we re-examine the identifi-

cation of model (1) in section 3, where we uncover another important case in which identification

of the model fails. This happens when the candidate driving process st is unrelated to inflation,

namely when λ = 0 in Eq. (1). This is of particular relevance because several studies (including

that of Gaĺı and Gertler (1999)) report estimates of λ that are very close to zero. In section 4,

we present the empirical results, and in the subsequent section, we analyze the implications of the

restriction γf + γb = 1 in Eq. (1).

1Exactness implies that the error πt − λst − γfπt+1 − γbπt−1 should be serially uncorrelated. In fact, it is very

significantly negatively autocorrelated at lag 1, which would occur only if εt 6= 0 in Eq. (1).
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Derivations are provided in Appendix A at the end. In Appendix A, we report the results of an

extensive simulation study calibrated to the specifics of the NKPC for US data. The purpose of this

study is to investigate the finite sample properties of the identification-robust tests and compare

them to the Wald test. We find that the asymptotically robust tests have approximately correct

size in all the cases that we considered, while the Wald tests can be severely over or under-sized:

nominal 5%-level t tests reject the true null hypothesis more than 70% of the time in some cases,

and do not reject at all in other cases. Moreover, the identification-robust tests do not waste power

relative to the Wald test when the parameters are well-identified.

2 Methodology

The generic NKPC, Eq. (1), can be derived in a general equilibrium framework by log-linearizing

the Euler equations of monopolistically competitive firms facing constraints in the adjustment of

their prices, see Woodford (2003). The model of Gaĺı and Gertler (1999) is a particular version of

the NKPC that is derived from a model with Calvo (1983) frictions, in which a fraction of firms

are backward-looking, in the sense that they do not adjust their prices in response to anticipated

future deviations of marginal costs from their steady state value. Because of its prominence in the

literature, we analyze this model in detail here.

The Gaĺı and Gertler (1999) model has three structural parameters: ω is the fraction of

backward-looking firms; θ is the probability that a firm will be unable to change its price in a

given period, so that 1/ (1− θ) is the average time over which a price is fixed; and β is the discount

factor. These parameters relate to λ, γf and γb in Eq. (1) as follows

λ = (1− ω) (1− θ) (1− βθ) φ−1 (2)

γf = βθφ−1 (3)

γb = ωφ−1 (4)

φ = θ + ω [1− θ (1− β)] . (5)
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Gaĺı and Gertler (1999) refer to the parameters (λ, γf , γb) in Eq. (1) as the reduced-form parameters,

and (ω, θ, β) as the structural parameters. We will adopt this distinction hereafter.

Let ϑ denote the vector of parameters, including a constant.2 Define the moment function

ft (ϑ) = Zt (πt − c− λst − γfπt+1 − γbπt−1) (6)

where Zt is a vector of k variables known at time t− 1. The moment function can be equivalently

expressed in terms of the structural parameters (ω, θ, β) using the expressions (2) through (4), as

in Gaĺı and Gertler (1999, p. 213, Equations 27 and 28).3 The assumption of rational expectations

implies that Eft (ϑ) vanishes at the true value of the parameters for any vector Zt in the t − 1

dated information set. In this application, Zt will consist of the first four lags of πt, st and four

other variables used in the Gaĺı and Gertler (1999) study.

Let fT (ϑ) =
∑T

t=1 ft (ϑ) and Vff (ϑ) = limT→∞ var
[
T−1/2fT (ϑ)

]
. The objective function for

the CUE of Hansen, Heaton, and Yaron (1996) is

S (ϑ) = T−1fT (ϑ)′ V −1
ff (ϑ) fT (ϑ) (7)

and the CUE ϑ̂ is the minimizer of S (ϑ) w.r.t. ϑ. The CUE is an alternative to the more

traditionally used iterative GMM estimators, originally proposed by Hansen (1982). We use the

CUE because it has been recently shown to have better finite sample properties under weak or

many instruments, see Stock, Wright, and Yogo (2002) and Newey and Smith (2004).

Let Ft denote the nondecreasing information set available at time t, which is adapted to the se-

quence {πt, πt−1, . . . ; st, st−1, . . . ; εt, εt−1, . . .} . Due to the presence of πt+1 in Eq. (6), the stochastic

process ft (ϑ) is not measurable w.r.t. Ft but rather to Ft+1. This means that Et−1ft (ϑ) ft−1 (ϑ) 6=

0 in general, where Et (·) ≡ E (·|Ft) , so the moment functions ft (ϑ) can exhibit first-order auto-

correlation without contradicting the model.4

2For simplicity, we omit the constant in the ensuing discussion.
3Gaĺı and Gertler (1999) discuss alternative normalizations of the moment conditions, because iterative GMM

methods are not invariant to parameter transformations. However, the CUE is invariant..
4An exception occurs when γf = 0, in which case the model implies that ft (ϑ) should be serially independent.

This is relevant only when testing the null hypothesis γf = 0.
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To operationalize (7) we need a heteroskedasticity and autocorrelation consistent (HAC) esti-

mator of Vff (ϑ). Popular choices of HAC estimators are those proposed by Newey and West (1987)

and Andrews (1991), though it is well-known that they often result in large size distortions in finite

samples, see den Haan and Levin (1997). A more efficient and potentially more reliable choice is the

parametric MA-l estimator of West (1997), which exploits the first-order moving average pattern

of dependence in the moment function ft (ϑ).5

Identification of ϑ requires that Eft (ϑ) = 0 if and only if ϑ = ϑ0. This is a necessary condition

for any estimator ϑ̂ to be consistent and asymptotically normal. Our objective here is to do

inference without imposing that assumption. In the remainder of this section, we briefly describe

the inference procedures used in this paper, and explain why they are robust to potential failure of

identification.

2.1 Identification-robust inference

Stock and Wright (2000) showed that if a central limit theorem applies to the moment function

fT (ϑ) , then the asymptotic distribution of the objective function S (ϑ) evaluated at the true value

of ϑ, is χ2 with degrees of freedom equal to the number of instruments, k. This result requires

no identification assumptions, and is a generalization of the Anderson and Rubin (1949) test.

Hypotheses on ϑ can be tested at the α level of significance by comparing S (ϑ) to the (1− α)

quantile of the χ2 (k) distribution. We will refer to this test as the AR test.

One weakness of the AR test is that it may have low power relative to the usual Wald, LR or

LM tests when identification is strong. Therefore, use of the AR test incurs a cost that reflects

the usual trade-off between efficiency and robustness. Another weakness of the AR test is in its

interpretation: a rejection may reflect either the violation of the overidentifying restrictions or

evidence against the particular null hypothesis on ϑ.

Recently, Kleibergen (2002) and Moreira (2003) developed testing procedures that overcome
5Monte Carlo evidence reported in West and Wilcox (1996) suggests the MA-l outperforms nonparametric alter-

natives in Euler equations models. See also Mavroeidis (2005) for simulations based on the NKPC.
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the above two weaknesses of the AR test in the context of the linear IV regression model. In this

study, we will apply the GMM versions of the conditional score (KLM) test and the conditional

likelihood ratio (CLR) test developed by Kleibergen (2005). Here we just give a brief explanation of

how these methods work. Stock, Wright, and Yogo (2002) and Andrews and Stock (2005) provide

excellent reviews of those methods.

Consider first the KLM statistic. Let BT be a sequence of stochastic matrices of dimensions

k × m (where m is the number of parameters, m ≤ k) that are asymptotically independent of

the sample moment conditions fT (ϑ) and converge in probability to a (possibly stochastic) ma-

trix B of full rank m. Then, the m-vector T−1/2B′T fT (ϑ) is asymptotically normal with variance

p limT→∞ (B′T Vff (ϑ) BT ), and consequently, the quadratic form T−1fT (ϑ)′BT (B′T Vff (ϑ) BT )−1 B′T fT (ϑ)

is χ2 (m). Kleibergen (2005) showed that a natural choice of BT is the first derivative of the objec-

tive function (7), DT (ϑ)′ Vff (ϑ)−1 fT (ϑ) , where DT (ϑ) depends on ∂fT (ϑ) /∂ϑ and ∂Vff (ϑ) /∂ϑ,

which results in a score test statistic, see Kleibergen (2005, Eq. (16)). This statistic requires

smoothness of the objective function, which applies to the NKPC, since fT (ϑ) is linear and Vff (ϑ)

is quadratic in ϑ. The resulting quadratic form is called the KLM statistic and the test based on

comparing KLM (ϑ) to critical values of the χ2 (m) distribution is the KLM test.

A weakness of the KLM test is that it may suffer from lack of power against alternatives that are

close to points of inflection of the CUE objective function (7). This occurs because the derivative

of S (ϑ) (and hence the KLM statistic) is zero at all those points. To overcome this weakness,

Kleibergen suggests using the JKLM statistic defined as JKLM (ϑ) = AR (ϑ)−KLM (ϑ) which is

asymptotically χ2 (k −m) and independent of the KLM statistic. The JKLM statistic is interpreted

as testing the overidentifying restrictions when the true value of the parameters is ϑ and can be used

to provide an upper bound on the GMM objective function. Thus, an approximately 10%-level test

can be constructed by first pre-testing whether the JKLM test rejects at the 1%-level, and then,

provided it does not reject, using a 9%-level KLM test, see Kleibergen (2005, section 5).

The final identification robust procedure that we shall employ is the GMM version of Moreira’s

(2003) CLR test, proposed in Kleibergen (2005, section 5.1). This statistic is also a function of
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the KLM and JKLM statistics, but this function is random and depends on a statistic that tests

the rank condition for identification (i.e., the rank of the Jacobian of the moment conditions). We

implement the test using the rank test statistic of Kleibergen and Paap (2006). The asymptotic

distribution of the CLR statistic, conditional on the rank test statistic, is independent of any

nuisance parameters. This conditional distribution is not analytically available but p-values can

be derived by simulation to any desired degree of accuracy (we use 105 replications). In the linear

IV regression model with homoscedastic and serially uncorrelated innovations, Andrews, Moreira,

and Stock (2006) show that the CLR test enjoys certain optimality properties relative to the AR

and KLM tests. However, these optimality results have not been established in more general GMM

settings, and do not, therefore, apply in the study of the NKPC. Here, we report some evidence

regarding the size and power of those tests in the context of the NKPC derived by means of Monte

Carlo simulation. Despite no apparent power advantages, we use all three methods in our empirical

analysis of the NKPC.

The KLM and CLR tests do not require any identification assumption for ϑ. However, they

do require some additional regularity conditions relative to the AR test. These conditions refer to

the limiting behavior of the Jacobian of the moment conditions ∂fT (ϑ) /∂ϑ′, which in our model is

(proportional to) the covariance between the regressors and the instruments. Moreover, we need a

consistent estimator of the asymptotic covariance between fT (ϑ) and ∂fT (ϑ) /∂ϑ, Vfϑ (ϑ) as well as

the variance of the latter. Note that, even though ft (ϑ) is MA(1), the pattern of serial dependence

in ∂ft (ϑ) /∂ϑ is unrestricted by our model. This means that West’s (1997) MA-l estimator is

inappropriate for the KLM and CLR tests in this study, and we need to use an unrestricted HAC

estimator, such as Newey and West (1987), see Kleibergen (2005, Section 4).6

6We computed all tests and confidence sets also using West’s MA-l instead of the Newey and West (1987) weighting

matrix. The p-values were always higher than the ones associated with Newey and West (1987), and the confidence

sets were wider. The results are omitted for brevity, but are available on request.

9



2.2 Testing composite hypotheses

We are mainly interested in testing hypotheses on subsets of the parameters in (1) leaving the

remaining parameters unrestricted. In particular, we are interested in testing the following hy-

potheses: λ = 0, γf = 0, γf = γb, and γf + γb = 1.

To perform α-level tests on such hypotheses, we can follow two alternative approaches. One

approach is to construct joint AR, KLM and CLR tests on all parameters, and then choose the

values of the unrestricted parameters that minimize the test statistics. For instance, when testing

λ = λ0, compute τ = minγf ,γb
AR (λ0, γf , γb). The asymptotic distribution of this statistic is

bounded above by a χ2 (k), so if we compare the statistic τ to the 1 − α quantile of χ2 (k), the

resulting test will have a size that is at most α under the null. This is the projection method,

discussed in detail in Dufour (2003).

The disadvantage of the projection method is that it wastes power when it is known that certain

parameters are well-identified under the null. This is true of γb when λ and γf are fixed, since γb can

be recovered from a regression of πt − γfπt+1 − λst on πt−1. In that case, it is preferable to partial

out the identified parameters by concentrating the objective function with respect to them, i.e., by

deriving the restricted CUE ϑ̂0, say, and evaluating all the test statistics at ϑ̂0. The resulting tests

are sometimes referred to as subset tests. Stock and Wright (2000) and Kleibergen (2005) derived

the distribution of the subset tests under the assumption that the unrestricted parameters are well-

identified. This assumption is not always plausible (see below for the null hypothesis λ = 0). In

the linear IV regression model, Kleibergen (2007) showed that the distribution of the subset AR,

KLM and CLR statistics is bounded from above by the asymptotic distribution that arises when

the unrestricted parameters are well-identified, otherwise, these subset tests become conservative.

This result has not yet been extended to GMM, but simulation evidence reported in Appendix B

shows it may apply to the present model. In the interest of maximizing power, and subject to this

caveat, we chose to use subset tests instead of projection methods in this study. Note that the

latter will always produce wider confidence sets that the former. Therefore, the main conclusions
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of this paper that the key structural parameters of the NKPC are not well-identified, would remain

unchanged had we used projection methods instead.

We shall also report two-dimensional confidence sets for various parameters of the model. A

(1− α)-level confidence set is a random set that contains the true value of the parameter with

probability at least 1 − α. (1− α)-level confidence sets can be derived by inverting α-level tests,

that is, finding all the points ϑ in the parameter space such that a given test τ does not reject the

hypothesis that ϑ is the true value at the α-level of significance. Wald-based confidence sets are

elliptical by construction, but they do not have correct coverage when identification is weak. In

contrast, confidence sets based on inverting the AR, KLM and CLR tests have correct coverage

asymptotically. Except in the special case of the Wald test, confidence sets derived by inverting

tests can be asymmetric and disjoint (e.g., when the objective function has multiple local minima).

3 Some new results on the identification of the new Phillips curve

3.1 What happens when λ = 0

Mavroeidis (2005) showed that the identification of the parameters (λ, γf , γb) depends on the dy-

namics of the forcing variable. Here, we focus on another source of weak identification: weak

association between the forcing variable st and inflation.

Suppose we are interested in testing the null hypothesis λ = 0. The interpretation of that

hypothesis in the Gaĺı and Gertler (1999) model is that real marginal costs st are unimportant as

determinants of inflation. In other applications, one may wish to test whether some other measure,

e.g. GDP growth or output gap, is the relevant forcing variable for inflation. We will show that this

hypothesis cannot be tested by a usual t-test, because the t statistic does not have an asymptotically

normal distribution under the null.

Under the null hypothesis, the model (1) becomes

πt = γfEtπt+1 + γbπt−1 + εt, (8)
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so inflation is driven solely by a sequence of innovations εt that are unobserved by the econome-

trician. The dynamics of inflation, under the null, depend on whether the rational expectations

model (8) admits a determinate or an indeterminate solution. By a solution, we mean a stochastic

process {πt} that satisfies equation (8) and is not explosive, i.e., satisfies the following limiting

condition limt→∞ ς−tEsπt = 0 for all |ς| > 1. Blanchard and Kahn (1980) showed that existence

and uniqueness of such a solution depends on the roots of the characteristic polynomial

1− γfz−1 − γbz = 0. (9)

Existence requires that at most one root of this polynomial is inside the unit circle.

A determinate solution arises when the characteristic polynomial (9) has exactly one root inside

the unit circle. The determinate solution can be represented as a first-order autoregression [AR(1)]

πt = δπt−1 +
1

1− δγf
εt (10)

where the autocorrelation coefficient δ is the inverse of the largest root of (9), see Appendix A.

If none of the roots is inside the unit circle, the solution is indeterminate, and can be charac-

terized by

πt =
1
γf

πt−1 −
γb

γf
πt−2 −

1
γf

εt−1 + ηt (11)

where the one-step ahead forecast error in inflation ηt = πt−Et−1πt is some indeterminate martin-

gale difference sequence. Equation (11) can be represented as an Autoregressive Moving Average

process, denoted ARMA(2,1), see Pesaran (1987). It can also be represented by the equations

πt = δ1πt−1 +
1

1− δ1γf
εt + ξt (12)

ξt = δ2ξt−1 + ηt −
1

1− δ1γf
εt (13)

where ξt is an autoregressive process that is unobserved by the econometrician, and δ1, δ2 are the

inverses of the roots of (9), see Appendix A. The martingale difference sequence ηt− εt/ (1− δ1γf )

is often called a sunspot shock, and the indeterminate solution is said to exhibit sunspot dynamics

whenever the sunspot shock (or equivalently ξt) is not identically equal to zero for all t.
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When inflation exhibits only first order autoregressive dynamics, the parameters γf and γb in

the model (8) are not separately identifiable, because all the combinations of γf and γb that yield

the same autocorrelation coefficient are observationally equivalent. In this case, we say that γf and

γb are partially identified. This occurs either when the solution is determinate (10) or when it is

indeterminate, but inflation does not exhibit sunspot dynamics, i.e., follows Eq. (12) with ξt ≡ 0.

Although alternative models may differ in the way in which they specify price rigidities and

partial adjustment, a common feature of many such models (Buiter and Jewitt (1989), Gaĺı and

Gertler (1999)) is that the parameters γf and γb satisfy the restrictions γf , γb ≥ 0, γf + γb ≤ 1 and

λ ≥ 0. We show in Appendix A that unless γf + γb = 1 and γf > γb, these restrictions imply that

the solution of (8) is determinate and, therefore, γf , γb are only partially identified when λ = 0. In

the special case γf + γb = 1 and γf > γb, γf and γb are identified when inflation exhibits sunspot

dynamics.

When interest centers on the composite null hypothesis λ = 0, the remaining parameters of the

model, γf and γb, can be viewed as ‘nuisance parameters’. The usual t-statistic for this hypothesis is

the ratio of the parameter estimator λ̂ to the estimator of its standard-error σ̂λ̂. If all the parameters

of the model were identified, the asymptotic distribution of λ̂/σ̂λ̂ would be standard normal (under

standard regularity conditions), and one could interpret the t-statistics in the usual way. However,

when either λ or the nuisance parameters γf , γb are not identified under the null, then the t-statistic

does not have an asymptotically normal distribution, and tests based on standard normal critical

values could be very misleading. We summarize the above discussion in the following proposition.

Proposition 1 When λ = 0, the parameters γf and γb of the NKPC (1) are partially identified,

unless γf + γb = 1, γf > γb and inflation exhibits sunspot dynamics. Hence, the t-statistic for the

hypothesis H0 : λ = 0 does not have an asymptotically normal distribution under the null, and is

therefore not interpretable in the usual way.

The inferential problem that arises when a nuisance parameter is not identified under the null

is well-known in econometrics. This problem was studied by Andrews and Ploberger (1994) and
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Hansen (1996) in the context of nonlinear regression models, but their proposed methods are not

applicable to the NKPC. However, we can still perform valid, albeit conservative, tests using the

subset AR KLM and CLR tests described in the previous section.

3.2 Identification of the structural version of the NKPC

Given their interpretation, the deep parameters of the Gaĺı and Gertler (1999) model (ω, θ, β)

must lie in the unit cube. The compactness of the parameter space of (ω, θ, β) is computationally

attractive, since confidence sets can be feasibly derived by grid search over the entire parameter

space, with a reasonable degree of precision.

There are two identification issues that need to be pointed out. First, as we show in the

Appendix, the mapping from (ω, θ, β) to (λ, γf , γb) given by equations (2), (3) and (4) is not

generally invertible. This means that the structural parameters (ω, θ, β) are not globally identified,

and so estimation and inference on (ω, θ, β) could be problematic, even when (λ, γf , γb) are well-

identified.

Second, there are regions in the admissible parameter space of (ω, θ, β) in which those param-

eters become locally unidentified. We will refer to these as partial identification regions. These

correspond to three limiting cases. At θ = 0 (i.e., in the absence of frictions), the parameter β is

not identified, since it only appears in the model through the product θβ. At θ = 1, i.e., when

prices are fixed forever, λ = 0 and hence ω and β are not separately identified for the same reasons

as those given in proposition 1. At ω = 1, i.e., when all firms are backward-looking, neither θ nor

β are identified, since inflation follows a random walk whose distribution is independent of θ and

β. We summarize the above discussion in the following proposition.

Proposition 2 The parameters (ω, θ, β) in the structural NKPC model of Gaĺı and Gertler (1999)

are not globally identified. Moreover, they are locally unidentified in the following three limiting

cases: (i) when θ = 0; (ii) when θ = 1 and (iii) when ω = 1.

Even if the aforementioned limiting cases are considered implausible, they do provide useful
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insights into possible sources of identification problems. In particular, if the true values of (ω, θ, β)

lie ‘close’ to those partial identification regions, the model will be weakly identified. How far

they need to be in order for the model to be well-identified depends on other aspects of the data

generating process, such as the dynamics of the forcing variable. One could characterize the regions

in the parameter space where identification might be weak using some measure of the strength of

identification, e.g., the concentration parameter which is a measure of the correlation between

instruments and endogenous regressors, see Stock, Wright, and Yogo (2002). To do this, one would

need to specify the law of motion of the forcing variables st, as was done in Mavroeidis (2005).

The objective of the present study is not to assess the identifiability of the NKPC, but rather

to do inference on its parameters without assuming identification. As already explained in the

previous section, this can be done without taking a stance on whether the model is well-identified

or not, using tests that are robust to weak identification. One may wish to interpret our results

as indirect evidence on the identifiability of the NKPC. This could be done by comparing the

conclusions drawn from robust and non-robust tests. If the model is well-identified, any observed

differences would be due to sampling variation, and thus, they should be small.

4 New estimates of the new Phillips curve

Table 1 reports estimates of the parameters in the two aforementioned specifications of the NKPC,

using two sets of instruments. The small set of instruments includes only four lags of inflation

and the labor share, while the extended set includes all the instruments used by Gaĺı and Gertler

(1999).

We also report the Hansen-Sargan test of over-identifying restrictions, as well as a test of excess

serial correlation in the model’s residuals ut = πt − c − λst − γfπt+1 − γbπt−1. Since ut is MA(1)

under the null of correct specification, we test against higher order autocorrelation using the test

of Cumby and Huizinga (1992).7 There is no evidence that the over-identifying restrictions are
7Details of the implementation are given in Mavroeidis (2002).
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Table 1: Estimates of the new hybrid Phillips curve

reduced-form param. , deep param. diagnostics
λ γf γb ω θ β OR SC

Instruments
small set 0.132 0.850 0.144 0.112 0.663 0.992 5.605 10.539

(0.073) (0.212) (0.205) (0.180) (0.083) (0.035) [0.347] [0.032]

large set 0.126 0.690 0.281 0.246 0.635 0.948 27.899 5.147
(0.050) (0.035) (0.034) (0.043) (0.051) (0.028) [0.143] [0.273]

The model is E[Zt(πt − c − λst − γfπt+1 − γbπt−1)] = 0. Instruments include 4 lags of
πt, st (small set), plus commodity price and wage inflation, output gap and long-short yield
spread (large set). CUE-GMM with Newey and West (1987) Weight matrix, bandwidth:
4. Sample: 1960 (1) - 1997 (4). Diagnostics: OR is Hansen-Sargan test of overidentifying
restrictions, χ2(k − 4); SC is Cumby and Huizinga (1992) test of residual autocorrelation
from lags 2 to 5, χ2(4).

violated at the conventional 5%. There is some evidence of excess serial correlation in the residuals

when using the small instrument set, but this is not robust to extensions of the instrument set.

Unreported plots of the residual correlogram do not show substantial autocorrelation beyond lag

1.

Turning to the parameter estimates, we note that they are broadly in line with the results

reported by Gaĺı and Gertler (1999).8 As found by Gaĺı and Gertler (1999), the results suggest

that forward dynamics dominate backward dynamics. In terms of specification 2, the fraction of

backward-looking agents is close to 0, albeit statistically significant according to the t-test.

4.1 Tests of various hypotheses

Table 2 reports tests of various hypotheses on the reduced form parameters of the NKPC, see

Eq. (1). For each hypothesis we report the p-values associated with the Wald, AR, CLR, KLM

and JKLM statistics. We report results both using own lags of inflation and the share, and using
8They use a 2-step GMM procedure, and they consider alternative normalizations of the moment conditions. We

do not need to do that here, because the CUE is invariant to re-normalization.
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Table 2: Hypothesis tests in the reduced form specification of the new hybrid Phillips curve

Hypothesis Instruments Test p-values
Wald AR CLR K J

λ=0 small set 0.07 0.19 0.55 0.08 0.34
large set 0.01 0.05 0.30 0.05 0.09

γf=0 small set 0.00 0.10 0.37 0.61 0.07
large set 0.00 0.10 0.34 0.76 0.08

γb=0 small set 0.48 0.41 0.95 0.37 0.38
large set 0.00 0.06 0.12 0.16 0.07

γf + γb = 1 small set 0.82 0.46 1.00 0.80 0.34
large set 0.08 0.09 0.51 0.10 0.12

The model is E[Zt(πt − c − λst − γfπt+1 − γbπt−1)] = 0. Instruments include 4 lags of
πt, st (small set), plus commodity price and wage inflation, output gap and long-short yield
spread (large set). CUE-GMM with Newey-West Weight matrix, bandwidth: 4. Sample:
1960 (1) - 1997 (4).

additional variables as instruments.

We consider first the null hypothesis λ = 0. By proposition 1, we note that the Wald test is

inappropriate, and we expect the identification-robust tests to be potentially conservative. Using

the small instrument set the AR test does not reject at the 19% level or higher, but the KLM

test rejects at the 10% level. The evidence that the labor share is the relevant forcing variable for

inflation becomes stronger when we use more instruments, but λ is still barely significantly different

from 0 at the 5% level.

Next, we turn to the hypothesis γf = 0, which received considerable attention in the literature.

The Wald test here is simply the square of the usual t-test on γf and its p-value is 0 to three

decimals, suggesting overwhelming evidence against the null. However, none of the identification-

robust tests reject at the 10% level. Note that under this null hypothesis γf = 0, the moment

conditions must not exhibit any serial correlation, so a valid AR test can be performed without

using a HAC weighting matrix. When we use Eicker-White instead, the p-value drops to below 5%

but still above 1%. This version of the AR provides some evidence against the view that inflation

dynamics are purely backward-looking. But note that this is far weaker than the conclusions drawn
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from the Wald test.

The evidence on γb = 0 is mixed. Using the small instrument set, none of the tests rejects,

but with more instruments there is some evidence against the null, albeit very weak. Unlike Gaĺı

and Gertler (1999), our results suggest that the data is consistent with a purely forward-looking

Phillips curve.

Finally, the hypothesis γf + γb = 1 is not rejected by any of the tests. Indeed, we also notice

that the Wald test is very similar to the KLM test in this case. This is sometimes seen as an

indication that a parameter is well-identified. We will see more evidence of that in two-dimensional

confidence sets below.

4.2 Confidence sets

We compute two-dimensional identification-robust 10%-level confidence sets by inverting the AR

KLM and CLR tests. (KLM confidence sets are based on a combination of a 1% JKLM pretest

and a 9% KLM test.)

Reduced-form specification

To examine the relative importance of forward versus backward-looking adjustment, we consider a

two-dimensional confidence set for γf , γb. We consider only the parameter region 0 ≤ γf , γb ≤ 1 and

γf + γb ≤ 1. Thus, the reported confidence sets contain the values of γf and γb that are consistent

both with the theoretical model and with the data at the given level of significance.

Figure 1 shows AR-based 90%-level sets, where λ has been partialled out. The set on the

left-hand side uses the small instrument set (four lags of inflation and the share) while the set

on the right uses all of Gali and Gertler’s (1999) instruments. Comparison of these two graphs

suggests that the additional instruments are informative. In both cases, it appears that there is

little information in the data about γf . Even though the data are more informative about γb, they

are consistent both with the hypothesis γf > γb and with γf < γb at the 10% level of significance.

Large AR-based confidence sets are not necessarily an indication of weak identification, due to

the potential lack of power of the AR test when the number of over-identifying restrictions is large.
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Figure 1: Joint 90%-level confidence sets for the parameters γf , γb of the NKPC πt = λst + γfEt(πt+1) +
γbπt−1 + εt. Instruments include 4 lags of πt, st (small set), plus commodity price and wage inflation, output
gap and long-short yield spread (large set). λ is partialled out.

On the other hand, AR-based sets can be empty if the over-identifying restrictions are violated

even when the parameters are unidentified (Stock and Wright (2000)). In the present model, a

tight AR set could reflect near violation of the orthogonality conditions, which could be interpreted

as evidence against the assumption of rational expectations.

To shed further light on those issues, we now turn to the confidence sets derived by inverting

the KLM test and CLR tests. Figure 2 plots these two 90%-level confidence sets on (γf , γb) based

on the large instrument set.9 We see that both the KLM and the CLR confidence sets are very

similar, and much larger than the corresponding AR confidence set (see right-hand panel of Figure

1). This suggests that the large AR confidence sets reported earlier are not due to lack of power of

the AR test. According to these pictures the forward-looking coefficient is completely unidentified.

Moreover, we cannot rule out either that forward-looking dynamics dominate (γf > γb), or the

opposite (γf < γb).

The last confidence set reported in Figure 2 is derived by inverting the JKLM test, which
9The KLM and CLR confidence sets corresponding to the smaller instrument set are much wider, and are omitted

for brevity.
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Figure 2: Joint 90%-level confidence sets for the parameters γf , γb of the NKPC πt = λst + γfEt(πt+1) +
γbπt−1 + εt derived by inverting the KLM CLR and JKLM tests. Instruments include 4 lags of πt, st,
commodity price and wage inflation, output gap and long-short yield spread. λ is partialled out.
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has power against violation of the overidentifying restrictions. The fact that this set is smaller

than all the others suggests that it is near violation of the over-identifying restrictions that is the

most important source of information in these data.10 In this smallest 90%-level confidence set, γf

lies between 0.47 and 0.82, and γb lies between 0.14 and 0.5. This implies that backward-looking

dynamics are statistically significant at the 10% level, and we cannot rule out the possibility that

γf < γb. It is important to keep in mind that this apparent identification comes primarily from the

over-identifying restrictions.

In sum, the above results show that the data are consistent both with a pure forward-looking

Phillips curve as well as with a hybrid Phillips curve that puts most weight on backward-looking

dynamics. This finding reconciles the conflicting results reported by different researchers on the

relative importance of forward versus backward-looking adjustment.

Structural specification

Next, we consider the structural specification of Gaĺı and Gertler (1999). Figure 3 presents for

alternative joint 90%-level confidence sets for ω and θ, partialling out β. Also drawn in the figures

are confidence ellipses based on the Wald test, which are not robust to weak instruments.

The striking difference between the Wald-based confidence ellipses and the identification-robust

confidence sets is suggestive of weak identification. The confidence sets most comparable, in terms

of power and interpretation, to the Wald confidence ellipse are the KLM and CLR ones. In sharp

contrast to the Wald ellipse, these sets include the entire parameter space of θ, suggesting that

this parameter is completely unidentified. While ω is better identified, we still cannot rule out the

possibility that backward-looking price setting is dominant (ω > 1/2).

The AR-based confidence set is tighter but noticeably disjoint, and still wider than the Wald

ellipse. Based on the AR confidence set, one could conclude with 90% confidence that the fraction

of backward-looking agents is less than a half (ω < 0.45), and prices remain fixed between 1.2 and

1.6 quarters (θ ∈ [0.17, 0.36]) or 1.8 and 5.5 quarters (θ ∈ [0.44, 0.85]).
10If the parameters γf and γb were well-identified, one would expect to see the opposite pattern, namely, the KLM

and CLR sets should be tighter, since, at least in theory, these tests are more powerful than the AR and JKLM tests.
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Figure 3: Joint 90%-level confidence sets for fraction of backward-looking firms ω and the probability prices
remain fixed θ of the structural specification of the NKPC. Instruments include 4 lags of πt, st, commodity
price and wage inflation, output gap and long-short yield spread. The discount factor β has been partialled
out.
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5 Implications of the restriction β = 1

Early versions of the hybrid NKPC (Buiter and Jewitt (1989)) imposed the restriction that the

backward and forward-looking coefficients sum to 1. As we saw earlier, this restriction is indeed not

rejected by the data using identification-robust tests. Since it is reducing the number of estimable

parameters, this restriction is essentially freeing up one instrument (lagged inflation), and can

potentially improve the identifiability of the remaining structural parameters. It is therefore worth

examining whether this is in fact the case.

The restriction γf +γb = 1 corresponds to β = 1 or θ = 0 or ω = 1 in the structural parametriza-

tion of Gaĺı and Gertler (1999). In line with Gaĺı and Gertler (1999), we will consider the restriction

β = 1, both because it is the most appealing one given the interpretation of the parameters, and

because both θ = 0 and ω = 1 would lead to the identification problems described in proposition

2. When γf + γb = 1, the model (1) becomes

(1− γf ) ∆πt = λst + γfEt∆πt+1 + εt.

Substituting for γf and λ using (3) and (2) when β = 1, the restricted model can also be written

as

ω∆πt = (1− ω)(1− θ)2st + θEt∆πt+1 + (ω + θ)εt. (14)

For consistency, we also need to use lagged changes in inflation rather than levels of inflation as

instruments.11 Table 3 reports estimates of the parameters in the two specifications of the NKPC.

Upon comparison with the unrestricted estimates reported in Table 1, we note that the qualitative

results on λ, γf or ω, θ remain roughly unchanged when the restriction γf + γb = 1 is imposed.

Next we investigate the implication of the restriction β = 1 for the identification of the structural

parameters of the model, ω and θ. Figure 4 presents 90%-level confidence sets for the structural

parameters ω and θ. These should be compared to the confidence sets in the unrestricted speci-

fication reported in Figure 3. When we compare the AR-based sets, we find they are somewhat
11This is also done in the recent study by Rudd and Whelan (2006).
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Figure 4: Joint 90%-level confidence sets for fraction of backward-looking firms ω and the probability prices
remain fixed θ, subject to the restriction that the discount factor β is equal to 1. Instruments include 3 lags
of ∆πt and 4 lags of st, commodity price and wage inflation, output gap and long-short yield spread.
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Table 3: Estimates of the new hybrid Phillips curve

reduced-form param. , deep param. diagnostics
λ γf ω θ OR SC

Instruments
small set 0.129 0.862 0.107 0.666 5.689 10.498

(0.082) (0.205) (0.178) (0.087) [0.338] [0.033]

large set 0.075 0.601 0.420 0.632 29.225 7.556
(0.041) (0.040) (0.068) (0.062) [0.109] [0.109]

The model is E[Zt(πt − c− λst − γfπt+1 − γbπt−1)] = 0. Instruments include 3 lags of ∆πt

and 4 lags of st (small set), plus commodity price and wage inflation, output gap and long-
short yield spread (large set). CUE-GMM with Newey and West (1987) Weight matrix,
bandwidth: 4. Sample: 1960 (1) - 1997 (4). Diagnostics: OR is Hansen-Sargan test of
overidentifying restrictions, χ2(k − 4); SC is Cumby and Huizinga (1992) test of residual
autocorrelation from lags 2 to 5, χ2(4).

tighter in the restricted specification at the 90% level.12 However, the KLM and CLR-based sets

are much wider than the AR ones, as was the case for the unrestricted model, see Figure 3. The

main difference in the two specifications is that in the restricted model, it is ω rather than θ that

is effectively unidentified. In the restricted specification, prices remain fixed for at least 2 quarters

(θ > 1/2).

In sum, there is no evidence that imposing the restriction β = 1 helps identify the other

two structural parameters ω and θ. The intuition behind this is simple. In order to improve

identifiability, restrictions must be placed on those parameters that are weakly identified. Here,

β appears to be well-identified, so fixing it has little effect in improving the identifiability of the

remaining parameters.
12The fact that the restricted confidence sets are tighter than the unrestricted ones is merely due to the fact that

the over-identifying restrictions become sharper in the restricted specification. Compare the Hansen-Sargan test of

over-identifying restrictions between the two models: the p-value drops from 0.14 for the unrestricted model (see

Table 1) to 0.11 for the restricted one (see Table 3).
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6 Conclusions

In this paper, we applied identification-robust inference procedures to test the parameters of the

new Keynesian Phillips curve. Our results show that these parameters are weakly identified, and

therefore help explain the conflicting estimates reported recently in the literature. The postwar US

inflation history is consistent both with the view that inflation dynamics are purely forward-looking

as well as with the view they are predominantly backward-looking.

The Phillips curve can also be estimated by full-information methods, such as maximum like-

lihood (FIML). These methods require the specification of a model for the observable forcing

variables. They are typically more efficient than GMM, but not robust to mis-specification of the

dynamics of the forcing variables. Recently, Fuhrer and Olivei (2004) argued that FIML may help

alleviate the identification problem by making more efficient use of the information available in the

data. However, the standard likelihood-based inference procedures, such as Wald, likelihood ratio

and score tests, are not robust to failure of the identification assumption. This is the main reason

why we took the limited information approach in this paper. The study of the identifiability of the

Phillips curve by full-information methods is an important topic for future research.

A Appendix

A.1 Derivation of proposition 1

If γf > 0, the inverses of the roots of the characteristic polynomial (9) are given by (in ascending

order)

δ1 =
1−

√
1− 4γfγb

2γf
, δ2 =

1 +
√

1− 4γfγb

2γf
. (15)

If γf + γb < 1 or γf + γb = 1 and γf ≤ γb, then |δ2| > 1, which is explosive, and hence, the model

has the unique non-explosive/determinate solution given by Eq. (10), where δ = δ1 if γf 6= 0 and

γb otherwise. If γf > γb, and γf +γb = 1, the inverses of the roots are δ1 = (1− γf ) /γf and δ2 = 1,

neither of which is explosive, so the solution is indeterminate, and is given by Eq. (11). To see that

this is equivalent to (12), observe that 1− γ−1
f L− γb/γfL2 = (1− δ1L)(1− δ2L), by definition. So,

26



premultiplying Eq. (12) by 1− δ2L and substituting for ξt from Eq. (13) we obtain

πt =
1
γf

πt−1 −
γb

γf
πt−2 + ηt −

δ2

1− δ1γf
εt−1

It suffices to show that δ2/ (1− δ1γf ) = 1/γf , or, equivalently, that 1 − δ1γf − δ2γf = 0. This

follows immediately from the definitions (15).

A.2 Derivation of proposition 2

Lack of global identification arises because there are multiple values of ω, θ, β that solve the equa-

tions (2) to (4) in terms of λ, γf , γb. It suffices to consider the case λ 6= 0, since otherwise, the

model is partially identified by proposition 1.

First, assume that γb 6= 0. Dividing (3) by (4) yields:

θβ = ω
γf

γb
. (16)

Dividing (2) by (3) and substituting for θβ using (16) yields

λω
γf

γb
= (1− ω) (1− θ)

(
1− ω

γf

γb

)
γf .

The solution for θ depends on whether γb − γbω − γfω + γfω2 = (ω − 1) (γfω − γb) 6= 0. Sufficient

for this is that λ 6= 0, because ω = 1 or ω = γb/γf imply λ = 0 from Eq. (2). Thus:

θ =
γb − λω − γbω − γfω + γfω2

(ω − 1) (γfω − γb)
(17)

Substituting (5) and (16) into (4) we obtain

θγb (1− ω) + (γb + γfω − 1) ω = 0

and substituting (17), we have

γb (1− ω)
γb − λω − γbω − γfω + γfω2

(ω − 1) (γfω − γb)
+ (γb + γfω − 1) ω = 0

or

γ2
b − (1 + λ + γf ) γbω + (1 + γb) γfω2 − γ2

fω3 = 0.
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This is a cubic in ω, and can generally have 3 real roots. This establishes that the structural

parameters are not globally identified even when the reduced form parameters are.

If γb = 0, then ω = 0 by Eq. (4), β = γf by Eq. (3), and θ solves

λθ = (1− θ) (1− γfθ)

which has up to two real solutions if (λ + γf + 1)2 − 4γf ≥ 0.

Partial identification is discussed in the main text.

B Simulations

We perform a number of simulation experiments to examine the finite sample size and power of

the identification-robust statistics AR, KLM, JKLM and CLR, as well as the non-robust Wald

test. The data generating process (DGP) is specified as follows. We consider a range of values of

the structural parameters in the following two specifications. Specification 1 is the reduced-form

NKPC in Eq. (1), with parameters (λ, γf , γb) satisfying the restrictions γf , γb ≥ 0, γf + γb ≤ 1

and λ ≥ 0. Specification 2 is the Gaĺı and Gertler (1999) version of the model with parameters

(ω, θ, β) ∈ [0, 1]× [0, 1]× [0, 1]. For simplicity, we impose the restriction γf + γb = 1 or β = 1. The

results for the unrestricted models are similar and are omitted.

To simulate data we need a description of the dynamics of the forcing variable st. We assume

st is a stable linear process that can be represented by an autoregressive distributed lag model:

ρ (L) st = ϕ (L) πt + vt (18)

where ρ (L) and ϕ (L) are fourth order lag polynomials with ρ0 = 1 and ϕ0 = 0. The disturbances

(εt, vt) are assumed to be Gaussian innovations, with variance parameters σ2
ε , σvε and σ2

v . Mavroeidis

(2005) showed that identification is invariant to the scale of vt, so, without loss of generality, we

normalize σ2
v to 1. The parameters σ2

ε , σvε, ρi, ϕi, i = 1, ..., 4 are calibrated to the US data over the

period 1960-1997 as follows. First, we estimate the model (18) by OLS and derive the residuals v̂t.

Then we combine (18) with (1) to find the solution for the law of motion for πt, which we solve for
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the innovations ε̂t. Finally, we back out estimates of σ2
ε and σvε from the covariance matrix of the

ε̂t and v̂t.

We conduct three different Monte Carlo simulation experiments. In the first experiment, we

study the rejection probabilities under the null hypothesis (NRP) of the Wald, Anderson-Rubin,

KLM and JKLM and CLR tests at a nominal 5% level of significance for different values of the

structural parameters (λ, γf , 1− γf ) in the reduced-form specification (1). In the second experi-

ment, we compute the power curves for tests of the null hypothesis of no forward-looking dynamics

(γf = 0). In the last experiment, we study the coverage probability of 95%-level confidence sets

on the parameters (ω, θ) of the structural-form specification of the model, for a wide range of true

values of those parameters.

The sample size in all the experiments is set to 150, to match the sample size available for the

empirical analysis. The estimation method is the continuously updated GMM estimator of Hansen,

Heaton, and Yaron (1996) and the weight matrix is the inverse of the Newey and West (1987) HAC

estimator. Finally, we consider two instrument sets: a small set that includes only the first two

lags of πt and st, and a larger instrument set that includes the first four lags of those variables.

B.1 Experiment 1: size comparisons of alternative tests

Table 4 reports the null rejection probabilities (NRP) of Wald, AR, KLM, JKLM and CLR tests

with nominal level 5% for hypotheses on each (λ, γf ) at different true values. Several features of

these results are noteworthy. First, consider the NRPs of the Wald test. They vary from 0 to

over 70%, showing that the test is severely size-distorted, and therefore cannot be used for valid

inference. The size distortion is more pronounced when the number of instruments is larger. This

contrasts sharply with the NRPs for the identification-robust statistics. Although the AR and

JKLM tests exhibit some mild overrejection when the number of instrument is large, their size

appears to be close to 5% in most cases. The KLM test is the one whose NRP is closest to its

nominal size.

Notable under-rejections occur for the just-identified model (k=4), for tests of null hypotheses
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Table 4: Null rejection frequencies of various tests with nominal level 5% in the reduced-form
hybrid Phillips curve

λ = 0.1 λ = 1
Test on: λ γf λ γf

Instruments: 2 lags 4 lags 2 lags 4 lags 2 lags 4 lags 2 lags 4 lags
Test

γf = 0 W 0.149 0.340 0.371 0.736 0.353 0.656 0.355 0.673
AR 0.033 0.061 0.085 0.127 0.072 0.121 0.074 0.124

KLM 0.035 0.065 0.076 0.109 0.075 0.102 0.077 0.101
JKLM 0.034 0.054 0.064 0.107 0.061 0.102 0.062 0.105

CLR 0.011 0.037 0.043 0.087 0.036 0.079 0.037 0.082

γf = .6 W 0.008 0.025 0.086 0.117 0.040 0.068 0.094 0.122
AR 0.040 0.077 0.070 0.094 0.047 0.098 0.070 0.112

KLM 0.013 0.013 0.061 0.044 0.030 0.043 0.067 0.063
JKLM 0.059 0.092 0.068 0.095 0.058 0.107 0.061 0.107

CLR 0.006 0.012 0.025 0.026 0.008 0.018 0.025 0.027

γf = 1 W 0.004 0.011 0.111 0.164 0.027 0.045 0.111 0.173
AR 0.039 0.072 0.076 0.106 0.050 0.086 0.076 0.110

KLM 0.004 0.005 0.069 0.078 0.020 0.026 0.071 0.083
JKLM 0.067 0.091 0.070 0.094 0.067 0.094 0.070 0.097

CLR 0.001 0.002 0.024 0.035 0.006 0.012 0.027 0.040

W stands for Wald test; AR: Anderson-Rubin test, (Stock and Wright
(2000)); KLM, JKLM and CLR tests from Kleibergen (2005). The model is
the reduced-form NKPC with the restriction γb + γf = 1 imposed.

on λ, when λ is close to zero. This can be understood by proposition 1, since, as λ gets close

to zero, we expect that the remaining parameters γf and γb, that are partialled out when testing

hypotheses on λ, are poorly identified. These results are consistent with the conservativeness of the

subset tests when identification is weak in the linear IV regression model, established by Kleibergen

(2007).

All in all, this experiment demonstrates the superior size properties of the AR, KLM, JKLM

and CLR tests relative to the Wald test in the context of the NKPC.
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Figure 5: Power curves of tests of the null hypothesis γf = 0 at the 5% level: Wald (solid line), AR (dotted),
KLM (dashed), JKLM (triangles), CLR (circles), KLM-JKLM αK = 0.4, αJ = 0.01.
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B.2 Experiment 2: power comparisons

In the first two panels of Figure 5, we plot the power curves corresponding to the DGP of experiment

1, with all nuisance parameters matched to the data. This DGP results in weak identification and

causes the Wald test to be highly size-distorted, especially when we use more instruments. The

remaining tests have little power for alternatives close to 0, but power picks up when γf exceeds

0.6. They are also much less sensitive to increasing the number of instruments.

Panels 3 and 4 of Figure 5 correspond to a DGP that results in strong identification. Following

Mavroeidis (2005), this is achieved by setting the variance of the structural shock to be 16 times

smaller than in the observed data, and changing the second autoregressive coefficient in st from

-0.05 to -0.8. Since γf is well-identified, power picks up almost immediately, so we only look at

the range 0 to 0.3. It is clear that the CLR and Wald tests have approximately the same power.

We also see that the KLM test exhibits non-monotonic power, which is a well-known phenomenon

(Kleibergen (2005)). The power of the KLM test can be made almost identical to the CLR when

we combine it with a JKLM pretest. All in all, these results show that the identification robust

tests do not waste power when identification is strong.

It is notable that even the identification-robust statistics appear over-sized in all panels of Figure

5. When we repeated those experiments without using a HAC weighting matrix, the size distortion

disappeared completely in all cases. Therefore, we think that this size distortion is attributable to

the HAC estimator, which is, in fact, a well-known problem, see den Haan and Levin (1997). It is

clear from our results that the distortion arising from the HAC estimator is unrelated to the degree

of identification.

B.3 Experiment 3: Coverage probabilities of confidence sets

The coverage probability of a 95%-level confidence set is the actual probability that the set will

contain the true value of the parameter. In this experiment, we consider two-dimensional confidence

sets for the parameters in the structural specification, ω and θ when β is fixed at 1. These confidence

sets are constructed by inverting each test statistic, i.e., they contain all the values of the parameters
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that cannot be rejected by the corresponding test at the 5% level of significance.

Table 5 reports the coverage probabilities of the confidence sets for various true values of the

parameters ω, θ. The contrast in the behavior of the Wald-based set relative to the identification-

robust alternatives is even sharper than in experiment 1. The coverage probabilities for the Wald-

based set are always considerably smaller than their nominal 95%. The smallest coverage rate 35%

occurs when the true values are ω = 0.9 and θ = 0.1. These results show that the Wald set is

typically much tighter than it is supposed to be, giving a very misleading sense of accuracy in the

estimation of the parameters.

In contrast, the identification-robust statistics have coverage rates that are much closer to their

nominal size in all cases, and typically not very different from 95%. Notable exceptions occur

in the cases when ω is large and θ is small, when the coverage rate can drop to as low as 86%.

This apparently large size distortion is not surprising, once we observe that at those values of the

parameters, inflation becomes very persistent (the highest autoregressive root is about 0.99). We

do not expect the asymptotic chi square critical values to be reliable in such cases when we have a

moderately-sized sample.

In sum, this experiment shows that confidence sets for the structural specification of the Gaĺı and

Gertler (1999) model that are based on the Wald test can be very misleading, while identification-

robust confidence sets are generally reliable, except in cases when the data are very persistent. But

even in those cases, identification-robust sets are still more reliable than Wald tests, since they

suffer from much smaller size distortion.
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