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1 Introduction

There are two theories of decentralized exchange. The Jevonsian tradition
is based on pairwise interactions and it is explained in terms of exploiting
gains from trade when the marginal rates of substitution of two agents differ.
The Edgeworthian tradition, on the other hand, allows for groups of agents
to interact and relies on the elimination of all coalitional recontracting pos-
sibilities. Modern presentations of both traditions are found in Gale (1986a,
b, c) and Dagan, Serrano and Volij (2000), respectively.

In this paper, we show that the Walrasian results found in Gale (1986a,
c) (see also Osborne and Rubinstein (1990)) are robust to the relaxation
of many of the assumptions on which it rested. Dagan, Serrano and Volij
(2000) already set out to make progress in this direction, but their approach
was based on a procedure in which coalitions of any finite size perform the
trades.1 The current paper rests on even weaker assumptions than those
used in Dagan, Serrano and Volij (2000), and it uses Gale’s (1986a) pairwise
meetings original procedure.

We argue that the only assumptions on which the decentralization result
relies are continuity and local non-satiation of preferences and a condition
to rule out problems at the boundary of the consumption set. As explained
in Gale (2000), there are two key steps in the result: efficiency and budget
balance. To obtain efficiency, our result is based exclusively on a separation
argument –Lemma 6–, which in the general case exploits the convexifying
effects of the continuum: pairwise efficiency implies Pareto efficiency (thanks
to the boundary assumption). Budget balance is proved in Lemma 7 making
an assumption on the equilibrium which turns out to be also necessary. The
novelty of this assumption is that it uses deviations of agents that hold their
initial endowments (and not only agents that are about to leave the market,
as the earlier published proofs did).2

For simplicity in the presentation, we write the model and proofs making
more assumptions than the ones we really need, and we discuss in the last
section how they can be dispensed with.

1McLennan and Sonnenschein (1991) also relaxed some of the assumptions made in
Gale (1986a). However, their paper uses unlimited short sales, which is problematic, as
argued in Dagan, Serrano and Volij (1998, 2000).

2Gale (1986c) also uses agents holding initial endowments for parts of its proof. How-
ever, his arguments continue to use a uniform bounded curvature assumption, while ours
do not.

1



2 The Economy

Time is discrete and is indexed by the non-negative integers. There is a con-
tinuum of agents in the market. Each agent is characterized by his initial
bundle, and by his von Neumann-Morgenstern utility function. The con-
sumption set for each agent is R

L
+, i.e., we consider for now only infinitely

divisible goods. Each agent chooses the period in which to consume, that
is, to leave the market. We denote by D the event for an agent in which he
never leaves the market.

For now, we shall make the assumption of a finite-type economy. That is,
the agents initially present in the market are of a finite number ”K” of types.
The symbol K also denotes the set of types. All members of any given type
k have the same utility function

uk : R
L
+ ∪ {D} → R ∪ {−∞}

and the same initial endowment ωk ∈ R
L
++.

For each type k there is initially a measure nk of agents in the market
(with

∑K
k=1 nk = 1).

We assume that there exists a continuous function φk : R
L
+ → R that

is strictly increasing and strictly concave on R
L
+.

3 We also assume that
−∞ < φk(x) < φk(ωk) for every x ∈ ∂R

L
+. Then,

uk(x) =

{
φk(x) if x ∈ R

L
+

−∞ if x = D

Definition 1 An allocation is a K-tuple of bundles (x1, . . . , xK) for which∑K
k=1 nkxk =

∑K
k=1 nkωk.

Definition 2 An allocation (x1, . . . , xK) is Walrasian if there exists a price
vector p 	= 0 such that for all k the bundle xk maximizes uk over the budget
set, {x ∈ R

L
+|px ≤ pωk}.

3 The Game and the Equilibrium Concept

We study the model of Gale’s (1986a, c), as described in Osborne and Ru-
binstein (1990). We go over its details at present.

3We shall comment on how to relax strict concavity and strict monotonicity, as well as
the finite-type and indivisible-good assumptions in our last section.
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In every period each agent is matched with a partner with probability α ∈
(0, 1) (independent of all past events). The probability that any given agent
is matched in any given period with an agent in a given set is proportional
to the measure of that set in the market in that period. It follows from
this specification of the matching technology that in every period there are
agents who have never been matched. The finite-type economy, along with
this matching technology, implies that even though agents leave the market
as time passes, at any finite time a positive measure of every type remains.

Once a match is established, each party learns the type and current bundle
of his opponent. With equal probability, one of them is selected to propose
a vector z of goods, to be transferred to him from his opponent. Let a pair
{i, j} be matched and call i and j the proposer and responder, respectively.

We denote by xi the proposer’s original bundle when this pairwise meeting
begins, and by xj the responder’s original bundle. Suppose that i’s proposal
is accepted. Then, we denote by xi + z the proposer’s new bundle and by
xj − z the responder’s new bundle. We require that any proposal result in
a net trade z satisfying the following feasibility condition, xi + z ∈ R

L
+ and

xj − z ∈ R
L
+. After a proposal is made, the other party either accepts or

rejects the offer.
The market exit rules are as follows. In the event an agent rejects an

offer, he chooses whether or not to stay in the market. An agent who makes
an offer, accepts an offer, or who is unmatched, must stay in the market until
the next period: he may not exit.

There is no discounting. Therefore, an agent who exits obtains the utility
of the bundle he holds at that time. An agent who never exits receives a
utility of −∞.

A strategy for an agent is a plan that prescribes his bargaining behavior
for each period, for each bundle he currently holds, and for each type and
current bundle of his opponent. An agent’s bargaining behavior is specified
by the offer to be made in case he is chosen to be the proposer and, for each
possible offer, one of the actions “accept”, “reject and stay”, or “reject and
exit”.

An assumption that leads to this definition of a strategy is that each
agent observes the index of the period, his current bundle, and the current
bundle and type of his opponent, but no past events beyond his own personal
history.4

4As explained in Gale (1986a), thanks to the presence of a continuum of agents and
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Like Gale (1986a, b, c) and Osborne and Rubinstein (1990), we restrict
attention to the case in which all agents of a given type use the same strategy.
As trade occurs, the bundle held by each agent changes. Different agents of
the same type, even though they use the same strategy, may execute different
trades. Thus the number of different bundles held by agents may increase.
However, the number of different bundles held by agents is finite at all times.
Thus in any period the market is given by a finite list (ki, ci, νi)i=1,... ,It, where
νi is the measure of agents who are still in the market in period t, currently
hold the bundle ci, and are of type ki. We call such a list a state of the market.
We say that an agent of type k who holds the bundle c is characterized by
(k, c).

Associated with each K-tuple of strategies σ, one can define a state of
the market ρ(σ, t) = (ki, ci, νi)i=1,... ,It in each period t. Although each agent
faces uncertainty, the presence of a continuum of agents allows us to define ρ
in a deterministic fashion. For example, since in each period the probability
that any given agent is matched is α, we take the fraction of agents with
any given characteristic who are matched to be precisely α. The reader is
referred to Osborne and Rubinstein (1990) for a description of how to obtain
ρ(σ, t+ 1) from ρ(σ, t) given σ.

Definition 3 A market equilibrium is a particular type of perfect Bayesian
equilibrium: it is a K-tuple σ∗ of strategies, one for each type, and the “state
of the market” beliefs ρ(σ∗, t) both on and off the equilibrium path for each
time t, such that:

• For any trade z, bundles c and c
′
, type k, and period t, the behavior

prescribed by each agent’s strategy from period t on is optimal, given
that in period t the agent holds c and has either to make an offer or to
respond to the offer made by his opponent, who is of type k and holds
the bundle c

′
, given the strategies of the other types, and given that the

agent believes that the state of the market is ρ(σ∗, t).

since personal histories are private information, there is no loss of generality in making
this Markov assumption on the strategies. Two agents with the same utility function and
bundle in period t, but with different private histories, must receive in equilibrium the
same expected utility, as otherwise one could profitably deviate by imitating the other.
This shows that the value function Vk(c, t) used in our proof is well defined as being
independent of payoff irrelevant histories.
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4 The Theorem

Suppose that the market equilibrium strategy calls for agents characterized
by (k, c) who are matched in period t with agents characterized by (k

′
, c

′
) to

reject some offer z and leave the market. These agents are said to be ready
to leave the market in period t.

Theorem 1 At every market equilibrium, each agent of type k ∈ K leaves
the market with the bundle xk with probability 1, where (x1, . . . , xK) is a
Walrasian allocation.

Proof: Consider a market equilibrium. All of our statements are relative
to this equilibrium. All agents of type k who hold the bundle c at the
beginning of period t (before their match has been determined) face the same
probability distribution of future trading opportunities. Thus in equilibrium
all such agents have the same expected utility, Vk(c, t) (see footnote 4 again).

Lemma 1 Vk(c, t) ≥ uk(c) ∀k, c, t.

Proof of Lemma 1 Suppose that an agent of type k who holds the
bundle c in period t makes the zero trade offer whenever he is matched and
is chosen to propose a trade, and reject every offer and leaves the market
when he is matched and chosen to respond. Clearly, he is matched and
chosen to respond to an offer in finite time with probability 1. �

Lemma 2 Vk(c, t) ≥ Vk(c, t+ 1) ∀k, c, t

Proof of Lemma 2: By proposing the zero trade and rejecting any offer
and staying in the market, any agent in the market in period t is sure of
staying in the market until period t+ 1 with his current bundle. �

Lemma 3 For an agent of type k who holds the bundle c and is ready to
leave the market in period t we have Vk(c, t+ 1) = uk(c).

Proof of Lemma 3: From Lemma 1, we have Vk(c, t + 1) ≥ uk(c).
Suppose that Vk(c, t+1) > uk(c) and the circumstances that make the agent
leave the market are realized. Then he would leave with the bundle c and
obtain the utility of uk(c). However, he is better off by deviating and staying
in the market until period t+ 1, contradicting his equilibrium strategy. �
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Lemma 4 Suppose that an agent of type k holds the bundle c and is ready
to leave the market in period t. Then it is optimal for him to accept any offer
z (of a transfer from him to the proposer) for which uk(c− z) > uk(c).

Proof of Lemma 4: If he accepts the offer, from Lemma 1, we have
Vk(c−z, t+1) ≥ uk(c−z), and therefore, Vk(c−z, t+1) > uk(c). If he rejects
the offer, then we have, from Lemma 3, Vk(c, t+ 1) = uk(c). Combining this
with the previous inequality, we obtain the result. �

Lemma 5 For each type k ∈ K, there exists a period t∗ such that for every
t ≥ t∗ there is a positive measure of agents of type k who are ready to leave
the market with the bundle ck in period t.

Proof of Lemma 5: Suppose first that there is a set of agents of type
k with positive measure who hold the bundle ck and are ready to leave the
market in period t∗. Given the matching technology, a positive measure of
such agents have been unmatched in any future time after t∗ and remain
ready to leave the market by Lemmas 2 and 3.

Thus, it only remains to show the existence of such t∗. We argue by
contradiction. Suppose that there exists a type k such that there is no
positive measure of agents of type k ready to leave the market at any time
t < ∞. In this case the expected utility of almost all agents of type k is
uk(D) = −∞. On the other hand, given the matching technology, at any
point in time there is a positive measure of agents of type k who hold ωk, and
given our assumption about the utility of the initial endowment, they can be
sure of getting the utility of their initial bundle in finite time by proposing
the zero trade whenever necessary and rejecting the offer and leaving the
market as soon as they are chosen to be responders. �

Lemma 6 Consider any period t such that a positive measure of traders
leaves the market in periods t′ ≤ t. Consider the different characteristics of
traders (ki, ci) for i ∈ It. Let Et ⊆ It be the set of characteristics present
up to period t for which a positive measure of agents has left the market.
Suppose that for all i = (ki, ci) ∈ Et, each member of the exiting set of
agents of characteristics i leaves the market in period ti with the bundle xi.
Then there is a vector p ∈ R

L
++ that supports the upper contour set of ui at

xi for every i ∈ Et.

Proof of Lemma 6: First, we define the following sets:

A+
i = {z ∈ R

L| ui(xi + z) > ui(xi)}
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and
A−

i = {z ∈ R
L| ui(xi − z) > ui(xi)}.

It is clear that for all i ∈ It, A+
i and A−

i are convex sets. Second, if one
defines A+

−i =
∑

j �=i A
+
j and A−

−i =
∑

j �=i A
−
j , we have that A+

−i and A−
−i are

also convex sets. Note that if z ∈ A+
i , then for any β ∈ (0, 1), βz ∈ A+

i , as
follows from convexity and continuity of preferences. The same observation
applies to A−

−i.
Further, we show now that A+

i ∩A−
−i = ∅ for all i ∈ It. Suppose, contrary

to the claim, that there exist i ∈ It and z ∈ A+
i ∩ A−

−i. Since z ∈ A−
−i, there

exist (z1, . . . , zi−1, zi+1, . . . , zIt) with
∑

j �=i zj = z such that uj(xj − zj) >
uj(xj) for all j 	= i. First we shall construct a profitable deviation of any
agent of characteristic i who is ready to leave the market with the bundle
xi. Using the observation at the end of last paragraph about A+

i and A−
−i,

we have βz ∈ A+
i and βz ∈ A−

−i for all β ∈ (0, 1). Notice that for every
i ∈ It, xi ∈ R

L
++ by our boundary assumption. If we take β sufficiently

small, we have that xi −
∑

j �=i βzj ∈ R
L
++. In other words, in no matter what

order he executes the net trades (βz1, . . . , βzi−1, βzi+1, . . . , βzIt), his bundle
after each of these trades continues to be feasible. Consider the following
deviation by an agent of characteristic i who is ready to leave the market
with the bundle xi:

• The first time that he is matched with an agent of characteristic j 	= i
who is ready to leave the market with the bundle xj and if the agent
of characteristic i is chosen to be the proposer, propose the trade βzj.

• Reject any offer and leave the market when he is chosen to be the
responder as soon as he achieves the bundle xi + βz.

• Otherwise, propose the zero trade, reject every offer whenever neces-
sary, and stay in the market.

From Lemma 5, there is a positive measure of agents of each character-
istic j 	= i who are ready to leave the market with the bundle xj in every
period. In addition, from Lemma 4, it is optimal for each such agent of each
characteristic j 	= i to accept the offer βzj. Given the matching technology,
any agent of characteristic i who is ready to leave the market with the bun-
dle xi can eventually meet as many agents of every characteristic j 	= i who
are ready to leave the market with the bundle xj as he wishes. Thus, with
probability 1, he can achieve the utility ui(xi + βz) > ui(xi) given the belief
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that agents of other characteristics follow their equilibrium strategies, which
is a contradiction. Therefore, we have established that A+

i ∩ A−
−i = ∅.

Consider now the strict upper contour set at the bundle xi for each char-
acteristic i:

Bi(xi) = {yi ∈ R
L
++|ui(yi) > ui(xi)},

and their sum:

B(x) =
∑
i∈It

Bi(xi), where x =
∑
i∈It

xi.

For the given x, define the set

{x} = {x =
∑
i∈It

yi for some yi ∈ R
L
++}.

Both B(x) and {x} are convex sets.
Furthermore, we show now that B(x)∩{x} = ∅. Suppose, contrary to the

claim, that their intersection is non-empty. That is, there exist (y1, . . . , yIt)
with

∑
i∈It

yi = x such that ui(yi) > ui(xi) for all i. Let yi = xi + z and
yj = xj − zj for all j 	= i. Since

∑
i∈It

yi = x, we have z =
∑

j �=i zj . Then

this contradicts A+
i ∩ A−

−i = ∅.
Therefore, by the separating hyperplane theorem, there exists p ∈ R

L

and a constant r such that px ≤ r and such that for every y ∈ B(x), py ≥ r.
Let ε > 0 and denote by εL ∈ R

L a vector where all its components are ε.
By strict monotonicity of preferences, x+ |It|εL ∈ B(x). Taking a sequence
of ε’s converging to 0, we obtain that r = px.

Finally, consider an arbitrary yi ∈ Bi(xi). Clearly, we have that yi +∑
j �=i xj + |It − 1|εL ∈ B(x), and therefore, p[yi +

∑
j �=i xj + |It − 1|εL] ≥ px,

or pyi + p|It − 1|εL ≥ pxi. And again taking a sequence of ε → 0, we obtain
that pyi ≥ pxi. Since the utility functions are continuous, we have that for
every zi such that ui(zi) ≥ ui(xi), pzi ≥ pxi, as we wanted to show. Of
course, the fact that p ∈ R

L
++ comes from strict monotonicity, now that we

know that p supports the upper contour sets at xi for every characteristic i.
�

Lemma 7 Let p, x and the sets A−
i be as defined in Lemma 6 and its proof.

Let I =
⋃

t It be the set of all characteristics present in equilibrium, and let
A− =

∑
i∈I A

−
i . Let z∗i = xi−ωi be characteristic i’s net trade in equilibrium.

Assume that for every characteristic i for which pz∗i < 0, there exists θi ∈ R
L
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small enough, ui(xi + θi) > ui(xi), for which there exists β > 0 small enough
such that βθi ∈ A−.
Then, the market equilibrium is payoff equivalent to the Walrasian equilib-
rium (p, x).

Proof of Lemma 7: For each characteristic i = (k, c) ∈ I present in the
market, define the following set:

Γi = {z ∈ R
L| ui(ωi + z) > ui(xi)}.

We shall show now that for every i ∈ I, pz∗i ≥ 0, that is, pxi ≥ pωi.
We argue by contradiction. Suppose there exists characteristic i such that
pz∗i < 0. Consider θi as in the statement of the lemma. We have that
zi = z∗i + θi ∈ Γi. Since θi is small enough, we obtain pzi < 0 by continuity.
Further, by our assumption, we have that there exists β > 0 small enough
such that βzi ∈ A−.

Since βzi ∈ A−, there exist (βz′1, . . . , βz
′
I) with

∑
j∈I βz

′
j = βzi such that

uj(xj − βz′j) > uj(xj) for all j ∈ I. Since A− is convex and the closure of it
contains 0 ∈ R

L, we can choose β arbitrarily small. Recall our assumption
that ωi ∈ R

L
++. Hence, if one takes a sufficiently small β, we have that

ωi −
∑

j∈I βz
′
j ∈ R

L
++. Take the smallest integer N ∈ N such that β ≥ 1/N .

Consider the following deviation by an agent of characteristic i. Instead
of following his equilibrium strategy, he will use this other, starting at the
beginning of the game when he holds his initial bundle ωi:

• The first N times that he is matched with an agent of characteristic j
who is ready to leave the market with the bundle xj and if the agent of
characteristic i is chosen to be the proposer, offer the trade (1/N)z′j .

• Reject any offer and leave the market when he is chosen to be the
responder as soon as he finishes trading N times with each j ∈ I ready
to leave the market, as prescribed above.

• Otherwise, propose the zero trade, reject every offer whenever neces-
sary, and stay in the market.

Following this strategy, in no matter what order he executes the net trades
((1/N)z′1, . . . , (1/N)z′I), his bundle after each of these trades continues to
be feasible. From Lemma 5, there is a positive measure of agents of each
characteristic j who are ready to leave the market with the bundle xj in
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every period. In addition, from Lemma 4, it is optimal for each such agent of
characteristic j to accept the offer (1/N)z′j. Given the matching technology,
any agent of characteristic i who holds his initial bundle ωi can eventually
meet as many agents of every characteristic j who are ready to leave the
market with the bundle xj as he wishes. Thus, with probability 1, he can
achieve the utility ui(ωi+zi) > ui(xi) given the belief that other agents follow
their equilibrium strategies, which is a contradiction.

Therefore, we have established that for all characteristics i present in the
market pxi ≥ pωi. In addition, recall that p supports the indifference surface
at xi. That is, we have Vi(ωi, t) ≥ maxx∈RL

+
{ui(x)| px ≤ pωi}. By Lemma 2,

we have Vi(ωi, 0) ≥ maxx∈RL
+
{ui(x)| px ≤ pωi}.

By efficiency of the Walrasian allocations, these inequalities must be
equalities. That is,

Vi(ωi, 0) = max
x∈RL

+

{ui(x)| px ≤ pωi}.

�

Lemma 8 If the utility functions are strictly concave, every agent of type
k ∈ K leaves the market in finite time with a bundle xk such that (xk)k∈K is
a Walrasian allocation.

Proof of Lemma 8: By strict concavity of utility functions, the market
equilibrium outcome is a degenerate lottery, so each agent of type k ∈ K
receives in equilibrium the bundle xk, the unique maximizer of his utility
over the equilibrium budget set through ωk. �

This concludes the proof of the theorem. �

5 Extensions

The theorem proved in this paper can be extended in several important
directions.

1. Strict monotonicity can be weakened to local non-satiation, since it is
used only to find near-by strictly preferred bundles in the separation argu-
ment of Lemma 6 and in the use of the first welfare theorem in Lemma 7.
This allows to extend the theory to “economic bads” if one considers the
consumption set to be R

L, to avoid problems with the boundary assumption
on preferences.
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2. Strict concavity, used only in Lemma 8, can be replaced with the
assumption of aggregate risk aversion introduced in Dagan, Serrano and Volij
(2000). This assumption takes advantage of the convexification effects in
the continuum. As explained in that paper, aggregate risk aversion can be
derived from assumptions on individual preferences, by requiring a weak form
of concavity on the quasiconcave covers of utility functions.

3. There is another sense in which the convexifying effects of the con-
tinuum help relaxing assumptions. Although we have assumed convexity of
individual preference relations for the proof of Lemma 6, all is really needed
is the convexity of the sum of preferred sets to make the separation argument
go through. Assuming only that, one can adapt the proof of Proposition 1 in
McLennan and Sonnenschein (1991) to prove the existence of a unique sep-
arating price. That proof relies on differentiability, but it can be extended
as follows. Using the notation in their proof, if at periods t and τ , there are
two different supporting prices pt and pτ , we can have two cases: (a) if pt

intersects the relevant preferred set at period τ or pτ intersects that at period
t, one can use the same deviation proposed in McLennan and Sonnenschein’s
proof to find a contradiction; and (b) if that does not happen, both prices
support both relevant preferred sets, and then we might as well choose one
of them as our separating price.

4. Lemma 7 rests on an assumption made directly on the equilibrium. A
sufficient condition for it is that there is at least one type with differentiable
preferences because then the set A− is smooth at 0. This minimal presence of
differentiability is not necessary, though: we have constructed examples with
all preferences being non-differentiable in which all market equilibria have
the Walrasian property. We choose to state the assumption as in Lemma 7
because it is a necessary condition for the theorem to hold. That is, using the
notation found in the statement of Lemma 7, suppose the assumption were
violated: this means that there would exist an equilibrium for which there
exists a characteristic i with pz∗i < 0. It follows then that the equilibrium
outcome cannot be Walrasian, since at least characteristic i does not end
up consuming his Walrasian bundle. (This argument shows that there is a
large number of conditions that are necessary for the theorem; essentially,
any statement with a preamble of the form “for every characteristic i such
that pz∗i < 0.” The advantage of the assumption of Lemma 7 is that, apart
from necessary, it is also sufficient).

5. The “finite type” assumption has been made only for expositional
reasons. Alternatively, one could work with the condition of dispersed char-
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acteristics, as in Gale (1986a). Increasing the diversity of types in the popu-
lation can only help the arguments of the proof, as long as there is a positive
probability of meeting agents with a bundle in an open ball of a given bundle.

6. The theory extends also to indivisible goods, thereby reconciling the
result in the limit with the limit theorem of Gale (1987). To do this, one
should convexify the consumption set and work with the quasiconcave covers
of utility functions, as done in Dagan, Serrano and Volij (2000). Our key
argument is based on separation and this can be attained following similar
steps to the ones in our proof.
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