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Abstract
We consider robust virtual implementation, where robustness is the require-

ment that implementation succeed in all type spaces consistent with a given

payoff type space as well as with a given space of first-order beliefs about the

other agents’ payoff types. This last bit, which constitutes our reinterpreta-

tion of the Wilson doctrine, allows us to obtain very permissive results. Our

first result is that generically, if there are at least three alternatives, any in-

centive compatible social choice function is robustly virtually implementable

in iteratively undominated strategies. Further, we characterize robust virtual

implementation in iteratively undominated strategies by means of incentive

compatibility and measurability. Our characterization is independent of the

presence of monetary transfers or assumptions alike, made in previous studies.

Our work also clarifies the measurability condition in connection to the generic

diversity of preferences used in our first result.
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“Game Theory has a great advantage in explicitly analyzing the con-
sequences of trading rules that presumably are really common knowl-
edge; it is deficient to the extent it assumes other features to be common
knowledge, such as one player’s probability assessment about another’s
preferences or information.
I foresee the progress of game theory as depending on successive re-
ductions in the base of common knowledge required to conduct useful
analysis of practical problems. Only by repeated weakening of common
knowledge assumptions will the theory approximate reality.”

Robert Wilson (1987)

1 Introduction

The theory of implementation attempts to identify the conditions under which a

social choice rule may be decentralized; that is, when agents, acting on their self-

interest, arrive at the outcomes prescribed by the social choice rule. In contexts in

which the economic authority knows what agents’ types might be, but does not know

what they actually are, the theory has uncovered necessary and sufficient conditions

for such decentralization.1 In many circumstances, one should expect that, apart

from the economic authority’s informational constraints, agents themselves be also

asymmetrically informed about each other’s preferences, beliefs or signals.

For such incomplete information environments, a necessary condition for the im-

plementation of any rule is its incentive compatibility. Some authors refer to this

condition as informational feasibility, and give it the same stature as physical feasi-

bility (e.g., Myerson (1989)): by the revelation principle, a rule is truthfully imple-

mentable in Bayesian equilibrium if and only if it is incentive compatible. Yet the

direct revelation mechanism that yields a truthfully implementable rule will typically

have additional equilibria, and these equilibria are undesirable in the sense of not

being consistent with the original social choice rule. This motivates the question

of full implementation: the search for mechanisms whose entire set of equilibrium

outcomes relates to the given rule. Full implementation in incomplete information

1See Jackson (2001), Maskin and Sjostrom (2002), Palfrey (2002) or Serrano (2004) for recent
surveys.
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environments will be the notion of implementation sought in the current paper.

When the set of equilibrium outcomes is required to coincide with those picked

out by the rule, we speak of exact implementation. A new necessary condition –

Bayesian monotonicity – emerges in this case in addition to incentive compatibility

(Postlewaite and Schmeidler (1986), Palfrey and Srivastava (1989), Jackson (1991)).

Moreover, Jackson (1991) finds the version of this condition that, along with in-

centive compatibility and other assumptions, yields a characterization of Bayesian

implementable rules.

It is well-known that Bayesian monotonicity may sometimes be a very restrictive

condition (e.g., Palfrey and Srivastava (1987), Chakravorti (1992)). In view of this,

one can relax the requirement of exact implementation, and, instead, ask that the set

of equilibrium outcomes approximates the rule. This is the approach known as vir-

tual implementation, which has confined its scope to social choice functions (SCFs).

Though some new sufficient conditions accompanying incentive compatibility were

identified (incentive consistency in Duggan (1997), measurability in Abreu and Mat-

sushima (1992)), they were not necessary conditions, and not even logically weaker

than Bayesian monotonicity (as shown in Serrano and Vohra (2001)). Finally, Ser-

rano and Vohra (2005) identify the condition of virtual monotonicity, which, along

with incentive compatibility, characterizes virtual implementation in Bayesian equi-

librium. It is argued there that virtual monotonicity is an extremely weak condition,

strictly weaker than Bayesian monotonicity and measurability, and trivially satisfied

by all SCFs in “most” environments.

From the view-point of the realism of the approach, all these papers have an im-

portant drawback. Following the Wilson doctrine, expressed in the quote by Wilson

(1987) at the beginning of our introduction, the theory should aim to relax undesir-

able common knowledge assumptions among the agents. In particular, one should

avoid in mechanisms the use of the notion of a type. A type, which includes the

specification of higher-order beliefs for a player, may well be far too complex an

object to describe. Accepting this view, the usual route taken by researchers has

been to prevent the use of any consideration of beliefs in the message spaces. Thus,

mechanisms have been constructed on the basis of only that part of the type that is

payoff relevant, the so-called payoff type.

In a series of papers, Bergemann and Morris (2005a, 2005b, 2007) seek for robust
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implementation results. Their work relevant to the current paper is contained in

their latter two papers, which deal with full implementation. Faithful to the Wilson

doctrine, they construct mechanisms that rely exclusively on the use of payoff types,

and require that implementation must obtain for any type space consistent with the

original payoff type space. When insisting on robust exact implementation, Berge-

mann and Morris identify ex-post incentive compatibility and robust monotonicity as

necessary and almost sufficient conditions. They also consider robust virtual imple-

mentation and identify ex-post incentive compatibility and robust measurability as

the corresponding key conditions for this case. These conditions are very restrictive,

stronger than their counterparts for exact or virtual implementation for a fixed type

space. For instance, ex-post incentive compatibility would generically require an SCF

to be constant (Jehiel et al. (2006)). Bergemann and Morris interpret their negative

results for virtual implementation as a consequence of the robustness approach. They

suggest that “the distance between [exact] and virtual implementation may shrink

considerably after imposing robustness on the implementation concept” (Bergemann

and Morris, 2005b, p. 42) and that the constructions for virtual implementation

rely “on the implicit assumption that there is a common knowledge of mapping from

beliefs to payoff types of all agents (a “Beliefs-Determine-Preferences” property)”

(Bergemann and Morris, 2007, p. 5). We shall offer now a different interpretation.

To show the difficulties of robust virtual implementation, Bergemann and Morris

(2005b, 2007) construct a very specific type space in which the interim preferences

of all types are aligned. That virtual Bayesian implementation may fail exactly for

this reason has already been pointed out in Serrano and Vohra (2001) in a standard

Bayesian environment with a fixed type space. Yet, such failures are “rare:” if

the environment satisfies type diversity, every incentive compatible SCF is virtually

implementable (Serrano and Vohra (2005)). That is, virtual implementation is as

successful as it can possibly be. Furthermore, in environments with at least three

alternatives, type diversity is generically satisfied.

This paper reconsiders the problem of robust virtual implementation. Our ap-

proach is the following. First, we take from the foundations of game theory that,

when requiring robustness results with respect to consistent type spaces, equilibrium

restrictions are not imposed beyond the ones identified by the weaker solution con-

cept of iterative elimination of strictly dominated strategies. This will be the solution
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concept we shall employ, and in doing so, we are building on an important paper by

Abreu and Matsushima (1992).2

Our main point of departure from the usual interpretation of the Wilson doctrine

is that we shall allow the use of first-order beliefs over payoff types, along with payoff

types, in our mechanisms. This is a reinterpretation of the Wilson doctrine that does

not seem too demanding: after all, people are usually capable of providing simple

probability assessments; we could think here of an insurance problem, for instance.

The combination of payoff type and first-order belief for a player will comprise our

notion of a pseudo-type. Therefore, we shall fix a (typically quite rich) space of

pseudo-types, which we will assume to be common knowledge among the agents,

and we shall require that implementation obtains for all type spaces consistent with

our original pseudo-type space.

The resulting theorems we obtain send a very different message from the one sent

by Bergemann and Morris (2005b, 2007) for robust virtual implementation. First,

we propose a condition that we term pseudo-type diversity and show (Theorem 1)

that in such environments every SCF that is incentive compatible in every type space

consistent with the original pseudo-type space is robustly virtually implementable

in iteratively undominated strategies. Thus, there is no need to go all the way

to requiring ex-post incentive compatibility – the relevant interim notion for every

pseudo-type in the model suffices. Second, pseudo-type diversity again happens to

be generic when there are at least three alternatives; thus, one does not need to rely

on any additional condition “most of the time.”

Next, we seek to obtain a characterization. We extend the work of Abreu and

Matsushima (1992) to our settings. Theorem 2 shows that incentive compatibil-

ity for every consistent type space and A-M measurability – introduced in Abreu

and Matsushima (1992) – are necessary and sufficient conditions for robust virtual

2Following Bergemann and Morris (2005b) and Brandenburger and Dekel (1987), we can also
characterize our solution concept – iteratively undominated strategies – in terms of interim ratio-
nalizability which, in turn, is equivalent to the Bayesian equilibria in all consistent type spaces.
There are, however, two reasons why our definition of interim rationalizability is more demanding
than that of Bergemann and Morris (2005b). First, we include the set of first-order beliefs over the
payoff type space as part of the environment which is assumed to be common knowledge. Second, at
each round of elimination of never best responses, we explicitly require agents’ first-order beliefs to
be consistent with the environment. This is termed ∆-rationalizability in Battigalli and Siniscalchi
(2003).
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implementation in iteratively undominated strategies. Importantly, we relax an as-

sumption made by Abreu and Matsushima on the environment, which essentially

amounts to quasilinear utilities on a nummeraire, on which small punishments are

imposed. Moreover, we elaborate on the connection between pseudo-type diversity

and A-M measurability: as hinted in the original paper by Abreu and Matsushima,

the pseudo-type diversity condition is associated with the first iteration of the mea-

surability algorithm, which, in general, may have multiple steps. The algorithm

determines the maximum possible separation of types – or pseudo-types – on the ba-

sis of their interim preferences.3 We also note that the proofs of our Theorems 1 and

2 follow the same logic, further underscoring the link between pseudo-type diversity

and measurability.

A final word is called for regarding the nature of our mechanisms and the con-

nection with virtual implementation in Bayesian equilibrium. First, the distinction

between implementation in pure- or mixed-strategy equilibria is of no significance,

once we ask for robustness with respect to type spaces. Our sufficiency result applies

a fortiori to virtual implementation in mixed-strategy Bayesian equilibrium. Al-

though virtual implementation in Bayesian equilibrium is typically more permissive

than virtual implementation in iteratively undominated strategies,4 the difference is

small in that it concerns environments violating pseudo-type diversity. Furthermore,

the additional SCFs so implemented must rely on the use of non-regular mechanisms

(e.g., using integer games and devices alike): following a result of Abreu and Mat-

sushima (1992) for a fixed type space, A-M measurability is necessary for robust

virtual implementation in Bayesian equilibrium if one uses regular mechanisms. Our

mechanisms are finite, and best responses always exist.

The paper is organized as follows: in Section 2 we introduce the preliminary

notation and definitions. In Section 3 we present our first mechanism, which is used

in Section 4 to prove our main result (Theorem 1). Section 5 is concerned with

A-M measurability, used in Section 6 for the characterization result (Theorem 2).

In Section 7 we explain the connection of our results with those in virtual Bayesian

implementation. We conclude in Section 8.

3See also a related discussion of indistinguishability in Bergemann and Morris (2007).
4For each fixed type space, this follows since virtual monotonicity is strictly weaker than A-M

measurability.
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2 Preliminaries

Let N = {1, . . . , n} denote the set of agents and Θi be the set of finite payoff-

relevant (or, simply, payoff ) types of agent i. Denote Θ ≡ Θ1 × · · · × Θn, and

Θ−i ≡ Θ1 × · · · × Θi−1 × Θi+1 × · · ·Θn.
5 Let qi(θ−i|θi) denote agent i’s first-order

belief that other agents receive the profile of payoff types θ−i when his payoff type

is θi. Let Qi be the finite set of such probabilistic first-order beliefs of agent i. We

call Ti = Θi × Qi the finite set of pseudo-types of agent i. Agent i’s pseudo-type

ti contains information about his payoff type θi and the first-order belief over Θ−i

conditional on θi.

Let A denote the set of pure outcomes, which are assumed to be independent

of the information state. Let A be a σ-algebra on A and ∆(A) denote the set of

probability measures on (A,A) with countable supports.

Agent i’s state dependent von Neumann-Morgenstern utility function is denoted

ui : ∆(A)×Θ → R.

We can now define an environment as E = ((A,A), {ui,Θi, Qi}i∈N), which is

implicitly understood to be common knowledge among the agents.

We denote a type of agent i by τi and the agent i’s set of types by Ti. A type τi of

agent i must include a description of his pseudo-type, which in turn includes a payoff

type. Thus, there is a function t̂i : Ti → Ti, with t̂i(τi) being agent i’s pseudo-type

when his type is τi. We shall write t̂(τ) to refer to the profile of pseudo-types when

the type profile is τ . There is also a function θ̂i : Ti → Θi, with θ̂i(τi) being agent

i’s payoff type when his type is τi. We shall write θ̂(τ) to denote the payoff type

profile when the profile of types is τ . With some abuse of notation, let θ̂i(ti) be

agent i ’s payoff type when his pseudo-type is ti. A type τi of agent i must also

include a description of his beliefs about the types of the other agents; thus, for any

τ−i ∈ T−i, πi(τ−i|τi) denotes the probability that agent i of type τi assigns to other

agents having types τ−i.

We require that types, pseudo-types and payoff types are consistent with each

other. We express the consistency requirement in the following definition. A type

space T is a collection:

T = (Ti, θ̂i, t̂i, πi)i∈N .
5Similar notation will be used for products of other sets.
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Definition 1 A type space T ≡ (Ti, θ̂i, t̂i, πi)i∈N is said to be consistent with an

environment E = ((A,A), {ui,Θi, Qi}i∈N) if, for every i ∈ N and every type τi ∈ Ti,
the following two conditions must hold:

1. θ̂i(τi) ∈ Θi and t̂i(τi) ∈ Θi ×Qi; and

2. θ̂i(τi) = θi whenever t̂i(τi) = (θi, qi) for some (θi, qi) ∈ Θi ×Qi.

The first part of the definition is just the requirement that pseudo-type and

payoff type be consistent with the agent’s type. This requirement, for payoff types,

has also been imposed in Bergemann and Morris (2005a, 2005b, 2007). The second

part requires similar consistency between pseudo-types and payoff types. These two

requirements, in turn, imply that, for any τi ∈ Ti with t̂i(τi) = ti = (θ̂i(ti), qi),∑
τ−i:t̂−i(τ−i)=t−i

πi(τ−i|τi) = qi(θ̂−i(t−i)|θ̂i(ti))

The consistency we have just defined essentially reduces to the requirement that

the various levels of beliefs of an individual do not contradict one another. This

requirement is the same as common knowledge of coherency, which is imposed when

Brandenburger and Dekel (1993) and Mertens and Zamir (1985) construct the uni-

versal type space. The only difference here is that the underlying state space – the

pseudo-type space – includes not only the payoff type space but also the set of the

first-order beliefs over the payoff type space.

When a consistent type space T satisfies the properties that Ti = Θi and Qi is

a singleton for each agent i ∈ N , then the true type space is common knowledge.

This corresponds to the fixed Bayesian environment (e.g., Postlewaite and Schmei-

dler (1986), Palfrey and Srivastava (1989), Jackson (1991), Abreu and Matsushima

(1992), Duggan (1997), Serrano and Vohra (2001, 2005)). When Qi includes any

possible belief of i over Θ−i – that is, Qi is not assumed to be common knowledge

among agents in N – this corresponds to the payoff environment of Bergemann and

Morris (2005b, 2007). Our approach is in between these two extremes, as it allows

Qi to include an arbitrarily large, but finite, number of beliefs. We note that Berge-

mann and Morris (2007) also make the finiteness assumption on the space of payoff

types.
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A social choice function (SCF) is a function f : T → ∆(A). Note that the

domain of the SCFs is not the true type space, but the pseudo-type space. That

is, the goals of society do not depend on the possibly far too complex higher-order

beliefs structure, but they might depend on payoff relevant information, as well as

on first-order beliefs about it.6

Fix any consistent type space T throughout. The interim expected utility of

agent i of type τi corresponding to an SCF f is defined as:

Ui(f |τi) ≡
∑

τ−i∈T−i

πi(τ−i|τi)ui(f(t̂(τi, τ−i)); θ̂(τi, τ−i))

A mechanism Γ = ((Mi)i∈N , g) describes a message space Mi for agent i and an

outcome function g : M → ∆(A), where M = ×i∈NMi. Let σi : Ti → Mi denote a

(pure) strategy for agent i and Σi his set of pure strategies. Let

Ui(g ◦ σ|τi) ≡
∑

τ−i∈T−i

πi(τ−i|τi)ui(g(σ(τ−i, τi)); θ̂(τ−i, τi)).

Given a mechanism Γ = (M, g), let Hi be a subset of Σi.

Definition 2 (Strict Dominance) 7 A strategy σi ∈ Hi is strictly dominated

for player i with respect to H = ×j∈NHj if there exist τi ∈ Ti and σ
′
i ∈ Hi such that

for every σ−i ∈ ×j 6=iHj,

Ui(g ◦ (σ
′

i, σ−i)|τi) > Ui(g ◦ (σi, σ−i)|τi).
6This last bit allows our model to cover environments in which the only uncertainty concerns

information, as in basic insurance problems (see, for example, Serrano and Vohra (2001, Example
1)). To accomodate that example into our model, since no uncertainty exists over payoff types, one
can add a space of signals over which first-order beliefs are defined.

7We use the same definition of strict dominance as Abreu and Matsushima (1992), yet we note
that we could obtain our results with the less demanding notion of dominance, which require a
strategy to be dominated for each type τi:
Definition: A strategy σi ∈ Hi is strictly dominated for agent i with respect to H = ×j∈NHj if
for each τi ∈ Ti there exists σ

′

i ∈ Hi such that for every σ−i ∈ ×j 6=iHj ,

Ui(g ◦ (σ
′

i, σ−i)|τi) > Ui(g ◦ (σi, σ−i)|τi).
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Let Ki(H) denote the set of all undominated strategies for agent i with respect

to H = ×i∈NHi. Let K(H) = ×i∈NKi(H). Let K0
i (Σ) = Σi and for each k ≥

1, Kk(Σ) = ×i∈NKk
i (Σ), where Σ = ×i∈NΣi and Kk

i (Σ) = Ki(Kk−1(Σ)). Let

K∗ ≡
∞⋂
k=0

Kk(Σ)

Definition 3 (Iterative Dominance) A strategy profile σ ∈ Σ is iteratively un-

dominated if σ ∈ K∗.

An SCF f is said to be exactly implementable in iteratively undominated strate-

gies for a type space T if there exists a mechanism Γ = (M, g) such that for any

σ ∈ K∗, g(σ(τ)) = f(t̂(τ)) for all τ ∈ T . We add the requirement that this defini-

tion should hold for every consistent type space T to obtain the definition of robust

implementation:

Definition 4 (Robust Implementation) An SCF f is said to be robustly im-

plementable in iteratively undominated strategies if there exists a mechanism Γ =

(M, g) such that for any σ ∈ K∗, g(σ(τ)) = f(t̂(τ)) for every τ ∈ T and every

consistent type space T .

Consider the following metric on SCFs:

d(f, h) = sup
{
|f(t|S)− h(t|S)|

∣∣ t ∈ T, S ∈ A}
The notation f(t|S) refers to the lottery f(t) ∈ ∆(A) when its support is restricted

to S ∈ A.

An SCF f is said to be virtually implementable in iteratively undominated strate-

gies for a consistent type space T if, there exists ε̄ > 0 such that for any ε ∈ (0, ε̄],

there exists an SCF f ε for which d(f, f ε) < ε and f ε is exactly implementable in

iteratively undominated strategies for the type space T .

The definition of implementability that will be used in this paper follows:

Definition 5 (Robust Virtual Implementation) An SCF f is robustly virtu-

ally implementable in iteratively undominated strategies if there exists ε̄ > 0 such
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that, for any ε ∈ (0, ε̄], there exists an SCF f ε for which d(f, f ε) < ε and f ε is

robustly implementable in iteratively undominated strategies.

The next standard definition is very important in the entire economic theory of

information:

Definition 6 (Incentive Compatibility) An SCF f : T → ∆(A) is said to be

incentive compatible for a consistent type space T if for every i ∈ N, τi, τ
′
i ∈ Ti,∑

τ−i∈T−i

πi(τ−i|τi)ui(f(t̂(τi, τ−i)); θ̂(τi, τ−i)) ≥
∑

τ−i∈T−i

πi(τ−i|τi)ui(f(t̂(τ
′

i , τ−i)); θ̂(τi, τ−i))

We shall say that an SCF f is strictly incentive compatible if all the inequalities

in the preceding definition are strict whenever t̂i(τi) 6= t̂i(τ
′
i ).

Define Vi(f |ti) to be the interim expected utility of agent i of pseudo-type ti

corresponding to an SCF f as follows:

Vi(f |ti) =
∑

θ−i∈Θ−i

∑
q−i∈Q−i

qi(θ−i|θi)ui(f(ti, θ−i, q−i); θi, θ−i)

where ti ≡ (θi, qi) ∈ Ti = Θi×Qi. We call Vi(f |ti) the pseudo-interim utility of agent

i.

This notion suggests the following definition:

Definition 7 (Pseudo-Incentive Compatibility) An SCF f : T → ∆(A) is

pseudo-incentive compatible if, for any i ∈ N and any ti = (θi, qi), t
′
i = (θ

′
i, q

′
i) ∈

Ti with ti 6= t
′
i, ∑

θ−i∈Θ−i

∑
q−i∈Q−i

qi(θ−i|θi)ui(f(ti, θ−i, q−i); θi, θ−i)

≥
∑

θ−i∈Θ−i

∑
q−i∈Q−i

qi(θ−i|θi)ui(f(t
′

i, θ−i, q−i); θi, θ−i)

We shall say that an SCF f is strictly pseudo-incentive compatible if all the

inequalities in the preceding definition are strict.

The next lemma provides a useful link between these concepts:
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Lemma 1 An SCF f : T → ∆(A) is incentive compatible for any consistent type

space T if and only if it is pseudo-incentive compatible.

Proof of Lemma 1: Fix an arbitrary consistent type space T . For each τi ∈ Ti,
let t̂i(τi) ≡ ti and θ̂i(τi) ≡ θi.

Incentive compatibility for the consistent type space T

⇔
∑

τ−i∈T−i

πi(τ−i|τi)
[
ui(f(t̂(τ)); θ̂(τ))− ui(f(t̂(τ

′

i , τ−i)); θ̂(τ))
]
≥ 0

⇔
∑

t−i∈T−i

∑
τ−i:t̂−i(τ−i)=t−i

πi(τ−i|τi)
[
ui(f(ti, t−i); θ̂(ti, t−i))− ui(f(t

′

i, t−i)); θ̂(t))
]
≥ 0

(∵ [·] is the same for every τ−i : t̂−i(τ−i) = t−i)

⇔
∑

t−i∈T−i

[
ui(f(ti, t−i); θ̂(ti, t−i))− ui(f(t

′

i, t−i)); θ̂(t))
] ∑
τ−i:t̂−i(τ−i)=t−i

πi(τ−i|τi) ≥ 0

⇔
∑

θ−i∈Θ−i

∑
q−i∈Q−i

qi(θ−i|θi)
[
ui(f(ti, θ−i, q−i); θi, θ−i))− ui(f(t

′

i, θ−i, q−i)); θi, θ−i)
]
≥ 0

(∵ t−i = (θ−i, q−i) ∈ Θ−i ×Q−i)

⇔ pseudo-incentive compatibility.�

As is well-known, the next proposition identifies incentive compatibility as a

necessary condition for implementability:

Proposition 1 If an SCF is robustly virtually implementable in iteratively undom-

inated strategies, then it is incentive compatible for every consistent type space.

Proof of Proposition 1: By our hypothesis, there exists an SCF f ε such that

d(f ε, f) < ε and f ε is robustly exactly implementable in iteratively undominated

strategies for any consistent type space T . Fix an arbitrary consistent type space T .

Suppose that f is not incentive compatible; that is, the weak inequality in definition

6 does not hold. Then, there exists a small enough ε > 0 such that the same

inequality for f ε does not hold either. Therefore, f ε is not incentive compatible and,

thus, cannot be exactly implementable, a contradiction.

Since the same argument holds for any consistent type space, one can conclude

that for ε > 0 small enough, f is incentive compatible for every consistent type space

if and only if f ε is incentive compatible for every consistent type space. �
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We shall make the following weak regularity assumption on environments:

Definition 8 (Pseudo-NTI) An environment E satisfies pseudo-no-total-indif-

ference (pseudo-NTI) if for every i ∈ N and ti = (θi, qi) ∈ Ti, there exist a, a
′ ∈ A

such that ∑
θ−i∈Θ−i

qi(θ−i|θi)ui(a; θi, θ−i) 6=
∑

θ−i∈Θ−i

qi(θ−i|θi)ui(a
′
; θi, θ−i).

Pseudo-NTI simply rules out indifference (in terms of pseudo-interim expected

utility) across all lotteries.

Let A = {a1, . . . , aK} be the finite set of alternatives.8 Henceforth, we will find

it convenient to identify a lottery x ∈ ∆(A) as a point in the (K − 1) dimensional

unit simplex ∆K−1 = {(x1, . . . , xK) ∈ RK−1
+ |

∑K
k=1 xk = 1}. Define V k

i (ti) to be the

interim expected utility of agent i of pseudo-type ti = (θi, qi) for the constant SCF

that assigns ak in each state in T , i.e.,

V k
i (ti) =

∑
θ−i∈Θ−i

qi(θ−i|θi)ui(ak; θi, θ−i).

Let Vi(ti) = (V 1
i (ti), . . . , V

K
i (ti)).

Next, we define the condition of pseudo-type diversity in an environment, which

will play an important role in our analysis:

Definition 9 (Pseudo-TD) An environment E satisfies pseudo-type diversity

(pseudo-TD) if there do not exist i ∈ N, ti = (θi, qi), t
′
i = (θ

′
i, q

′
i) ∈ Ti with

ti 6= t
′
i, β ∈ R++ and γ ∈ R such that

Vi(ti) = βVi(t
′

i) + γe,

where e is the unit vector in ∆K−1.

Pseudo-type diversity is a generalization of the type diversity condition for a

8This is done for simplicity. If A were an arbitrary separable space, we would work with its
countable dense subset. The reader is referred to Section 6 of Abreu and Sen (1991) or to Duggan
(1997) for more details.
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standard Bayesian environment, used in Serrano and Vohra (2005). The reader is

referred to that paper to find an appraisal of the connections of type diversity with

the conditions of interim value distinguished types (Palfrey and Srivastava (1993,

definition 6.3)), incentive consistency (Duggan (1997)), and with the algorithm be-

hind measurability due to Abreu and Matsushima (1992). We will have more to say

about the latter connection in the next sections. 9

Remark: Pseudo-TD is generically satisfied in the space of pseudo-interim prefer-

ences over pure outcomes if |A| ≥ 3. As noted above, when we consider a consistent

type space T in which Ti = Θi and Qi is a singleton for each agent i ∈ N , pseudo-TD

is reduced to TD of Serrano and Vohra (2005).

For every consistent type space T , define Uk
i (τi) to be the interim expected utility

of agent i of type τi for the constant SCF which assigns ak in each state in T , i.e.,

Uk
i (τi) =

∑
τ−i∈T−i

πi(τ−i|τi)ui(ak; θ̂(τi, τ−i)).

So, the condition of TD would ask that no two types of an agent can be found

for whom these vectors are positive affine transformations of one another. The next

lemma explains how to go from pseudo-TD to TD:

Lemma 2 Suppose that an environment E satisfies pseudo-TD. Then, for any con-

sistent type space T , there do not exist i ∈ N, τi, τ
′
i ∈ Ti with t̂i(τi) 6= t̂i(τ

′
i ), β > 0,

and γ ∈ R such that

Ui(τi) = βUi(τ
′

i ) + γe

where e is the unit vector in ∆K−1.

Proof of Lemma 2: Fix an arbitrary consistent type space T . As it will become

clear, the argument does not depend on any particular type space consistent with the

original environment E . Consider agent i of type τi. Let t̂i(τi) ≡ ti and θ̂i(τi) ≡ θi.

9 If A is a separable metric space, let A∗ = {a1, a2, . . .} be a countable dense subset of A. Now,
we can define

Vi(ti) = (V k
i (ti))∞k=1 ∈ R∞

We also define e as the countable unit base in A with ‖e‖ = 1. With these qualifications, pseudo-TD
is also well defined for separable metric spaces.
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We claim that Uk
i (τi) = V k

i (ti) for each k = 1, . . . , K.

Uk
i (τi) =

∑
τ−i∈T−i

πi(τ−i|τi)ui(ak; θ̂(τi, τ−i))

=
∑

t−i∈T−i

∑
τ−i: t̂−i(τ−i)=t−i

πi(τ−i|τi)ui(ak; θ̂(τi, τ−i))

=
∑

t−i∈T−i

ui(ak; θ̂(ti, t−i))
∑

τ−i: t̂−i(τ−i)=t−i

πi(τ−i|τi) (∵ t̂i(τi) = ti)

=
∑

t−i∈T−i

qi(θ̂−i(t−i)|θ̂i(ti))ui(ak; θ̂(ti, t−i)) (∵ ti = (θ̂i(ti), qi))

=
∑

θ−i∈Θ−i

qi(θ−i|θi)ui(ak; θi, θ−i) (∵ θ̂i(ti) = θi)

= V k
i (ti) (∵ ti ≡ (θi, qi)).

Thus, we obtain Uk
i (τi) = V k

i (ti) whenever t̂i(τi) = ti. Similarly, consider agent i

of type τ
′
i . Let t̂i(τ

′
i ) ≡ t

′
i and θ̂i(τ

′
i ) ≡ θ

′
i. Then, by the same argument, we obtain

Uk
i (τ

′
i ) = V k

i (t
′
i) whenever t̂i(τ

′
i ) = t

′
i. Having established this, pseudo-TD takes care

of the rest of the argument. �

In environments satisfying pseudo-NTI and pseudo-TD, we next show the follow-

ing critical lemma, a generalization of Lemma 1 in Serrano and Vohra (2005).

Lemma 3 Suppose an environment E satisfies pseudo-NTI and pseudo-TD. Then

there exist constant SCFs
(
(`i(ti))ti∈Ti

)
i∈N such that for every i ∈ N and ti, t

′
i ∈ Ti

with ti 6= t
′
i,

Vi(`i(ti)|ti) > Vi(`i(t
′

i)|ti).

Remark: All is needed for this lemma is the assumption that the individual pref-

erences over lotteries are monotone in the sense that any shift of probability weight

from a less preferred to a more preferred pure alternative yields a lottery which is

preferred. The axiom that preferences are monotone is, of course, much weaker than

the independence axiom, and is implied by the von Neumann-Morgenstern utility

representation.
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Proof of Lemma 3: Consider the constant SCF x̄, which prescribes in each

state the lottery x̄, assigning equal probability to each alternative in A, i.e., x̄(t) =

(1/K, . . . , 1/K) for all t ∈ T . We will use induction on the number of pseudo-types

of agent i.

First, we show that for i ∈ N , and for two pseudo-types ti, t
′
i ∈ Ti with ti 6= t

′
i,

there exist constant SCFs x and x
′
, close to x̄, such that

Vi(x|ti) > Vi(x
′|ti) and Vi(x

′|t′i) > Vi(x|t
′

i). (1)

The interim indifference curve of agent i of pseudo-type ti through x̄ is described

by a hyperplane, H, in RK−1
+ :

H =

{
(x1, . . . , xK−1) ∈ RK−1

+

∣∣∣∣ K−1∑
k=1

pk(ti)xk = ū

}
,

where pk(ti) = (V k
i (ti)− V K

i (ti)) for k = 1, . . . , K − 1.

Let p(ti) = (p1(ti), . . . , pK−1(ti)) ∈ RK−1. Consider the interim indifference hy-

perplane through x̄ of agent i of pseudo-type t
′
i where ti 6= t

′
i:

H
′
=

{
(x1, . . . , xK−1) ∈ RK−1

+

∣∣∣∣ K−1∑
k=1

pk(t
′

i)xk = ū
′

}
,

Given pseudo-NTI, we must have p(ti) 6= 0 and p(t
′
i) 6= 0. We claim that p(ti) 6=

cp(t
′
i) for any c > 0. Suppose not; that is, there is c > 0 such that p(ti) = cp(t

′
i).

This implies that Vi(ti) = cVi(t
′
i) + γe, which contradicts pseudo-TD. Thus, either

p(ti) = cp(t
′
i) where c < 0 or there does not exist c 6= 0 such that p(ti) = cp(t

′
i). In

the former case, it is easy to see (using pseudo-NTI) that any point which lies above

H must be below H
′
and, choosing two points (one above H and one below it) close

to x̄, one finds constant SCFs which satisfy (1). In the latter case, it is clear that we

can choose two constant SCFs which satisfy (1).

Now, according to the induction hypothesis, suppose that for the first |Ti| − 1

pseudo-types of agent i, i.e., for all ti ∈ Ti \ {t0i }, we have been able to find |Ti| − 1

constant SCFs near x̄, say x(ti), such that for every ti ∈ Ti \ {t0i }, Vi(x(ti)|ti) >
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Vi(x(t
′
i)|ti) for every t

′
i ∈ Ti \ {t0i , ti}. Consider pseudo-type t0i . Choose the constant

SCF among the collection (x(ti))ti∈Ti\{t0i } that is ranked highest by pseudo-type t0i

(without loss of generality, there is only one). Call it x(ti). By arguments similar

to the ones in the previous paragraph, because of pseudo-NTI and pseudo-TD, one

can find a constant SCF near x(ti), call it x(t0i ), such that pseudo-types ti and t0i

satisfy (1). Finally, since all inequalities concerning the other pseudo-types and their

associated SCFs are strict, x(t0i ) can be chosen so that the collection of constant

SCFs (x(ti))ti∈Ti
satisfy all the inequalities in the statement of the lemma, so the

proof is complete.10 �

Corollary 1 Suppose an environment E satisfies pseudo-NTI and pseudo-TD. Then

there exist constant SCFs
(
(`i(ti))ti∈Ti

)
i∈N such that for any consistent type space T

in which for every i ∈ N and τi, τ
′
i ∈ Ti with t̂i(τi) 6= t̂i(τ

′
i ),

Ui(`i(t̂i(τi))|τi) > Ui(`i(t̂i(τ
′

i ))|τi).

Proof of Corollary 1: This follows directly from Lemmas 2 and 3. �

3 A Robust Canonical Mechanism

This section introduces a mechanism that will be used to obtain a very permissive

robust virtual implementation result over all consistent type spaces. Among its

virtues, one should stress its finiteness, so that best replies are always well defined.

The mechanism Γ = (M, g) uses the collection of constant SCFs `i of Lemma

3.11 The construction is as follows: Every player i makes (J + 1) simultaneous

announcements, each of which is of his own pseudo-type

Mi = M0
i ×M1

i × · · · ×MJ
i = Ti × Ti × · · · × Ti︸ ︷︷ ︸

J+1

.

10If A is a separable metric space, the modification we must make to the previous argument is
the way we define the lottery x̄(t):

x̄(t) = (x̄k(t))∞k=1

where x̄k(t) = (1− δ)δk−1, and 0 < δ < 1.
11It is inspired by the heuristic section of Abreu and Matsushima (1992) that precedes their

formal analysis. We dispense with two important assumptions made there: private values and the
existence of a nummeraire.
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Denote

mi =
(
m0
i , . . . ,m

J
i

)
∈Mi, m

s
i ∈M s

i ∀s = 0, . . . , J

m =
(
m0, . . . ,mJ

)
∈M, ms = (ms

i )i∈N ∈M s = ×i∈NM
s
i

We introduce the following bribe/punishment lottery to reward a coherent an-

nouncement from each agent:

ξ(i,m) =



arg min`i(ti)∈{`i(ti)}ti∈Ti
{Vi(`i(ti)|m0

i )} if ∃j ∈ {1, . . . , J} s.t.

mj
i 6= m0

i for i ∈ N and

ms = m0 ∀ s ∈ {0, . . . , j − 1}.

`i(m
0
i ) otherwise

We call it bribe/punishment lottery because the agent gets his best `i, given m0
i ,

unless the agent changes his announcement before any change in announcements is

observed in the previous rounds, in which case he gets the worst `i, given m0
i .

Define an SCF

`(t) =
1

n

∑
i∈N

`i(ti).

Given an SCF f , for any profile of agents’ messages m, the outcome function of

the mechanism is

g(m) = ε`(m0) +
ε2

n

∑
i∈N

ξ(i,m) +
1− ε− ε2

J

J∑
s=1

{
ε2`(ms) +

(
1− ε2

)
f(ms)

}
where ε is small and strictly positive.

This outcome function has three terms: the first, weighted by a probability of

ε, depends only on m0 and consists of the SCFs from Section 2 that induce the

separation of types; the second, weighted by ε2, is the bribe/punishment lottery we

have just constructed; the third term, having the remaining weight, depends on the

rest of the announcements m1, . . . ,mJ and consists of the (slightly modified) SCF

being implemented.
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Equivalently,

g(m) = ε`(m0) +
ε2

n

∑
i∈N

ξ(i,m) +
1− ε− ε2

J

J∑
s=1

f̃(ms),

where

f̃(ms) = ε2`(ms) + (1− ε2)f(ms).

Note that if f satisfies incentive compatibility, f̃ satisfies strict incentive compat-

ibility. This is because of the addition of the `i terms. Besides, f̃ is close to f for

small ε > 0.

4 The Main Result

Fix an arbitrary consistent type space T . Let σ be an iteratively undominated

strategy profile. Recall that σi : Ti →Mi. Denote strategies for players by

σi =
(
σ0
i , σ

1
i , . . . , σ

J
i

)
, σsi : Ti →M s

i ,

σ =
(
σ0, σ1, . . . , σJ

)
, σs : T →M s.

Theorem 1 Suppose an environment E satisfies pseudo-NTI and pseudo-TD. If an

SCF f is incentive compatible for every consistent type space T , it is robustly virtually

implementable in iteratively undominated strategies.

Proof of Theorem 1: Fix an arbitrary consistent type space T . It will be clear

that the argument does not depend on T , as long as it is consistent with the pseudo-

type space. The proof consists of two claims using the mechanism of the previous

section.

Claim 1.1: Suppose that σ is an iteratively undominated strategy profile of the

mechanism Γ. Then, σ0
i (τi) = t̂i(τi) for all i ∈ N and τi ∈ Ti.

Proof of Claim 1.1: We can choose ε > 0 small enough so that

min
i∈N,ti∈Ti,t

′
i 6=ti

{
Vi(`i(ti)|ti)− Vi(`i(t

′

i)|ti)
}
> ε max

i∈N,ti∈Ti,t
′
i 6=ti

{
Vi(`i(ti)|ti)− Vi(`i(t

′

i)|ti)
}
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The above inequality is well defined when N is finite and Ti is finite for every i ∈ N .

Define η0, η1 > 0 with η0 < η1 as follows:

η0 ≡ ε2

n
min

i∈N,ti∈Ti,t
′
i 6=ti

{
Vi(`i(ti)|ti)− Vi(`i(t

′

i)|ti)
}
> 0

η1 ≡ ε2

n
max

i∈N,ti∈Ti,t
′
i 6=ti

{
Vi(`i(ti)|ti)− Vi(`i(t

′

i)|ti)
}
> 0

Here, η0 and η1 are the minimal and maximal effects on pseudo-interim expected

utility associated with the “bribe/punishment” lottery, respectively. Then, by our

choice of ε and the definition of η1, for any i ∈ N , we have

ε

n

{
Vi(`i(ti)|ti)− Vi(`i(t

′

i)|ti)
}
> η1 ∀ ti ∈ Ti, t

′

i ∈ Ti\{ti}.

Note that ε, η0, η1 are chosen independently of the choice of any particular con-

sistent type space.

Recall the outcome function of the mechanism, and notice that announcement m0
i

affects only the first term and possibly the second through the “bribe/punishment”

lottery. According to the last inequality, the payoff loss from misreporting one’s

pseudo-type in m0
i exceeds the maximum possible gain from the second term, what-

ever strategies are used by the other agents. Thus, player i will be strictly better off

by telling the truth in the 0th announcement, even if he were to misrepresent the

rest of his announcements.

Formally, we argue by contradiction. Let σ be a strategy profile such that σ0
i (τi) =

ti 6= t̂i(τi) for some player i of some type τi.

Define σ̂i as follows:

σ̂si = σsi ∀s ≥ 1,

σ̂0
i (τ

′

i ) = σ0
i (τ

′

i ) ∀τ
′

i 6= τi,

and σ̂0
i (τi) = t̂i(τi).
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We compare below the interim utilities of agent i of type τi when he employs σi

and σ̂i against any σ̃−i ∈ Σ−i:

Ui(g ◦ (σ̂i, σ̃−i)|τi)

=
ε

n
Vi(`i(t̂i(τi))|t̂i(τi)) +

ε2

n
Vi(ξ(i, σ̂i, σ̃−i)|t̂i(τi)) + λ

>
ε

n
Vi(`i(ti)|t̂i(τi)) +

ε2

n
Vi(ξ(i, σi, σ̃−i)|t̂i(τi)) + λ

= Ui(g ◦ (σi, σ̃−i)|τi),

where λ is a shorthand that denotes the rest of terms, which are the same in both

expressions. Thus, σ̂i strictly dominates σi. �

Claim 1.2: For every i ∈ N , let σi be an iteratively undominated strategy.

Suppose that σsi (τi) = t̂i(τi) for all τi ∈ Ti and s ∈ {0, . . . , j}, where 0 ≤ j ≤ J − 1.

Then

σj+1
i (τi) = t̂i(τi) for all i ∈ N and all τi ∈ Ti.

Proof of Claim 1.2: We need some additional pieces of notation for the proof.

A deception is a profile of functions, α = (αi)i∈N , where αi : Ti → Ti. Consider the

SCF f̃ , a pseudo-type ti ∈ Ti, and a deception α with the property that αi(ti) 6= ti

and αi′ (ti′ ) 6= ti′ for some player i
′ 6= i of type ti′ . Let f̃ ◦ α(t) = f̃(α(t)) for all

t ∈ T . Define the following:

γi(ti) ≡ max
α

Vi

(
f̃ ◦ α

∣∣ti)−min
α
Vi

(
f̃ ◦ α

∣∣ti)
γi ≡ max

ti∈Ti

γi(ti)

γ ≡ max
i∈N

γi

The number γ is well defined because Ti is finite for every i ∈ N .12

Suppose, by way of contradiction, that σj+1
i (τi) 6= t̂i(τi) for some player i of some

type τi.

12There is an implicit assumption here that the maximum and minimum terms in γi(ti) are not
the same for every i and every ti, which will be true for almost all values of ε – see the definition
of f̃ .
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Define σ̄i such that

σ̄si = σsi ∀s 6= j + 1,

σ̄j+1
i (τ

′

i ) = σj+1
i (τ

′

i ) ∀τ
′

i 6= τi,

and σ̄j+1
i (τi) = t̂i(τi).

Under the induction hypothesis, if σj+1

i′
(τi′ ) = t̂i′ (τi′ ) for all i

′ 6= i and all

τi′ ∈ Ti′ , then, by strict incentive compatibility of f̃ , σ̄i yields higher payoff than

σi in the j + 1-st term of the third part of the outcome function. In addition, the

“bribe/punishment” second term cannot get worse by using σ̄i instead of σi. Thus,

in this case, σ̄i has a higher expected payoff than σi.

On the other hand, suppose that σj+1

i′
(τi′ ) 6= t̂i′ (τi′ ) for some player i

′ 6= i of type

τi′ ∈ Ti′ . Then, by construction of γ, for any σ−i under the inductive hypothesis, we

have

γ ≥ Ui(f̃ ◦ σj+1|τi)− Ui(f̃ ◦ (σ̄j+1
i , σj+1

−i )|τi).

We choose J large enough so that

η0 >
1− ε

J
γ ≥ 1− ε

J

{
Ui(f̃ ◦ σj+1|τi)− Ui(f̃ ◦ (σ̄j+1

i , σj+1
−i )|τi)

}
.

Then, by improving his payoff in the “bribe/punishment” term, σ̄i yields higher

payoff than σi. That is, for any σ−i under the inductive hypothesis, we have

Ui(g ◦ (σ̄i, σ−i)|τi) > Ui(g ◦ σ|τi)

In other words, under the inductive hypothesis, it is always better for player i

of type τi to wait for one more round to misrepresent his type so that other players

misrepresent their type first, thereby avoiding the punishment involved in the second

term of the outcome function. This, however, contradicts our hypothesis that σi is

an iteratively undominated strategy. �

Claims 1.1 and 1.2 together show that there is a unique iteratively undominated

strategy profile σ with the property that σsi (τi) = t̂i(τi) = ti for every i ∈ N, τi ∈ Ti,
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and s ∈ {0, 1, . . . , J}. The resulting outcome is

(1− ε2)
(
1− ε− ε2

)
f(t) +

ε+ ε2 + (1− ε− ε2)ε2

n

∑
i∈N

`i(ti).

This outcome is arbitrarily close to f(t) for every t ∈ T when ε > 0 is chosen to be

small enough. This completes the proof of Theorem 1. �

5 A-M Measurability as a Necessary Condition

What we have shown so far is that generically robust virtual implementation in it-

eratively undominated strategies is as successful as it can possibly be. That is, in

environments satisfying pseudo-type diversity, an SCF that is incentive compatible on

every consistent type space is robustly virtually implementable in iteratively undom-

inated strategies. In an important paper, Abreu and Matsushima (1992) uncovered

a condition that they termed measurability (we shall refer to it from now on as A-M

measurability) that was necessary for virtual implementation in iteratively undom-

inated strategies over a standard environment that fixes a Bayesian type space. In

this section we revisit the A-M measurability condition by applying it to our robust

implementation analysis. In the process, a connection with pseudo-type diversity

will also be explained.

Denote by Ψi a partition of the set of pseudo-types Ti, where ψi is a generic

element of Ψi and Πi(ti) is the element of Ψi that includes pseudo-type ti. Let

Ψ = ×i∈NΨi and ψ = ×i∈Nψi.

Definition 10 An SCF f is measurable with respect to Ψ if, for every i ∈ N

and every ti, t
′
i ∈ Ti, whenever Πi(ti) = Πi(t

′
i),

f(ti, t−i) = f(t
′

i, t−i) ∀t−i ∈ T−i.

Measurability of f with respect to Ψ implies that for any player i, f does not

distinguish between any pair of pseudo-types in the same cell of the partition Ψi.

Definition 11 Let T be a consistent type space. A strategy σi for player i is mea-
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surable with respect to Ψi if for every τi, τ
′
i ∈ Ti,

Πi(t̂i(τi)) = Πi(t̂i(τ
′

i )) =⇒ σi(τi) = σi(τ
′

i ).

A strategy profile σ is measurable with respect to Ψ if, for every i ∈ N , σi is

measurable with respect to Ψi.

For every i ∈ N, ti, t
′
i ∈ Ti, and (n− 1) tuple of partitions Ψ−i, we say that ti is

equivalent to t
′
i with respect to Ψ−i if, for every f and every f̃ which are measurable

with respect to Ti ×Ψ−i,

Vi(f |ti) ≥ Vi(f̃ |ti) ⇐⇒ Vi(f |t
′

i) ≥ Vi(f̃ |t
′

i).

Fix a consistent type space T . Then, we say that τi is equivalent to τ
′
i with

respect to Ψ−i if, for every f and f̃ that are measurable with respect to Ti ×Ψ−i,

Ui(f |τi) ≥ Ui(f̃ |τi) ⇐⇒ Ui(f |τ
′

i ) ≥ Ui(f̃ |τ
′

i ).

Lemma 4 Let T be any type space consistent with the original environment. Then,

type τi is equivalent to type τ
′
i with respect to Ψ−i whenever t̂i(τi) is equivalent to

t̂i(τ
′
i ) with respect to Ψ−i.

Proof of Lemma 4: Fix an arbitrary consistent type space T . Let ti ≡ t̂i(τi)

and t
′
i ≡ t̂i(τ

′
i ). Consider an arbitrary type τi and an arbitrary SCF f : T → ∆(A).

By arguments identical to those used in the proof of Lemma 1, one can show that

Ui(f |τi) = Vi(f |ti).
Consider arbitrary SCFs f and f̃ that are measurable with respect to Ti × Ψ−i.

Then, the hypothesis that ti is equivalent to t
′
i with respect to Ψ−i implies

Vi(f |ti) ≥ Vi(f̃ |ti) ⇐⇒ Vi(f |t
′

i) ≥ Vi(f̃ |t
′

i).

With the obtained equivalence that Ui(f |τi) = Vi(f |ti) and Ui(f |τ
′
i ) = Vi(f |t

′
i) for

any SCF f , we can conclude

Ui(f |τi) ≥ Ui(f̃ |τi) ⇐⇒ Ui(f |τ
′

i ) ≥ Ui(f̃ |τ
′

i ).
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This implies that τi is equivalent to τ
′
i with respect to Ψ−i. �

Fix an arbitrary consistent type space T . Suppose that player i believes that every

SCF is measurable with respect to Ti × Ψ−i. Assume further that τi is equivalent

to τ
′
i with respect to Ψ−i. Then, player i’s interim expected utility under type τi is

exactly the same as under type τ
′
i when evaluating any SCF.

Let ρi(ti,Ψ−i) be the set of all elements of Ti that are equivalent to ti with respect

to Ψ−i, and let

Ri(Ψ−i) = {ρi(ti,Ψ−i) ⊂ Ti| ti ∈ Ti} .

Note that Ri(Ψ−i) forms an equivalence class on Ti, that is, constitutes a partition

of Ti. We define an infinite sequence of n-tuples of partitions, {Ψh}∞h=0, where Ψh =

×i∈NΨh
i in the following way. For every i ∈ N ,

Ψ0
i = {Ti},

and recursively, for every i ∈ N and every h ≥ 1,

Ψh
i = Ri(Ψ

h−1
−i ).

Note that for every h ≥ 0, Ψh+1
i is the same as, or finer than, Ψh

i . Define Ψ∗ as

follows:

Ψ∗ ≡
∞⋃
h=0

Ψh.

Since Ti is finite for each agent i ∈ N , Lemma 4 guarantees that there exists a

positive integer L such that Ψh = ΨL for any h ≥ L. We denote Ψ∗ = ΨL.

Definition 12 An SCF f is A-M measurable if it is measurable with respect to

Ψ∗.

Note how the partitions Ψ0, Ψ1, ..., and hence, the final partition Ψ∗ used in A-M

measurability are really nothing but a property of the environment. The aim is to

“treat equally” those pseudo-types that are “indistinguishable” according to their

interim preferences. Thus, we start considering constant SCFs, i.e., SCFs that are
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measurable with respect to the coarsest possible partition, and we separate pseudo-

types who have different interim preferences over this class of SCFs. This gives us

a new partition of the set of pseudo-types for each agent (iteration 1). Next, we

consider SCFs measurable with respect to these new partitions, and ask the same

question: are there pseudo-types that, having the same preferences over constant

SCFs, now can be separated because they exhibit different interim preferences over

the enlarged class of SCFs considered? If the answer is No, the process ends and we

have found Ψ∗. If it is Yes, we proceed to make the induced finer partition of each

set of pseudo-types (iteration 2), and so on. The process ends after a finite number

of steps with the identification of Ψ∗, which provides the maximum possible degree

of pseudo-type separation or distinguishability in terms of interim preferences. A-M

measurability simply asks that the SCF not distinguish between different pseudo-

types that are “indistinguishable” according to Ψ∗.

When a consistent type space T satisfies the properties that Ti = Θi and Qi

is a singleton for each i ∈ N , A-M measurability is reduced to the measurability

proposed by Abreu and Matsushima (1992).

Define

F = {h | h(t) is a degenerate lottery for all t ∈ T} .

Recall that Ti is finite for every i ∈ N . Assume also that A is finite.13 Then, F

becomes a finite functional space. Define also

F (Ψ) = {h ∈ F | h is measurable with respect to Ψ} .

Let |F (Ti × Ψ−i)| = K.14 Define V k
i (ti,Ψ−i) to be the interim expected utility of

agent i of pseudo-type ti for each SCF fk ∈ F (Ti ×Ψ−i), i.e.,

V k
i (ti,Ψ−i) =

∑
θ−i∈Θ−i

∑
q−i∈Q−i

qi(θ−i|θ̂i(ti))ui(fk(ti, θ−i, q−i); θ̂i(ti), θ−i)).

Let Vi(ti,Ψ−i) = (V 1
i (ti,Ψ−i), . . . , V

K
i (ti,Ψ−i)).

13If A were a separable space, we would work with its countable dense subset.
14This is a slight abuse of notation, since K was defined in previous sections as the finite number

of alternatives in the set A. In part, we choose to use the same symbol here to enhance the parallels
across the arguments in the different sections. Also, it should not cause any confusion.
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The next lemma follows simply from the definitions of F (Ψ) and of equivalent

types. Its proof is omitted:

Lemma 5 Assume that A is finite. Then, ti is equivalent to t
′
i with respect to Ψ−i

if and only if there exist β > 0 and γ ∈ R such that

Vi(ti,Ψ−i) = βVi(t
′

i,Ψ−i) + γe,

where e is the unit vector in ∆K−1.

The following is a characterization of pseudo-TD in terms of the measurability

construction:

Corollary 2 An environment E satisfies pseudo-NTI and pseudo-TD if and only if

there do not exist i ∈ N and τi, τ
′
i ∈ Ti with ti = t̂i(τi) 6= t̂i(τ

′
i ) = t

′
i such that ti is

equivalent to t
′
i with respect to Ψ0

−i for every consistent type space T . It follows that

Ψ1
i = Ti for each agent i ∈ N , and Ψ∗ = T in every consistent type space T .

In light of Corollary 2, one can make the following useful observation (see Serrano

and Vohra (2005) for a similar assertion concerning TD):

Lemma 6 (TD and NTI ⇒ A-M measurability) Suppose an environment sat-

isfies pseudo-NTI and pseudo-TD. Then, every SCF is A-M measurable.

That is, if the environment satisfies pseudo-NTI and pseudo-TD, the algorithm

that separates types in the definition of measurability arrives at the finest partition

at the first round. As already said, Abreu and Matsushima (1992) show that A-

M measurability is a necessary condition for virtual implementation in iteratively

undominated strategies. We adapt their proof to our setup:

Proposition 2 If an SCF f is robustly virtually implementable in iteratively un-

dominated strategies, then it is A-M measurable.

Proof of Proposition 2: Since f is robustly virtually implementable in it-

eratively undominated strategies, there exists f ε that is exactly implementable in

iteratively undominated strategies and d(f, f ε) < ε for ε > 0 small for any consistent

type space T . Consider a mechanism Γ = (M, g) which exactly implements the SCF
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f ε in iteratively undominated strategies for any consistent type space T . Fix an

arbitrary consistent type space T and for each h ≥ 1, let Kh = ×i∈NKh
i be the sets

of iteratively undominated strategies at the h-th round of iterative removal for the

type space T .

Consider an arbitrary “constant” strategy profile σ[0] ∈ K0 which is measurable

with respect to ×i∈N{Ti}. Then, either g(σ[0]) = f ε, which is then constant, i.e.,

measurable with respect to ×i∈N{Ti}, and hence we are done because it is A-M

measurable a fortiori (i.e., measurable with respect to Ψ∗), or g(σ[0]) 6= f ε.

In this case, by the definition of Ψ1 and our hypothesis that f ε is exactly im-

plementable in iteratively undominated strategies for the type space T , it follows

that for every i ∈ N , there exists σi[1] ∈ Σi that is a best response to σ−i[0] and

is measurable with respect to Ψ1
i . Hence, σi[1] is not strictly dominated for player

i with respect to K0, that is, σi[1] ∈ K1
i . Again, either g(σ[1]) = f ε, but then f ε

is measurable with respect to Ψ1, and hence A-M measurable; or g(σ[1]) 6= f ε, in

which case at least one type finds his strategy σi[1] as strictly dominated given K1,

and so on.

Take an arbitrary h = 2, 3, . . ., and suppose that there exists a strategy profile

σ[h−1] ∈ Kh−1 that is measurable with respect to Ψh−1. Again, either g(σ[h−1]) =

f ε and we are done, or not. If not, since f ε is exactly implementable in iteratively

undominated strategies for the type space T by our hypothesis, for every i ∈ N ,

there exists σi[h] ∈ Σi that is a best response to σ−i[h − 1] and is measurable with

respect to Ψh
i . Therefore, σi[h] is not strictly dominated for player i with respect

to Kh−1. Hence, for all h = 0, 1, . . ., there exists σ[h] ∈ Kh that is measurable with

respect to Ψh.

Let σ∗ be an iteratively undominated strategy profile in the implementing game

form Γ. Then, the preceding argument implies that σ∗ is measurable with respect to

Ψ∗. It follows that f ε = g◦σ∗ is measurable with respect to Ψ∗ and therefore, is A-M

measurable. Finally, for sufficiently small ε > 0, it follows that f is A-M measurable

if and only if f ε is A-M measurable. Note how the same conclusion obtains regardless

of any particular consistent type space T . �
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6 A Characterization of Robust Virtual Imple-

mentation

For a fixed type space, Abreu and Matsushima (1992) show that, under an addi-

tional assumption essentially similar to quasilinear utilities (Assumption 2 in their

paper) and using small fines to punish off-equilibrium behavior, A-M measurability

and incentive compatibility are sufficient for virtual implementation in iteratively

undominated strategies. In our environments, we also establish that (appropriately

reformulated) incentive compatibility and A-M measurability are sufficient as well

as necessary for robust virtual implementation. We note that we are not making

assumptions equivalent to Abreu and Matsushima’s Assumption 2.

Given our results so far – Theorem 1 – we know that A-M measurability is

“almost always” a trivial condition, since it can be completely dispensed with in

environments satisfying pseudo-TD. For the rest of environments, A-M measurability

imposes additional restrictions, and sometimes those restrictions are so severe that

only constant SCFs can be virtually implemented (see Serrano and Vohra (2001),

Bergemann and Morris (2007)). We turn to formalities now.

Recall the recursive construction behind A-M measurability, and, in particular,

the partitions Ψh
i for i ∈ N and h = 0, 1, . . .. For each i ∈ N, ti ∈ Ti, and h ≥ 0, let

Πh
i (ti) be the element of Ψh

i that includes ti.

As we will be using a mechanism similar to the one in section 3, our initial task

is to construct the first – separating – term of the outcome function. The next

lemma provides SCFs that will help us separate pseudo-types, as allowed by the h-th

iteration in the measurability construction. It is a generalization of Lemma 3.

Lemma 7 Suppose an environment E satisfies pseudo-NTI. Then, for every i ∈ N

and every h = 1, 2, . . . , L, there exist SCFs xhi [ψ
h
i ] : T → ∆(A), which are measurable

with respect to Ψh
i ×Ψh−1

−i , and such that for every ti ∈ Ti and ψhi ∈ Ψh
i \Πh

i (ti),

Vi
(
xhi [Π

h
i (ti)]

∣∣ti) > Vi
(
xhi [ψ

h
i ]

∣∣ti) .
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Recall that

Vi(x
h
i [·]|ti) ≡

∑
θ−i∈Θ−i

∑
q−i∈Q−i

qi(θ−i|θi)ui(xhi [·](·, θ−i, q−i); θ̂i(ti), θ−i)).

Proof of Lemma 7: Again we write the proof for the case when A is finite.15

Fix iteration h in the A-M measurability algorithm. Consider the SCF x̄h, which

prescribes in each state the lottery x̄h, assigning equal probability to each SCF in

F (Ψh
i × Ψh−1

−i ), the space of degenerate lotteries measurable with respect to Ψh
i ×

Ψh−1
−i ). That is,

x̄h(t) =
1

Kh
f 1(t) + . . .+

1

Kh
fK

h

(t)

for all t ∈ T . Here, |F (Ψh
i × Ψh−1

−i )| = Kh. By construction, x̄h is measurable with

respect to Ψh
i ×Ψh−1

−i , and, abusing notation, we can write x̄h(t) = x̄h(Πh(t)).16

We claim that for every i ∈ N , every ti, t
′
i ∈ Ti, with Πh

i (ti) 6= Πh
i (t

′
i), there exist

SCFs xhi [Π
h
i (ti)] and xhi [Π

h
i (t

′
i)] that are measurable with respect to Ψh

i ×Ψh−1
−i , close

to x̄h, such that

Vi(x
h
i [Π

h
i (ti)]|ti) > Vi(x

h
i [Π

h
i (t

′

i)]|ti) and Vi(x
h
i [Π

h
i (t

′

i)]|t
′

i) > Vi(x
h
i [Π

h
i (ti)]|t

′

i). (2)

We can prove this claim by using the same argument as in Lemma 3. That is, consider

the (Kh−1)-dimensional unit simplex, whose extreme points are the elements of the

functional space F (Ψh
i ×Ψh−1

−i ). Note how the pseudo-interim expected utility of each

extreme point is well defined for each pseudo-type, and thus, one can consider the

corresponding hyperplanes as the level curves of such interim utility. By construction

of the h-th iteration of measurability, pseudo-types ti and t
′
i can be separated in their

interim preferences over SCFs in F (Ψh
i × Ψh−1

−i ) whenever Πh
i (ti) 6= Πh

i (t
′
i). Then,

using the argument in the proof of Lemma 3, one can find two SCFs to separate

the two pseudo-types as written in (2). The rest of the argument is based on an

induction step on the number of elements of Ψh
i , exactly as in the proof of Lemma

3. �
15If A were a separable metric space, we would work with its countable dense subset as in

footnote 9.
16In fact, given the mechanism we construct below, in which agents report atoms of the partition

ψ∗i and not pseudo-types, this will be a convenient way to write the argument of an SCF. Therefore,
we shall use this repeatedly in the rest of this section.
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The next lemma extends the previous one from pseudo-types to types in a con-

sistent type space:

Lemma 8 Suppose an environment E satisfies pseudo-NTI. Then, for every i ∈ N

and every h = 1, 2, . . . , L, there exist SCFs xhi [ψ
h
i ] : T → ∆(A) that are measurable

with respect to Ψh
i × Ψh−1

−i such that for every consistent type space T , for every

τi ∈ Ti with t̂i(τi) = ti ∈ Ti and every ψhi ∈ Ψh
i \Πh

i (ti),

Ui
(
xhi [Π

h
i (ti)]

∣∣τi) > Ui
(
xhi [ψ

h
i ]

∣∣τi) .
Recall that

Ui(x
h
i [·]|τi) ≡

∑
τ−i∈T−i

πi(τ−i|τi)ui(xhi [·](·, t̂−i(τ−i)); θ̂(τi, τ−i)).

Proof of Lemma 8: This follows directly from Lemmas 4 and 7. �

We are now ready to state and prove the main result of this section:

Theorem 2 (A Characterization of Robust Virtual Implementation) Suppose

an environment E satisfies pseudo-NTI. An SCF f is robustly virtually imple-

mentable in iteratively undominated strategies if and only if it is incentive compat-

ible for every consistent type space and A-M measurable.

Proof of Theorem 2: By Propositions 1 and 2, incentive compatibility for

every consistent type space and A-M measurability are necessary conditions. We

shall now establish that they are also sufficient, by constructing a canonical imple-

menting mechanism. We note that the construction of the canonical mechanism of

this section is a generalization of that in Theorem 1 once we take into account that

the measurability algorithm may not stop at the first step.

In the mechanism Γ̃, every player i makes (J + 1) simultaneous announcements;

in each the player announces an atom in the partition ψ∗i ∈ Ψ∗
i :

Mi = M0
i ×M1

i × · · · ×MJ
i = Ψ∗

i × · · · ×Ψ∗
i︸ ︷︷ ︸

J+1

for an integer J to be defined below. Correspondingly, the truthful s-th announce-
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ment for type τi with pseudo-type ti is ms
i = Π∗

i (ti).

Define an SCF x : T → ∆(A) by

x(t) =
α

n

∑
i∈N

L∑
h=0

δhxhi [Π
h
i (ti)](t) ∀t ∈ T

where xhi [Π
h
i (ti)] are arbitrary constant SCFs for h = 0, and are as constructed in

Lemma 8 for each h > 0; 0 < δ < 1. Also, α is defined as

α ≡ 1

1 + δ + δ2 + · · ·+ δL
.

Note how x is A-M measurable by construction. Recall that, thanks to A-M mea-

surability, we can abuse notation and write, for any ψ ∈ Ψ∗, x(ψ) = x(t) whenever

ψ = Π∗(t).

Define the “bribe/punishment” lottery ξ : N ×M → ∆(A) as follows:

ξ(i,m) =



arg minx(ψi,m0
−i),ψi∈Ψ∗

i
{Vi(x(ψi,m0

−i)|m0
i )} if ∃j ∈ {1, . . . , J} s.t.

mj
i 6= m0

i for i ∈ N and

ms = m0 ∀ s ∈ {1, . . . , j − 1}.

x(m0) otherwise

For any i ∈ N , define also

`i(t) = xLi [Π∗
i (ti)](t)

for any t ∈ T . Note that xLi [·] is A-M measurable.

Let the outcome function of the mechanism Γ̃ be g̃, defined as follows:

g̃(m) = εx(m0) +
ε2

n

∑
i∈N

ξ(i,m) +
(1− ε− ε2)

J

J∑
s=1

f̃(ms),

where

f̃(ms) =
ε2

n

∑
i∈N

`i(m
s
i ,m

0
−i) + (1− ε2)f(ms).
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The next few paragraphs introduce several parameters, and fix their permissible

values for the rest of the proof.

First, we can choose η > 0 small enough so that for every h = 1, . . . , L,

min
i∈N,ti∈Ti,ψh

i 6=Πh
i (ti)

Vi(x
h
i [Π

h
i (ti)]|ti)− Vi(x

h
i [ψ

h
i ]|ti) > 2η.

As in the proof of Theorem 1, η > 0 is well defined when the sets of pseudo-types

are finite.

Second, for every SCF y, define

Gi(y) = max
t,t′∈T

|ui(y(t
′
); θ̂(t))− ui(y(ti, t

′

−i); θ̂(t))|.

Choose δ > 0 small enough so that for every i ∈ N and every h = 0, 1, . . . , L− 1,

η >
∑
i′∈N

L∑
k=h+1

δkGi(x
k
i′
).

Third, choose ε > 0 small enough so that for any h = 1, . . . , L,

min
i∈N,ti∈Ti,ψh

i 6=Πh
i (ti)

{
Vi(x

h
i [Π

h
i (ti)]|ti)− Vi(x

h
i [ψ

h
i ]|ti)− η

}
>

ε

n
max

i∈N,ti∈Ti,ψh
i 6=Πh

i (ti)

{
Vi(x

h
i [Π

h
i (ti)]|ti)− Vi(x

h
i [ψ

h
i ]|ti) + η

}
.

And fourth, define η0(L), η1(L) > 0 with η0(L) < η1(L) as follows:

η0(L) ≡ ε2αδ
L

n2
min

i∈N,ti∈Ti,ψL
i 6=ΠL

i (ti)

{
Vi(x

L
i [ΠL

i (ti)]|ti)− Vi(x
L
i [ψLi ]|ti)− η

}
> 0;

η1(L) ≡ ε2αδ
L

n2
max

i∈N,ti∈Ti,ψL
i 6=ΠL

i (ti)

{
Vi(x

L
i [ΠL

i (ti)]|ti)− Vi(x
L
i [ψLi ]|ti) + η

}
> 0.

It is important to note that ε, η, δ, η0(L), and η1(L) are chosen independently of

the type space T . Fix all of these variables at the specified levels.

The rest of the argument in the proof relies on two steps, as Claims 1.1 and 1.2

in Theorem 1, although it is somewhat more complicated. Specifically, the proof

will require double use of mathematical induction. Claims 2.1 and 2.2 below, similar
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to Claims 1.1 and 1.2 of Theorem 1, construct an induction step on the number of

announcements j in the canonical mechanism for each agent. This serves to establish

that if each agent i is using an iteratively undominated strategy, he must be reporting

Π∗
i (ti) (J + 1) times when his pseudo-type is ti. However, to establish Claim 2.1,

a second induction argument is required, this time on h, the rounds of iteration in

the A-M measurability algorithm. This is needed because the functions xhi [·] that

are used to separate pseudo-types are not independent of the announcements made

by others (unlike the `i’s functions of Theorem 1). Now we proceed to complete the

argument.

Fix an arbitrary consistent type space T . All the analysis is invariant to the

particular choice of type space made.

Claim 2.1: Let σ be an iteratively undominated strategy profile of the mechanism

Γ̃. Then, for any i ∈ N, τi ∈ Ti, and h = 0, 1, . . . , L, we have σ0
i (τi) ⊂ Πh

i (t̂i(τi)). In

other words, σ0
i (τi) = Π∗

i (t̂i(τi)) for any τi ∈ Ti and i ∈ N .

Proof of Claim 2.1: We prove this step by induction with respect to h. Suppose

h = 0. Then, Π0
i (t̂i(τi)) = Ti for any τi ∈ Ti and any i ∈ N . Therefore, the statement

σ0
i (τi) ⊂ Π0

i (t̂i(τi)) in Claim 2.1 is trivially satisfied.

Suppose that σ0
i (τi) ⊂ Πh

i (t̂i(τi)) for any τi ∈ Ti and any h ≤ L − 1. What we

want to show is that σ0
i (τi) ⊂ ΠL

i (t̂i(τi)), which equals Π∗
i (t̂i(τi)), for any τi ∈ Ti and

any i ∈ N . Suppose, by way of contradiction, that there exists agent i of type τi

for whom σ0
i (τi) ⊂ ΠL−1

i (t̂i(τi))\ΠL
i (t̂i(τi)). Consider agent i’s strategy σ̃i with the

following properties:

σji = σ̃ji ∀j ≥ 1,

σ̃0
i (τ

′

i ) = σ0
i (τ

′

i ) ∀τ
′

i 6= τi and

σ̃0
i (t̂i(τi)) = Π∗

i (t̂i(τi)).

With Lemma 4 concerning the equivalence of types in mind, for any σ−i under

the inductive hypothesis, we have that the expected utility gain from the first term
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of the outcome function is:

ε
{
Ui(x ◦ (σ̃0

i , σ
0
−i)|τi)− Ui(x ◦ σ0|τi)

}
= ε

αδL

n

{
Ui(x

L
i [ΠL

i (t̂i(τi))] ◦ (σ̃0
i , σ

0
−i)|τi)− Ui(x

L
i [ΠL

i (t̂i(τi))] ◦ σ0|τi)
}
.

This is because no xhi , h < L, is affected by this strategy change and because for

each i
′ 6= i, xL

i′
is measurable with respect to ΨL

i′
× ΨL−1

−i′ – recall that σ0
i (τi) ⊂

ΠL−1
i (t̂i(τi))\ΠL

i (t̂i(τi)). Moreover, the latter expression we have just written is

≥ ε
αδL

n

Ui(x
L
i [ΠL

i (t̂i(τi))] ◦ (σ̃0
i , σ

0
−i)|τi)− Ui(x

L
i [ΠL

i (t̂i(τi))] ◦ σ0|τi)−
∑
i′∈N

δLGi(x
L
i′
)


> ε

αδL

n

{
Ui(x

L
i [ΠL

i (t̂i(τi))] ◦ (σ̃0
i , σ

0
−i)|τi)− Ui(x

L
i [ΠL

i (t̂i(τi))] ◦ σ0|τi)− η
}

> ε2αδ
L

n2

{
Ui(x

L
i [ΠL

i (t̂i(τi))] ◦ (σ̃0
i , σ

0
−i)|τi)− Ui(x

L
i [ΠL

i (t̂i(τi))] ◦ σ0|τi) + η
}

= η1(L).

Thus, what agent i of type τi loses from the first term of the outcome function by mis-

reporting in the 0-th announcement cannot be compensated by the “bribe/punishment”

lottery, regardless of the other agents’ announcements.

Hence, for any τi, τ
′
i ∈ Ti with t̂i(τi) = ti and t̂i(τ

′
i ) = t

′
i, ti 6= t

′
i, we obtain

Ui(g ◦ (σ̃i, σ−i)|τi) > Ui(g ◦ σ|τi).

The above inequality implies that player i will be strictly better off by telling the truth

in the 0-th announcement, even if he misrepresents the rest of his announcements.

Therefore, σi is strictly dominated by σ̃i, which contradicts the hypothesis that σ is

an iteratively undominated strategy profile. This completes the proof of Claim 2.1.

�

Claim 2.2: For every i ∈ N , let σi be an iteratively undominated strategy in the

mechanism Γ̃. Suppose that σsi (τi) = Π∗
i (t̂i(τi)) for all i ∈ N, τi ∈ Ti and
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s ∈ {0, . . . , j}, where 0 ≤ j ≤ J − 1. Then

σj+1
i (τi) = Π∗

i (t̂i(τi)) for all i ∈ N and all τi ∈ Ti.

Proof of Claim 2.2: By Claim 2.1, we have proved that each agent tells the

truth at the 0-th announcement. Thus, f̃ is strictly incentive compatible if f is

incentive compatible.

Suppose, by way of contradiction, that σj+1
i (t̂i(τi)) 6= Π∗

i (t̂i(τi)) for some player i

of some type τi ∈ Ti. So, by the very construction of the “bribe/punishment” lottery,

he has to face the punishment. Define σ̄i such that

σ̄si = σsi ∀s 6= j + 1,

σ̄j+1
i (τ

′

i ) = σj+1
i (τ

′

i ) ∀τ
′

i 6= τi,

and σ̄j+1
i (τi) = Π∗

i (t̂i(τi)).

Under the inductive hypothesis, if σj+1
−i (t̂−i(τ−i)) = Π∗

−i(t̂−i(τ−i)) for all τ−i ∈ T−i,
then by strict incentive compatibility of f̃ and by the definition of the “bribe/punishment”

lottery ξ(i,m), σ̄i yields higher payoff than σi.

On the other hand, suppose that σj+1

i′
(t̂i′ (τi′ )) ∈ Ti′\Π∗

i′
(t̂i′ (τi′ )) for some agent

i
′ 6= i of some type τi′ ∈ Ti′ . Then, we choose J large enough so that

η0(L) >
1− ε− ε2

J
γ ≥ 1− ε− ε2

J

{
Ui(f̃ ◦ σj+1|τi)− Ui(f̃ ◦ (σ̄ji , σ

j+1
−i )|τi)

}
.

Then, σ̄i yields higher payoff than σi, which contradicts the hypothesis that σi is an

iteratively undominated strategy of agent i. This completes the proof of Claim 2.2.

�

Claims 2.1 and 2.2 together show that there is a unique iteratively undominated

strategy profile σ with the property that σsi (t̂i(τi)) = Π∗
i (t̂i(τi)) for any i ∈ N, τi ∈ Ti,

any consistent type space T , and s ∈ {0, 1, . . . , J}. The resulting outcome is

(1− ε2)(1− ε− ε2)f(Π∗(t)) + ε
[
(1− ε)(1 + ε)2 + ε

]
x(Π∗(t)).
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Since the SCF f and x are A-M measurable, the resulting outcome is the same as

(1− ε2)(1− ε− ε2)f(t) + ε
[
(1− ε)(1 + ε)2 + ε

]
x(t).

This is arbitrarily close to f(t) for any t ∈ T whenever ε > 0 is chosen small enough.

This completes the proof of Theorem 2.�

7 The Relationship with Virtual Bayesian Imple-

mentation

All our results have been obtained using the very weak solution concept of iteratively

undominated strategies. When robustness with respect to type spaces is a concern,

it follows that there must be a connection with the approach that uses Bayesian

equilibrium in every type space. This section explores this connection. First, consider

the following definitions:

Let B(Γ) be the set of mixed-strategy Bayesian equilibria of the mechanism Γ.

Definition 13 (Robust Implementation in Bayesian Equilibrium) An SCF f

is said to be robustly implementable in mixed-strategy Bayesian equilibrium if

there exists a mechanism Γ = (M, g) such that B(Γ) 6= ∅ and for any σ∗ ∈ B(Γ),

g(σ∗(τ)) = f(t̂(τ)) for every τ ∈ T and every consistent type space T .

Definition 14 (Robust Virtual Implementation in Bayesian Equilibrium)

An SCF f is robustly virtually implementable in mixed-strategy Bayesian equi-

librium if, there exists ε̄ > 0 such that for any ε ∈ (0, ε̄], there exists an SCF f ε

for which d(f, f ε) < ε and f ε is robustly implementable in mixed-strategy Bayesian

equilibrium.

Let us begin with our Theorem 1, which shows that the set of iteratively un-

dominated strategies is not only unique but also strict. Thus, as an important by

product, we obtain the following result for environments satisfying pseudo-TD.

Corollary 3 (Robust Virtual Bayesian Implementation) Suppose an environ-

ment E satisfies pseudo-NTI and pseudo-TD. If an SCF is incentive compatible for
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every consistent type space T , then it is robustly virtually implementable in mixed

strategy Bayesian equilibrium.

Next, with the same argument, one can provide the following simple corollary to

Theorem 2 if one does not assume pseudo-TD:

Corollary 4 (A Sufficient Condition for Robust Virtual Bayesian Imple-

mentation) Suppose an environment E satisfies pseudo-NTI. An SCF f is robustly

virtually implementable in mixed strategy Bayesian equilibrium if it is incentive com-

patible for any consistent type space and A-M measurable.

It is important to note that A-M measurability is not necessary for robust virtual

implementation in mixed strategy Bayesian equilibrium. To make this point, an

elaboration of the example in Section 5 of Serrano and Vohra (2005) would suffice.17

However, when the implementing mechanism is required to be regular, to be defined

next, A-M measurability becomes necessary for robust virtual implementation in

mixed strategy Bayesian equilibrium.

The next definitions are borrowed from Abreu and Matsushima (1992):

For every i ∈ N and every partition Ψi, let Σi(Ψi) denote the set of mixed

strategies of player i that are measurable with respect to Ψi.

Definition 15 (pseudo-Bayesian Equilibrium) The profile σ ∈ Σ1(Ψ1) × · · · ×
Σn(Ψn) is a pseudo-Bayesian equilibrium with respect to Ψ in Γ for a consistent

type space T if for all i ∈ N and all ψi ∈ Ψi, there exists some τi ∈ Ti with t̂i(τi) ∈ ψi
such that

Ui(g ◦ σ|τi) ≥ Ui(g ◦ (σ
′

i, σ−i)|τi) ∀σ
′

i ∈ Σi

Definition 16 (Regular Mechanisms) A mechanism Γ is said to be regular if

for each Ψ there exists a pseudo-Bayesian equilibrium with respect to Ψ in Γ for any

consistent type space.

In particular, finite mechanisms – like the ones constructed in the proofs of The-

orems 1 and 2 – are regular. Mechanisms that rely on the use of integer games –

e.g., like the one constructed in Serrano and Vohra (2005) – are not regular.

17Although Serrano and Vohra (2005) restricts attention to implementation in pure strategies,
the argument can be extended to also cover mixed strategies.
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The next result extends a result in Abreu and Matsushima (1992) to our settings:

Proposition 3 If an SCF is robustly virtually implementable in mixed strategy Bayesian

equilibrium by a regular mechanism, then it is A-M measurable.

Proof of Proposition 3: Since f is robustly virtually implementable in Bayesian

equilibrium, there exists f ε that is exactly implementable in Bayesian equilibrium

and d(f, f ε) < ε for ε > 0 sufficiently small for any consistent type space. Consider

a “regular” mechanism Γ = (M, g) that exactly implements the SCF f ε in mixed

Bayesian equilibrium for any consistent type space. Fix an arbitrary consistent type

space T . Let σ ∈ ×i∈NΣi(Ψ
∗
i ) be a pseudo-Bayesian equilibrium with respect to Ψ∗.

Note that σ is measurable with respect to Ψ∗. What we want to show here is that σ

is a Bayesian equilibrium as well.

If mi = σi(τi) is a best response for player i of type τi, then mi is also a best

response for player i of any type τ
′
i such that t̂i(τ

′
i ) ∈ ρi(ti,Ψ

∗
−i). That is, this

implies that for any ψi ∈ Ψ∗
i , for any τi, τ

′
i ∈ Ti with t̂i(τi), t̂i(τ

′
i ) ∈ ψi, the best

responses of player i of type τi and τ
′
i to any σ−i that is measurable with respect to

Ψ∗
−i are the same. Then, it follows that any pseudo-Bayesian equilibrium σ that is

measurable with respect to Ψ∗ is in fact a Bayesian equilibrium. Since f ε = g ◦ σ
by our hypothesis that f ε is exactly implementable in Bayesian equilibrium, f ε is

measurable with respect to Ψ∗ and therefore it must be A-M measurable. Finally,

for a sufficiently small ε > 0, it follows that f is A-M measurable if and only if f ε is

A-M measurable. �

Putting together this proposition and Theorem 2, we arrive at the following:

Corollary 5 (A Characterization of Robust Virtual Bayesian Implemen-

tation) Suppose an environment E satisfies pseudo-NTI. An SCF f is robustly vir-

tually implementable in mixed strategy Bayesian equilibrium by a regular mechanism

if and only if it is incentive compatible for any consistent type space and A-M mea-

surable.

On the other hand, the usual approach for a fixed type space to (exact and virtual)

Bayesian implementation has ruled out the consideration of mixed strategies.18 We

show next that if one includes robustness considerations with respect to type spaces,

18Duggan (1997) is a notable exception.
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the distinction between pure and mixed strategy equilibrium implementation is of

no significance:

Proposition 4 An SCF is robustly virtually implementable in pure-strategy Bayesian

equilibrium if and only if it is robustly virtually implementable in mixed-strategy

Bayesian equilibrium.

Proof of Proposition 4: That full implementation in mixed strategy equi-

librium implies full implementation in pure equilibrium is obvious. We argue the

opposite direction.

Suppose not. There exists an SCF f that is robustly virtually implementable

in pure Bayesian equilibrium that is not robustly virtually implementable in mixed

equilibrium. This means that any mechanism that virtually implements f in pure

equilibrium over every consistent type space has an equilibrium in properly mixed

strategies whose outcome does not approximate f . But then, one can construct a

sufficiently large consistent type space and perform a purification of that equilibrium.

The result is a pure-strategy Bayesian equilibrium of the mechanism whose outcome

is far from f . This contradicts that f is robustly virtually implementable in pure-

strategy equilibrium. �

Thus, while implementation in pure or mixed equilibrium may give different an-

swers for a fixed type space, that difference goes away when one requires robustness

in implementation with respect to type spaces.

8 Conclusion

By proposing a reinterpretation of the Wilson doctrine – mechanisms be allowed

to depend on first-order beliefs, besides payoff types – we have shown that robust

virtual implementation in iteratively undominated strategies is “almost always” as

powerful as it can possibly be. Indeed, the limits of implementation are given by

incentive compatibility, but every incentive compatible SCF can be robustly virtually

implemented. Thus, even if one insists on robustness of implementation results with

respect to type spaces, there is a significant gap between the very restrictive results

offered by exact implementation and the much more permissive ones offered by the

virtual approach.
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