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The Equivalence of Panel Data Estimators Under

Orthogonal Experimental Design

Abstract

This paper demonstrates the equivalence between pooled OLS, Fixed Ef-

fects, and Random E¤ects estimates when applied to data generated from an

orthogonal experimental design under certain conditions. We show that the

point estimates of the treatment e¤ects are identical between these three panel

data estimators but that the estimated standard errors di¤er. Speci�cally, the

estimated variance covariance matrices are identical between FE and RE but

di¤er from that of OLS. Despite the equivalence it is meaningful to test for

OLS vs FE/RE because the error distributional assumptions are di¤erent.

In the conduct of controlled laboratory experiments the virtues of an orthogonal

experimental design are well known. For data analytic purposes in both experimen-

tal and nonexperimental settings, the advantages of panel data methods are widely

recognized. Because of repeated observations in experiments, experimental data often

constitute a panel. The presence of subject heterogeneity can lead to ine¢ cient esti-

mation by pooled OLS. Under these circumstances either �xed e¤ects (FE) or random

e¤ects (RE) would be the estimator of choice. In this paper, we show that with a

panel data set comprised of orthogonal treatment indicator variables in which every

cross-sectional unit faces each treatment an equal number of times, OLS, FE, and RE

1



yield identical treatment e¤ect estimates. Although the standard errors are identical

for FE and RE, they di¤er from the conventional Classical Regression Model (CRM)

standard errors. In a somewhat di¤erent context Oaxaca and Geisler (2003) demon-

strate the equivalence between pooled OLS estimates of the e¤ects of time-invariant

regressors and a two-stage (feasible) GLS estimator of these e¤ects. The importance

of our results for researchers, especially experimental economists, is two-fold. First,

we show that the choice between a �xed and random e¤ects estimator is moot in the

present context, because these are the same estimator. Hence, the need to decide

whether to condition or not on the subject sample does not arise. Secondly, we show

that the only remaining choice is to decide whether to use the pooled OLS standard

errors or the FE/RE standard errors, which can be accomplished with a standard

F-test.

Proof

We begin with a general speci�cation of a balanced design experimental treatment

model:

Yit = �+Xit� + �it

where Xit is a 1xK vector of treatment indicator variables, � is a Kx1 vector of treat-

ment e¤ects, i = 1; :::; N (subjects) and t = 1; :::; T . Since one treatment indicator

variable is left out for the reference group, there are a total of K+1 treatments. With-

out loss of generality we designate treatment 1 as the omitted reference group. Given

that the treatments are exogenously assigned, there is no correlation between Xit and

the disturbance term �it. In the case of the CRM pooled OLS would be the estimator

of choice since �it is i.i.d. and satis�es all of the classical assumptions. The FE model

arises if the intercept terms �i vary across subjects:

Yit = �i +Xit� + �it:
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The FE model is e¢ ciently estimated by pooled OLS with subject indicator variables

(LSDV) or equivalently in group deviation form (the within estimator). Finally, the

RE model arises if we assume that �i = �+ ui:

Yit = �+Xit� + �it + ui;

where ui is assumed to be i.i.d. and by the experimental design would be uncorelated

with Xit. Since the error process in the RE model is associated with a block diagonal

disturbance variance/covariance matrix, the model is e¢ ciently estimated by GLS (or

FGLS). The appropriate treatment e¤ect estimators corresponding to the CRM, FE,

and RE models are given by
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where X is a NTxK observation matrix on the treatment indicator variables, Y is a

NTx1 vector of observations on the experimental outcome variable, �
NT
and �

T
are

NTx1 and Tx1 vectors of 1�s, and  =
�2�

�2� + T�2u
:1

Let p equal the number of rounds each treatment is administered. Then each

treatment will appear pN times in the sample and T = p(K + 1) is the number of

observations per subject. The orthogonality of the experimental design for treatment

1See Judge, et. al (1980, p. 332) for the speci�cation of the RE estimator of the slope coe¢ cients.
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e¤ects yields the following cross-product matrix for treatments:

X 0X =

26666666666664

pN 0 0 � � � 0

0 pN 0 � � � 0

�

�

�

0 0 0 � � � pN

37777777777775
:

We will �rst establish the equivalence between pooled OLS and �xed e¤ects by show-
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NT
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�
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NT
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fe
. For pooled OLS estimation of

the treatment e¤ects, the cross-product matrices are expressed in deviation form:
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and
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where Tkit is an indicator for the kth treatment and �Y is the pooled sample mean

value of Yit.

In the case of �xed e¤ects, the variables are expressed in group deviation form. A

typical diagonal element of the FE cross-product matrix X 0
h
INT �

�
IN 


�
T
�0
T

T

�i
X

may be expressed as
X

i

X
t
(Tkit� �Tki)2 where �Tki is the mean of treatment variable

Tkit for the ith subject. This mean is easily seen to be
p
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= 1
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: Note that

(Tkit)
2 = Tkit because the treatment variables are indicator variables. Therefore,X
i

X
t

(Tkit � �Tki)
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X
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= pN � 2pN

K + 1
+
pN(K + 1)

(K + 1)2

=
pNK
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;

which is equal to the diagonal elements of the OLS cross-product matrixX 0
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which is equal to the o¤diagonal elements of the OLS cross-product matrixX 0
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Next we consider the elements of the FE cross-product vectorX 0
h
INT �

�
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�
T
�0
T

T

�i
Y:

A typical element of this vector would be expressed as
X

i

X
t
(Tkit � �Tki)(Yit � �Yi)

where �Yi is the mean of experimental outcome variable Yit for the ith subject. Ac-

cordingly,X
i

X
t
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X
i
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alence between the OLS and FE estimates of the treatment e¤ects.

It remains to establish the equivalence between the FE and RE estimates of the

treatment e¤ects. We will show that in the estimator formula for �re it is the case

that
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since NT = Np(K + 1):
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upon multiplying and dividing by N
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This establishes the equivalence of random e¤ects and �xed e¤ects estimation and

hence the equivalence between random e¤ects and pooled OLS. In the case of random

e¤ects, speci�cation of the transformed model in observation form yields variables of

the type Yit� � �Yi where � = 1�  
1
2 . Consequently, any arbitrarily chosen value of  

will lead to the same coe¢ cient estimates because  is multiplied by a null matrix.

However, the variance covariance matrix is not invariant with respect to the choice

of  if the variance of " were arbitrarily chosen.

The estimated variance covariance matrices will be identical between �xed and

random e¤ects but di¤erent from pooled OLS:
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where �̂2"ols =

"̂0ols"̂ols
NT � (K + 1)

and �̂2"fe =
"̂0fe"̂fe

NT � (N +K)
: The question of which set

of standard errors are appropriate to use is a question of which estimator/model is

appropriate. Even though the point estimates of the treatment e¤ects are identical

between CRM and FE/RE, the distributional assumptions about the error terms are

not the same. The standard F test for CRM vs FE can be used to determine which
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model�s distributional assumptions are appropriate. To see this, we will examine the

relationship between the OLS residuals and the FE residuals. Note

"̂olsit � "̂feit =
h
(Yit � �Y )� (Xit � �X)�̂

i
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N
: Thus, the

estimated constant term in the CRS model is the average of the estimated individual

�xed e¤ects. We can express the OLS residuals in terms of the FE residuals: "̂olsit =

"̂feit + �̂i � �̂: Now squaring both sides of the preceding expression and summing over

the t index yields:X
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X
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X
t
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X
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X
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X
i

X
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X
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or in vector notation

"̂0ols"̂ols = "̂0fe"̂fe + p(K + 1)
X
i

(�̂i � �̂)2 :

This leads to the familiar result that the F test of CRM vs FE based on the di¤erence

in restricted and unrestricted residuals, "̂0ols"̂ols � "̂0fe"̂fe = p(K + 1)
X

i
(�̂i � �̂)2, is a

test of the equality of the �xed e¤ects. Rejection of OLS would suggest that the FE

standard errors are the appropriate ones.
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An interesting result arises with respect to estimating the variance of the random

e¤ects in the context of our orthogonal design. Typically, one estimates the between

or group means model by OLS to obtain an estimate of �2u:

�Yi = �+ �Xi� + !i, i = 1; :::; N

where !i = ui + �"i . Since �2! = �2u +
�2"
T
; one obtains �2u = �2! �

�2"
T
as a residual. In

the present context the group means model cannot be estimated because the values

of the variables comprising �Xi are identically equal to 1
K+1

and therefore perfect

multicollinearity is present. However, it is still possible to consistently estimate �2u.

The estimated random e¤ects speci�cation of the model can be expressed as

Yit = �̂+Xit�̂ + �̂feit + ûi which implies

ûi = Yit �
�
�̂+Xit�̂

�
� �̂feit

= �̂olsit � �̂feit

= �̂i � �̂:

An obvious estimator of �2u is given by

~�2u =

X
i
(�̂i � �̂)2

N
:

Furthermore, the Breusch-Pagan LM test for CRM vs RE is based exclusively on the

pooled OLS residuals from the CRM model. An LM test based on the OLS residuals

could also be used to test for CRM vs FE. Although these two LM test statistics are

di¤erent asymptotically because the degrees of freedom for the former are 1 and for

the latter are N � 1, they should lead to the same test outcome asymptotically.

The results showing the equivalence between the point estimates of the CRM and

FE/RE model generalize to the addition of any set of regressors that are uncorrelated

with the treatment variables. In this case, the estimated treatment e¤ects would

remain unchanged but, in general, the standard errors will di¤er from the case without

13



the additional regressors. However, once the additional regressors are added, the new

standard errors are the same between �xed and random e¤ects, as before.

Summary and Conclusions

We show in this paper that, in certain contexts, the CRM, FE, and RE models will

yield identical experimental treatment e¤ect estimates. Furthermore, the standard

errors for FE and RE are identical but di¤er from those of the CRM. This implies

equivalence of the FE and RE estimators in these contexts. The experimentalist is

therefore relieved of the need to test for random versus �xed e¤ects. However, the

experimentalist would still need to select the appropriate standard errors from among

the CRM or FE/RE models. This is accomplished with a straightforward F-test as

we show in the paper.
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