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Abstract

We analyze the management of a coastal aquifer under seawater
intrusion using distributed control methods. The aquifer’s state is
taken as the water head elevation, which varies with time and in space
since extraction, natural recharge and lateral water flows vary with
time and in space. The water head, in turn, induces a temporal-
spatial seawater intrusion process, which changes the volume of fresh
water in the aquifer. Under reasonable conditions we show that the
optimal state converges to a steady state process that is constant in
time. We characterize the optimal steady state process in terms of a
standard control problem (in space) and offer a tractable algorithm to
solve for it.
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1 Introduction

Most economic models of natural resource exploitation are dynamic in na-

ture, accounting for the evolution of the resource stock over time as a result

of human use and natural regeneration processes. Often the resource state

evolves in time but varies across space as well. Examples include: (i) coastal

aquifers under seawater intrusion (SWI) that depends on the aquifer’s water

head, which varies across space as a result of the spatial variability of pump-

ing policies; (ii) the density of fish population that evolves over time due to

harvesting and net regeneration and changes from location to location as a

result of migration due to competition for food; (iii) the age-density distri-

bution of a forest; and (iv) the concentration of air, soil, or water pollution.

The resource state in such cases varies with time and with the spatial loca-

tion. Adding the spatial dimension turns the equation describing the motion

of the resource state from an ordinary differential equation to a partial differ-

ential equation and a management policy entails exploitation rates that are

time and space dependent. Consequently, the resource management prob-

lem changes from that of a standard optimal control to distributed control

(see [4]). In this paper we apply distributed control methods to study the

management of coastal aquifers under SWI.

Optimal groundwater management is associated with a wide range of con-

siderations, such as temporal and spatial hydrological processes, external im-

pacts of surface activities on water quality, stock-dependent extraction costs,
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uncertainty with respect to natural recharge and flows between adjacent wa-

ter bodies, and the effect of market structure in the water economy. There

is an extensive economic literature on the subject. Early studies [3, 2] inves-

tigated optimal groundwater withdrawals from a single-cell aquifer. Welfare

implications of extraction under common property and groundwater property

rights were studied by [8]. Knapp and Feinerman [16] extended the spatial

framework to a multi-cell aquifer, analyzing optimal steady-state solutions.

Other extensions comprise game theoretic strategic behavior in extraction

[21, 22] and conjunctive use of surface and groundwater [27, 17]. Many stud-

ies examine dynamic implications of agricultural activities on groundwater

quality. Knapp et al. [18] and Shah et al. [25] viewed unconfined aquifers

as an exhaustible resource for storage of saline drainage, where subsurface

drainage-system constitutes a backstop technology. Other studies explicitly

introduce groundwater quality as a state variable [11, 26, 6, 15]. Kim et al.

[14] consider the time lag in the effect of deep percolation on groundwater

quality, while [13] incorporates the spread of impact over time due to the

spatial nature of groundwater flows toward aquifer outlets.

We study optimal management of coastal aquifers where the groundwater

stock determines the extent of SWI, hence also the effective aquifer capac-

ity containing fresh water. Cummings [5] was among the first to develop a

generalized model of groundwater extraction under the presence of SWI. He

considered water transfers to intruded areas as a mitigation strategy. Tsur

and Zemel [28, 29] analyzed SWI as an adverse abrupt event, occurring at
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an uncertain date due to conditions that are not fully understood, where the

exploitation policy affects the occurrence probability. They characterized op-

timal management under various types of events (reversible and irreversible)

and uncertainty (endogenous and exogenous). Reinelt [24] considered the

SWI as a deterministic and gradual process. He analyzed optimal extraction

regimes from a confined coastal aquifer while incorporating both the tem-

poral and spatial dimensions of the problem. Reinelt [24] utilized Darcy’s

law to express the dynamic-spatial management problem in terms of partial

differential equations of motion. However, instead of characterizing the opti-

mal policy analytically, he resorted to numerical methods based on discrete

approximations.

The paucity of analytical dynamic-spatial models in economic literature

is likely due to their complexity. There are but a few examples of such models

in resource management contexts, including [23] on forest harvesting, [1] on

river contamination by runoff, [32] on capital under environmental taxes,

[9] on fertilizing-driven runoff, and [12] on cropping under the influence of

pathogens. Drawing on recent results by Leizarowitz [19], we develop such a

model for coastal aquifers.

The aquifer’s state and its motion in time and space are characterized in

Section 2. Section 3 formulates the dynamic-spatial management problem

as a distributed control problem. In Section 4 we characterize the optimal

extraction policy in time and space and show (under reasonable assumptions)

that the system converges to a steady state in which the various processes
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do not change over time. In Section 5 we characterize the steady state policy

in terms of a standard control problem in space. In section 6 we offer a

computationally tractable procedure to solve the distributed control problem

(the steady state policy and the transition to it). Section 7 concludes.

2 Dynamic-spatial formulation

We consider a homogeneous, unconfined coastal aquifer extending east of a

north-south coastline. Let x measure the distance from the sea: 0 ≤ x ≤ L,

where x = 0 at the seashore and x = L at the eastern end of the aquifer. Let

F (x) measure the north-south length of the aquifer at location x. Consider

a strip of the aquifer at location x with sides F (x) and ∆x, denoted Dx(∆x)

(see Figure 1). Wells are distributed at density λ(x) per unit area, thus

Dx(∆x) contains approximately λ(x)F (x)∆x wells.1

Figure 1

Our model is time dependent and we denote by g(x, t)F (x)∆x the rate

of water extraction from Dx(∆x) at time t (dimension m3t−1, m= meter).

The natural replenishment (recharge) rate at Dx(∆x) and time t due to

rainfall, deep percolation, and subsurface flows between the aquifer and

other groundwater bodies, denoted r(h(x, t)), is assumed to be dependent

1When the north-south length of the aquifer is large, the variability along this direction
may be substantial, violating the homogeneity assumption. Often, as in the Israeli case,
the aquifer can be divided into homogenous sections (or cells). Each section is then treated
separately and later integrated into a model of the whole aquifer. Here we assume that
the homogeneity assumptions holds.
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on the average water-head level h(x, t) in Dx(∆x) above the sea level. Thus,

r(h(x, t))F (x)∆x is the average net external recharge at Dx(∆x). Net ex-

ternal outflow from Dx(∆x) during [t, t + ∆t] is thus

[g(x, t)− r(h(x, t))]F (x)∆x∆t.

Let µ(x, t)F (x)∆x represent the rate of net lateral flow at Dx(∆x), i.e.,

net flow from its contiguous sections. Lateral flows are driven by changes in

the water head h(x, t) and are specified below. The water balance equation

for Dx(∆x) during [t, t + ∆t] is given by

[h(x, t+∆t)−h(x, t)]φ(x)F (x)∆x = [r(h(x, t))−g(x, t)+µ(x, t)]F (x)∆x∆t,

(2.1)

where φ(x) is the aquifer’s porosity parameter.

We now specify the lateral flow term µ(x, t). Let Q(x, t) be the rate of

water (m3t−1) going through the rectangle of sides F (x) and h(x, t) from one

side (x−) to the other (x+). From Darcy’s law

Q(x, t) = −κ
∂h(x, t)

∂x
h(x, t)F (x) (2.2)

and

Q(x + ∆x, t) = Q(x, t) +
∂

∂x

(
−κ

∂h(x, t)

∂x
h(x, t)F (x)

)
∆x + o(∆x) (2.3)

where κ is the aquifer’s hydraulic conductivity. Thus, ignoring o(∆x) terms,
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µ(x, t)F (x)∆x = Q(x, t)−Q(x + ∆x, t) =
∂

∂x

(
κ
∂h(x, t)

∂x
h(x, t)F (x)

)
∆x

(2.4)

or

µ(x, t) =
κ

2

(
∂2h2(x, t)

∂x2
+

∂h2(x, t)

∂x

F ′(x)

F (x)

)
. (2.5)

When F (x) varies ”slowly” with x, such that |F ′(x)|
F (x)

is negligibly small, µ(x, t)

can be approximated by

µ(x, t) =
κ

2

∂2h2(x, t)

∂x2
,

but we will not use this approximation in the present discussion.

Introducing the notation

H(x, t) = h2(x, t), (2.6)

we obtain, recalling (2.1) and (2.5),

φ(x)

h(x, t)
Ht(x, t) = κHxx(x, t) + κ

F ′(x)

F (x)
Hx + 2 (r(h(x, t))− g(x, t)) . (2.7)

The boundary conditions associated with equation (2.7) include the initial

water head levels

h(x, 0) = h0(x), 0 ≤ x ≤ L (2.8)

and appropriate boundary conditions at x = 0 and x = L, such as

h(0, t) = 0, hx(0, t) = b0(t), hx(L, t) = bL(t), 0 ≤ t ≤ L. (2.9)
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We still have to combine this dynamics for h, expressed as a nonlinear

parabolic equation, with the reward functional over a long time period. This

will yield a distributed optimal control problem for the agriculture-economic

system which we study. Once this is formulated precisely, we will indicate

the method of solution that we propose.

A desirable feature of the distributed optimal control that we formulated

is that when considered on long time intervals the corresponding optimal

solutions will tend to some steady state equilibrium, which doesn’t depend

on the initial state. The state equation (2.7) is nonlinear, and in general

establishing convergence to a steady state for nonlinear equations is a difficult

task. Nevertheless, we managed to establish this under the assumption that

the recharge function r is linear in H:

r(h) = a0 − bh2 = a0 − bH, 0 ≤ H ≤ a0/b. (2.10)

The existence of a unique steady state equilibrium z? is considered in sec-

tion 4. Once this is established then the characterization of z? follows from

standard results in finite dimensional calculus of variations.

3 The management problem

The average water head (relative to sea level) at strip Dx(∆x) is represented

by the function h(x, t). It induces induces a seawater intrusion function f(h),

such that at time t length f(h(x, t)) out of the whole length of Dx(∆x) is
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saline, and the length F (x) − f(x) is fresh.2 The number of fresh water

wells in location x is [F (x) − f(h(x, t))]λ(x)∆x and, if water is extracted

only from fresh water wells, then the extraction rate per well in location x

with water-head level h(x, t) is

e(h, g, x) =
F (x)g(x, t)

[F (x)− f(h(x, t))]λ(x)
. (3.1)

It is expedient to define θ(x, h) as

θ(x, h) =
f(h)

F (x)
,

so that at time t and location x the length θ(x, h(x, t))F (x) is saline. Using

this variable, the extraction rate per well at location x with water-head level

h(x, t) is

e(h, g, x) =
g(x, t)

[1− θ(x, h(x, t))]λ(x)
. (3.2)

Suppressing the dependence of θ on the x variable we suppose that θ(h) is

monotone decreasing, satisfies 0 ≤ θ(h) ≤ 1 and is such that

θ(0) ≈ 1 and θ(h) = 0 for h > hM

for some constant hM .

We assume that the extraction cost per (operating) well depends both on

the water head h and on the per-well extraction rate e, and denote it c(h, e).

The extraction cost in the rectangular strip of edges ∆x and [1− θ(h)]F (x)

2The specification of the intrusion function f(h) is based on the Ghyben-Herzberg
principle.
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is obtained from multiplying c(h, e) by the number of operating wells

[1− θ(h)]F (x)λ(x)∆x. Aggregate extraction cost at time t is therefore

C(t) =
∫ L

0
c(h, e)[1− θ(x, h)]F (x)λ(x)dx. (3.3)

We assume that c(h, 0) = 0 (extracting a zero rate doesn’t inflict cost),

c(h, e) is increasing and strictly convex in e, and is decreasing in h. We shall

use the following specifications:

c(h, e) = c̃(h)ep (3.4)

and

c̃(h) =
a

(αh + β)µ
(3.5)

for some positive constants a, α, β and µ, and p > 1. Using (3.2) and (3.4),

the aggregate extraction cost at time t in (3.3) is

C(t) =
∫ L

0

c̃(h)

(1− θ)p−1λp−1
gpF (x)dx. (3.6)

The function θ(h) decreases monotonically and vanishes at h = hM , and

we have 0 ≤ θ(h) ≤ 1 for every 0 ≤ h ≤ hM , and h(0) ≈ 1. We choose for

θ(h) the form

θ(h) = 1−
(

αh + β

αhM + β

)ν

(3.7)

where α and β are as in (3.5), and

0 < ν < 1.
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Choosing the coefficients α and β the same in (3.5) and (3.7) is very helpful

in rendering our analysis and our computations tractable. We have, how-

ever, enough freedom provided by the other parameters a, ν and µ to match

experimental data with the expressions (3.5) and (3.7).

Substituting these expressions in (3.6) we obtain

C(t) =
∫ L

0

A(x)

(αh + β)µ+ν(p−1)
gpF (x)dx (3.8)

where

A(x) =
a(αh̄ + β)ν(p−1)

λ(x)p−1
. (3.9)

The dependence of the integrand in (3.8) on the variables (h, g) is of the form

Φ(h, g) =
gp

(αh + β)ρ
, (3.10)

where ρ = µ + ν(p− 1). We need the following simple result:

Lemma 3.1 Let Φ(·, ·) be the function in (3.10) with ρ, p > 0, and consider

it on the domain h, g > 0. If

ρ + 1 < p

then Φ(·, ·) is strictly convex. If ρ+1 = p then Φ is convex. Moreover, under

the same conditions also the function

Ψ(H, g) =
gp

(α
√

H + β)ρ
(3.11)

is convex in (H, g).
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Proof We compute the second order derivatives of Φ:

Φgg =
p(p− 1)gp−2

(αh + β)ρ
, Φhh =

α2ρ(ρ + 1)gp

(αh + β)ρ+2
and Φgh = − αpρgp−1

(αh + β)ρ+1
.

We have then that

Φgg·Φhh−(Φgh)
2 =

α2p(p− 1)ρ(ρ + 1)− (αpρ)2

(αh + β)2ρ+2
g2p−2 =

α2ρp(p− ρ− 1)g2p−2

(αh + β)2ρ+2

and the assertion concerning Φ follows.

Concerning Ψ we have the following expressions

Ψgg =
p(p− 1)gp−2

(α
√

H + β)ρ
, ΨH = − αρgp

2
√

H(α
√

H + β)ρ+1

and

ΨHH =
α2ρ(ρ + 1)gp

4H(α
√

H + β)ρ+2
+ ∆ and ΨgH = − αpρgp−1

2
√

H(α
√

H + β)ρ+1
.

where ∆ > 0. Using these expressions and the positivity of ∆ we obtain

Ψgg ·ΨHH − (ΨgH)2 =
α2ρp(p− ρ− 1)g2p−2

4H(α
√

H + β)2ρ+2
+

p(p− 1)gp−2∆

(α
√

H + β)ρ
> 0

since both terms are positive. The proof of the Lemma is complete.

Employing the lemma to the function forming the integrand in (3.8) we

conclude that it is convex if p ≥ µ + ν(p− 1) + 1, which holds when

p >
µ

1− ν
+ 1 (3.12)

if 0 < ν < 1. We will assume henceforth that (3.12) holds.
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We turn now to the benefit expression. The extracted water g(x, t) gener-

ates the instantaneous benefit U(g(x, t)) at time t, where the benefit function

U(·) is assumed to be increasing and strictly concave. An extraction policy

Γ = {g(x, t) : 0 ≤ x ≤ L, 0 ≤ t < ∞}

is feasible if it satisfies:

0 ≤ g(x, t) ≤ k(x), 0 ≤ h(x, t) ≤ hM(x), 0 ≤ x ≤ L, t ≥ 0, (3.13)

for some function k(x) that expresses the maximal extraction capacity, and

a constraint function hM(x). We seek for a feasible policy that maximizes

∫ ∞

0

∫ L

0
U(g(x, t))F (x)dx− C(t)dt (3.14)

subject to (2.7) and (3.13), for prescribed initial conditions (2.8) and bound-

ary conditions (2.9).3 The cost C(t) in (3.14) is given by (3.8).

In our model the dynamics are described by equation (2.7), where the

variable h(x, t) is the state of the system at time t and location x, g(x, t)

is the distributed control variable, and these variables should satisfy (3.13).

We will henceforth assume the following form for the utility function:

U(g) = bgγ

3The discounted version of (3.14) is

∫ ∞

0

e−ρt

[∫ L

0

U(g(x, t))F (x)dx− C(t)

]
dt

with ρ as the time rate of discount. The discounted problem turns out to be more techni-
cally involved and is left for future research.
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for some constant b > 0, and for a constant 0 < γ < 1. This yields the

benefit contribution

B = b
∫ T

0

∫ L

0
(g(x, t))γF (x)dxdt, (3.15)

The instantaneous cost expression is given by (3.8), so that the total cost is

C =
∫ T

0

∫ L

0

A(x)

(αh + β)ρ
gpF (x)dxdt, (3.16)

In (3.16) the exponent in the denominator is

ρ = µ + ν(p− 1),

which by (3.12) satisfies ρ + 1 < p. In view of Lemma 3.1 it follows that

the integrand in (3.16) is a strictly convex functions of (h, g). The resulting

payoffs is

R =
∫ T

0

∫ L

0

{
gγ − A(x)

(αh + β)ρ
gp

}
F (x)dxdt (3.17)

We denote the integrand in the expressions above by

L(h, g, x) = gγ − A(x)

(αh + β)ρ
gp, (3.18)

and note, recalling Lemma 3.1, that it is strictly concave in (h, g). The

aquifer management problem is to find the feasible extraction policy

Γ = {g(x, t), 0 ≤ x ≤ L, 0 ≤ t ≤ T}

for some large but finite T that maximizes the payoff subject to (2.7)-(2.9).
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4 Existence of and convergence to steady state

We consider the maximization of the undiscounted total reward R(T, g) in

(3.17) subject to (2.7), and take the limit of R(T, g) as T increases to infinity.

Since this limit diverges, we seek the policies g that maximize the long-run

average rewards
1

T
R(T, g). Actually we consider policies g? that in addition

to having maximal long-run average reward have the following property: For

every feasible policy g there exists a constant M such that

R(T, g?) > R(T, g)−M

for every T > 0. Such policies are called good policies (see [19]). In particular,

good policies have maximal long-run average reward.

In a steady state the various processes are independent of time. In this

section we show that good policies corresponding to the aquifer management

problem converges to a steady state. Our analysis relies on properties estab-

lished in [19]. To keep our work self contained, we briefly summarize (in the

next subsection) the main result on which we base our steady state analysis

(a complete account can be found in [19]). In subsection 4.2 we apply this

result to the present aquifer problem.

4.1 Steady state properties in a class of distributed
control problems

We present the results in terms of the notations used in [19]. Consider

a distributed control system where the state is represented by a function
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z(x, t) of the spatial variable x and the time t ≥ 0, where 0 ≤ x ≤ L for

some L > 0. The infinite-dimension state vector z(t) at time t, defined in

terms of the function x 7→ z(x, t), belongs to a separable Hilbert space H, and

the infinite-dimension control vector u(t), defined in terms of x 7→ u(x, t),

belongs to a separable Hilbert space E.4

The time evolution equation describing the dynamics of the system is

(√
|z(x, t)|

)

t
= (α(x)zx(x, t))x + γ(x)z(x, t) + u(x, t), (4.1)

for a continuously differentiable, positive function α(·), and γ(·) is a con-

tinuous function which is either positive or negative on [0, L].5 We consider

equation (4.1) with an initial condition

z(x, 0) = ζ(x), 0 ≤ x ≤ L, (4.2)

ζ(·) is differentiable, with boundary conditions of the form

a1z(0, t) + b1zx(0, t) = γ1(t), a2z(L, t) + b2zx(L, t) = γ2(t) (4.3)

4It is further assumed that

H = H1(0, L) = {ξ(·) ∈ L2(0, L) : the derivative ξ′(·) belongs to L2(0, L)},

that the space E is L2(0, L), and u(·) is an L2 function from [0, T ] into E, namely u(·, ·) ∈
L2((0, T ), (0, L)) (see details in [19]).

5This equation is related to the porous medium equation

zt(x, t) = (zm)xx, m > 1

and its generalization, the filtration equation,

zt(x, t) = (Φ(z))xx + f(x, t).

For a discussion of these equations see [30].
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for some constants a1, a2, b1 and b2, and for some continuous functions γ1(·)
and γ2(·) defined for t ≥ 0.

Associated with the control system (4.1)-(4.3) is a payoff

JT (z(0),u(·)) =
∫ T

0
F (z(t),u(t))dt, (4.4)

defined for every T > 0, with

F (z(t),u(t)) =
∫ L

0
F0(z(x, t), u(x, t))dx,

F0(z(x, t), u(x, t)) being the instantaneous reward at location x and time t.

The function F (·, ·) in (4.4) is concave and upper semi-continuous on H×E,

and satisfies the coercivity condition

F (z,u) ≤ a− c||z||2H (4.5)

for given constants a > 0 and c > 0.

The problem we deal with is infinite horizon so that the reward expres-

sions JT are to be maximized as T → ∞. The optimality criterion that

we adopt is the maximization of the long-run average reward, namely the

maximization of

R(z(0),u(·)) = lim sup
T→∞

1

T
JT (z(0),u(·)).

Definition 4.1 A pair of functions (z(·),u(·)) : [0,∞) 7→ H × E is admis-

sible pair if the following conditions hold:

(i) u(·, ·) ∈ L∞([0, T ]× [0, L]) for every finite T > 0, namely u is measurable
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and bounded on every finite rectangle [0, T ]× [0, L].

(ii) z(·) : [0,∞) 7→ H is differentiable, and it satisfies (4.1), (4.2), (4.3).

When considering the problem on the infinite time interval [0,∞), we as-

sume that u ∈ L∞([0,∞)× [0, L]).

(iii) The function t 7→ F (z(t),u(t)) is locally Lebesgue integrable on [0,∞).

Using the above terminology we say that u? is a a good control if

JT (z(0),u?(·)) > JT (z(0),u(·))−M

for some constant M , for every admissible control u(·) and every T > 0. The

result below guarantees the existence of steady state for admissible good con-

trols. Another notion which is needed to phrase the steady state result is the

strong continuity with respect to the initial value and the non-homogeneous

term (the control u) in (4.1).

Definition 4.2 We say that the solutions of (4.1) depend strongly contin-

uously on the initial value and the non-homogeneous term if the following

holds. Suppose that {ζk}∞k=1 is a sequence of initial values that converge

weakly in H1(0, L) to a limit ζ, and for some fixed T > 0, the sequence

{uk}∞k=1 converges weakly in L2 ([0, L]× [0, T ]) to u . Let zk(x, t) be the so-

lution of (4.1) corresponding to ζk and uk, and let z(x, t) be the solution

corresponding to ζ and u. Then

zk(x, t) → z(x, t) as k →∞ (4.6)

point-wise for almost every (x, t) ∈ [0, L]× [0, T ].
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The following steady state result appears in [19, Theorem 3.4]:

Theorem 4.1 Assume that F in (4.4) is strictly concave. Moreover, suppose

that the solutions of (4.1) depend strongly continuously on the initial value

and the non-homogeneous term. Let (z?(·),u?(·)) be an admissible and good

pair, namely

∫ T

0
F (z?(t),u?(t))dt >

∫ T

0
F (z(t),u(t))dt−M (4.7)

for some M > 0 and every admissible pair (z(t),u(t)). Then, there exists a

steady state z̄ such that

z?(t) ⇀ z̄ weakly as t →∞. (4.8)

4.2 Steady state properties of the aquifer problem

In applying the above result to the coastal aquifer problem we first need to

show that (2.7) can be recast in the form of (4.1). Using (2.10) we express

(2.7) as

(√
H(x, t)

)

t
=

(κF (x)Hx(x, t))x

2F (x)φ(x)
− b

φ(x)
H(x, t) +

1

φ(x)
(a0 − g(x, t)). (4.9)

To show that (4.9) is equivalent to (4.1) use z(x, t) = H(x, t) and u(x, t) =

(a0 − g(x, t))/φ(x) and note that, since H(x, t) is nonnegative, we may con-

sider
√

H instead of
√
|H| on the left-hand side. Defining

ξ(x) = 2
∫ x

0
F (s)φ(s)ds

with the inverse x(s) = ξ−1(s), (4.9) is recast as

(√
|z̃|

)

t
= (α̃(ξ)z̃ξ)ξ + γ̃(ξ)z + ũ(ξ, t),
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which has the same form as (4.1).

In fact, utilizing the present structure (particularly, Lemma 3.1), the

following stronger property is verified in [19]:

Proposition 4.1 Corresponding to the distributed control problem of maxi-

mizing (3.17) subject to (2.7) and the side conditions (2.8)-(2.9), there exists

a unique steady state to which any good policy converges in the long run.

5 Characterization of the steady-state

In a steady state the various variables are time independent, so that if the

reward expression is

R(T, g) =
∫ T

0

∫ L

0
L(x,H, g)dxdt (5.1)

for an integrand L which is concave in (H, g) for every fixed x, then the

steady state problem is to maximize

R̂(ĝ) =
∫ L

0
L(x, Ĥ, ĝ)dx (5.2)

subject to (recalling (2.7) and (2.10))

κ

2

[
Ĥxx(x) +

F ′(x)

F (x)
Ĥx(x)

]
+ a0 − bĤ(x)− ĝ(x) = 0 (5.3)

and side conditions, say the values of Ĥ and Ĥx both at x = 0 and x = L.

For the special reward expression introduced above we have, recalling (3.18),

L(x, Ĥ, ĝ) = ĝγ − A(x)

(α
√

Ĥ + β)ρ

ĝp. (5.4)
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Using (5.3) we substitute

ĝ(x) =
κ

2

[
Ĥxx(x) +

F ′(x)

F (x)
Ĥx(x)

]
+ a0 − bĤ(x) (5.5)

in (5.2) and (5.4), obtaining a standard calculus of variations problem for the

function Ĥ(x) on 0 ≤ x ≤ L. The Euler-Lagrange equation for this problem

is the following fourth order, boundary values ordinary differential equation

(see, e.g., [7, Chapter 2])

LĤ − bLĝ − d

dx

(
κF ′(x)

2F (x)
Lĝ

)
+

κ

2

d2

dx2
(Lĝ) = 0 (5.6)

where Ĥ(0) = 0, Ĥ ′(0), Ĥ(L) and Ĥ ′(L) are prescribed boundary values.

Thus, e.g., the term
d2

dx2
(Lĝ) that appears in (5.6), involves the deriva-

tive of the function L(x, Ĥ, ĝ) with respect to its third variable ĝ, namely

Lĝ(x, Ĥ, ĝ), evaluated at the triplet (x, Ĥ(x), ĝ(x)), where ĝ is as in (5.5).

This is a function of x alone, and its second derivative with respect to x is

the quantity that appears in (5.6). This term yields expressions that include

the fourth order derivative Ĥ ′′′′(x), so that (5.5) is a non-linear, fourth order,

boundary value equation.

6 Computation

It turns out that solving the Euler-Lagrange equation (5.6) is quite compli-

cated, and the result thus obtained is not transparent. We will next take

advantage of the structure of the problem, in particular the concavity of the

integrand in (5.2), to offer a computation procedure of the steady state and

the transition to it.
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6.1 Steady state

The aquifer is divided into a small number of sub-regions N1, N2,...,Nm,

where Nj is defined by

Nj = {cj ≤ x ≤ dj}, 1 ≤ j ≤ m,

where c1 = 0, dm = L and dj < cj+1, and where the following holds:

cj+1 − dj

L
<< 1 for every 1 ≤ j ≤ m− 1.

We suppose that within each region the characteristic feature of the aquifer

(recharge r(H(x)), porosity φ(x), wells distribution λ(x)) are homogeneous

and do not vary with x. Thus the recharge parameters b(x) and a0(x) are

labeled aj and bj according to the region they describe.

Our approach is to solve for the steady state within each region separately,

and then combine all these solutions together to a steady state solution on

the whole aquifer by considering the narrow strips

Sj = {dj ≤ x ≤ cj+1}, 1 ≤ j ≤ m− 1

as boundary layers. However, since these strips are very narrow, and the

system is actually discrete and not continuous, we don’t have to be very

precise as for the exact definition of the solution in these boundary layers

small strips.

We next focus on a particular sub-region Nj. Let ĝ(x) be a control with

a corresponding state Ĥ(x), cj ≤ x ≤ dj, such that (5.3) holds in Nj. We
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denote the average values of these quantities

ḡ =
1

vj

∫ dj

cj

ĝ(x)F (x)dx, H̄ =
1

vj

∫ dj

cj

Ĥ(x)F (x)dx, (6.7)

where

vj =
∫ dj

cj

F (x)dx

is the area of the region Nj. The reward expression associated with the pair

(ĝ, Ĥ) is

Rj(ĝ) =
∫ dj

cj



ĝγ − A(x)

(α
√

Ĥ + β)ρ

ĝp



 F (x)dx, (6.8)

where we suppress the dependence of Rj on Ĥ since Ĥ is determined by ĝ

via equation (5.3). We denote by Lj the restriction of L to Nj (recall (3.18)),

and in view of the concavity of the integrand Lj(Ĥ, ĝ) in (6.8) it follows from

Jensen inequality that

Rj(ĝ) ≤ vjLj(H̄, ḡ). (6.9)

This implies that the constant pair (ḡ, H̄) yields a better reward than (ĝ, Ĥ),

provided that it is admissible, namely that it satisfies (5.3). But a constant

pair (g0, H0) satisfies (5.3) if and only if

g0 + bH0 − a0 = 0. (6.10)

The non-constant pair (ĝ, ĥ), however, does satisfy (5.3), and integrating this

equation on the interval [cj, dj] and dividing the result by vj yields

g0 + bh0 − a0 =
κ

2vj

[Ĥx(dj)− Ĥx(cj)]. (6.11)
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The right hand side of (6.11) is very small, since Ĥx = 2ĥ(x)ĥ′(x) and we

have ĥ(x) << F (x) and ĥ′(x) ≈ 0 due to the assumption that Nj is homo-

geneous and depends weakly on x. Hence for any practical consideration the

pair (ḡ, h̄) may be considered as an admissible pair. Thus in view of (6.9),

when addressing the maximization of (6.8) subject to (5.3) we may restrict

attention only to constant pairs. Namely, the steady state maximizer of the

problem on Nj is obtained as the solution to

Maximize Lj(Ĥ, ĝ) subject to ĝ + bĤ = a0, (6.12)

or equivalently, the solution of

Maximize Lj(Ĥ, a0 − bĤ) over all positive Ĥ. (6.13)

The function L(Ĥ, a0 − bĤ) is a strictly concave function of Ĥ, and it has a

unique solution, which we denote Ĥj with a corresponding constant control

ĝj = a0 − bĤj.

We solve (6.12) (or (6.13)) for each region Nj, and define an admissible pair

(ĝ, Ĥ) on 0 ≤ x ≤ L as follows:

(i) On Nj we define

ĝ = ĝj and Ĥ = Ĥj. (6.14)

(ii) On Sj we choose any Ĥj(x) such that Ĥj is continuous at dj and cj+1,

and then use (5.3) to define ĝj(x). E.g., we may take Ĥj(x) as a third order

polynomial such that in addition to the continuity at dj and cj+1 it satisfies

Ĥ ′
j(cj) = Ĥ ′

j(dj) = 0.
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Since the strips Sj are very narrow compared to the aquifer’s length L,

the exact definition of (ĝ, Ĥ) on the strips Sj is not really significant, and we

may consider the pair (ĝ, Ĥ) defined in (6.14) and in (ii) above as the steady

state optimal solution.

6.2 Transition to the steady state

We suppose that from a certain time T on the state approaches the steady

state solution (Ĥ, ĝ), and we have to solve for the transition period 0 ≤ t ≤ T .

We study this transition for each region Nj separately. Let (g(x, t), H(x, t))

be any pair satisfying (2.7) with recharge r = a − bH, and we consider this

equation for cj ≤ x ≤ dj.

In this subsection we chose the state variable to be h rather than H. This

simplifies the analysis, since when integrating (2.7), we obtain an equation

for the average of h, with a small perturbation term, which may be ignored.

This is equation (6.15) below. In this discussion of transition to steady state,

it is more convenient to use the variable h, since then, under our assumptions,

H practically disappears from the equation, and we are left with an equation

that involves only the average of h, not averages of H or its derivatives.

Integrating (2.7) on this interval and dividing the result by vj yields

φjh̄
′
j(t) =

κ

2vj

[Fj(Hx(dj)−Hx(cj))] + aj − bjh̄j(t)− ḡj(t) (6.15)

where aj and bj are constants. As argued above, the term

κ

2vj

[Fj(Hx(dj)−Hx(cj))]

25



in (6.15) is very small, and we consider it as practically zero. We thus obtain

the following dynamics on Nj:

h̄′j(t) = αj − βjh̄j(t)− δj ḡj(t) (6.16)

where the constants αj, βj and δj are defined by

αj =
aj

φj

, βj =
bj

φj

, δj =
1

φj

.

In addition, the following end conditions should be satisfied:

h̄j(0) = h0,j, hj(T ) = h?
j . (6.17)

We have to maximize the reward (3.17) over all the admissible pairs (gj, hj),

namely all the pairs that satisfy (6.16) and (6.17). Using again the concavity

of L(g, h) and Jensen inequality, integrating (3.17) on cj ≤ x ≤ dj for each

fixed t, we obtain

R(T ) ≤ vj

∫ T

0
L(ḡj(t), h̄j(t))dt. (6.18)

We compare an arbitrary admissible pair (gj, hj) to its associated average

pair (ḡj, h̄j), and in view of (6.18) we may focus on maximizing R̄(T ) over

admissible pairs which do not depend on the x variable. We are thus led to

consider the maximization of

R̄(T ) =
∫ T

0
L(ḡj(t), h̄j(t))dt (6.19)

subject to (6.16) and the edge conditions (6.17). This is a standard optimal

control problem, and we compute a solution by employing the Pontryagin
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Maximum principle. We thus define the Hamiltonian

Hj(g, h, η) = Lj(g, h) + η(αj − βjh̄− δj ḡ), (6.20)

(recall (3.18)), and by the maximum principle ηj(t) should satisfy the equa-

tion

η′j(t) = −∂Hj

∂h
(ḡj, h̄j, ηj), 0 ≤ t ≤ T.

Namely

η′j(t) = βjηj − ∂Lj

∂h
(ḡj, h̄j). (6.21)

Moreover, the optimal control ḡj maximizes the function

g 7→ H(g, h̄, ηj),

and in view of (3.18) it is the unique solution of

γgγ−1 − pDgp−1 − δjη = 0,

where

D =
Aj

(αjh̄j + βj)ρ
.

Thus ḡj is the solution of

pDgp−γ + δjηg1−γ − γ = 0, (6.22)

which we denote by ψ(h̄j, ηj). We substitute the control

ḡj(t) = ψ(h̄j(t), ηj(t))

in (6.16) and (6.21) and solve this system of equations subject to the bound-

ary conditions (6.17)
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This way we obtain for each region an optimal transition solution

(ḡj(t), h̄j(t)) on [0, T ], which has the edge values h0,j and ĥj in Nj. We

then use some interpolation to define the transition solution on the strips Sj.

Since these are very narrow compared to the length L, the exact definition

of the transition control is not significant, and practically the definition we

use yields an optimal transition solution.

7 Cunclusion

We analyzed dynamic-spatial management of a coastal aquifer under seawater

intrusion using distributed control methods. We showed that the optimal

policy converges over time to a spatially-dependent steady state function.

This convergence property holds for a class of distributed control models

which contains our coastal aquifer problem. The steady state function is

obtained as solution of an ordinary control problem in space. Since analytical

characterization of the steady state function and the transition to it are in

general not available, we offered an approximation algorithm to calculate the

optimal policy.

Our analysis abstracts in two important ways. First, the spatial variable

in our model is single dimension, measuring the west-east distance from the

coastal edge of the aquifer towards inland. Second, we assume a zero rate

discounting. It would be of interest to consider a 2-dimensional space, by

adding a variable that measures the north-south location, and to allow for a

positive discount rate. These extensions are left for future research.
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