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Abstract

Under risk of abrupt climate change, the occurrence hazard is
added to the social discount rate. As a result, the social discount
rate (i) increases and (ii) turns endogenous to the global warming
policy. The second effect bears profound policy implications that are
magnified by economic growth. In particular, we find that greenhouse
gases (GHG) emission should be terminated at a finite time so that
the ensuing occurrence risk will vanish in the long run. Due to the
public bad nature of the catastrophic risk, the second effect is ignored
in a competitive allocation and unregulated economic growth will give
rise to excessive emissions. In fact, the GHG emission paths under the
optimal and competitive growth regimes lie at the extreme ends of the
range of feasible emissions. We derive the Pigouvian hazard tax that
implements the optimal growth regime.
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1 Introduction

Among the possible impacts of global warming, those associated with

abrupt climate change are particularly disturbing (Alley et al. 2003, Stern

2007, IPCC4 2007). Abrupt events refer to non-marginal changes in the cli-

mate system, triggered, e.g., as the (smooth) global warming process crosses

some threshold level, that may inflict large-scale and irreversible damages at

unpredictable dates. The combination of unpredictable, abrupt occurrence

and catastrophic damage poses a delicate policy challenge. We study opti-

mal greenhouse gases (GHG) emission policy for a growing economy under

threats of catastrophic climate change.

The catastrophic threat is represented by a hazard rate that depends on

the atmospheric GHG concentration and characterizes the probability of the

event occurrence time.1 While the competitive (market) allocation takes full

account of the hazard rate per se, it fails to account for the change in hazard

associated with economic activities, as the hazard is in effect a pure public

bad.2 As a result the competitive (unregulated) growth regime is suboptimal.

We characterize the optimal growth regime by means of a Pigouvian hazard

tax on emission, which depends on the sensitivity of the hazard to the GHG

1There are two main reasons for our lack of perfect knowledge regarding global warm-
ing induced catastrophes. First, the conditions that trigger occurrence may be genuinely
stochastic. Second, we may have only partial knowledge of the parameters that charac-
terize these conditions. In this work we concentrate on the first cause and consequently
assume that the hazard rate function is known.

2This is part of what Stern (2007) called ”...the greatest and widest-ranging market
failure ever seen.”
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concentration and vanishes for an exogenous hazard. We find that under

risk of catastrophic occurrence a growing economy should terminate GHG

emission at a finite time and the ensuing occurrence risk will eventually

vanish. In contrast, under an unfettered market allocation, emission is

driven to an economically maximal rate at a finite time and remains at that

rate thereafter. The ensuing hazard will thus stabilize at the maximal rate in

the long run. We show how the proposed Pigouvian hazard tax implements

the optimal growth regime in a competitive environment.

The analysis bears directly on the key issues regarding global warming

policy, namely the extent and timing of GHG emission reduction. The re-

ceived view recommends a gradual approach of a modest reduction in the

short run and sharper cuts in the longer run (Nordhaus 1999, Nordhaus and

Boyer 2000). This view has been challenged by Stern (2007), who recom-

mended a more vigorous and early response, giving rise to a lively debate

(see Arrow 2007, Dasgupta 2007, Nordhaus 2007, Weitzman 2007a). The de-

bate revolves on the parameters ρ (the pure rate of time preference), η (the

elasticity of marginal utility) and g (per capita growth in consumption) that

comprise the social discount rate ρ+ηg by which costs and benefits should be

discounted. With a catastrophic risk, the hazard rate is added to the social

discount rate. At a first glance it may appear that this weakens the case

for an early vigorous response (as the inclusion of the hazard increases the

social discount rate). However, while ρ, η and g are exogenous parameters,3

3We assume exogenous technical change. In general g will also be affected by the
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the hazard rate depends on the emission policy and is therefore endogenous.

The presence of the hazard rate in the social discount rate, thus, turns the

latter endogenous to the global warming policy. This endogeneity feature

underlies our analysis and is the raison d’être for the Pigouvian hazard tax.4

Early studies of possible climate policy responses to catastrophic threats

include Clarke and Reed (1994) and Tsur and Zemel (1996). Nordhaus and

Boyer (2000), Mastrandrea and Schneider (2001) and Stern (2007) study

effects of catastrophic damages on GHG emission policy within elaborate in-

tegrated assessment models. Recent contributions to this vein include Næv-

dal (2006), Karp and Tsur (2007), Weitzman (2007b), and Tsur and Zemel

(2008). The present analysis builds on Tsur and Zemel (2008) who stud-

ied the regulation of environmental threats in a stationary economy. They

proposed a Pigouvian hazard tax on emission that implements the optimal

allocation and showed that it reduces, but does not eliminate, emission. In-

corporating growth, we find a significant difference: the Pigouvian hazard

tax is so adjusted as to cease emission altogether at a finite time in order

to eliminate the ensuing catastrophic risk. Thus, the GHG emission paths

under the optimal and competitive growth regimes lie at the extreme ends

of the range of feasible emissions.

The next section describes the general setup. Section 3 presents the main

climate change policy but this dependence is weaker than that of the hazard.
4Stern’s (2007) rationale for a positive ρ is the presence of an exogenous extinction

hazard such as that due to a devastating meteorite (see also discussion in Beckerman and
Hepburn 2007). The hazard here, which is associated with a global warming induced
catastrophe, depends on the emission policy and is therefore endogenous.
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results by characterizing the competitive (unregulated) and socially optimal

growth regimes. Section 4 concludes and the appendix contains technical

derivations.

2 The economy

To the economic structure considered in Tsur and Zemel (2008) we add

an exogenous labor-augmenting technical change. The economy consists of

a final good manufacturing sector, an intermediate good (energy) sector,

households (that own capital and labor) and a regulator. We briefly describe

the economy, focusing on the added (growth) component.

2.1 Firms

There are final good manufacturing firms and intermediate good (energy)

supplying firms. The final good firms rent capital and labor from households

and purchase energy in order to produce a homogenous final good, taking

prices parameterically and seeking to maximize (instantaneous) profit at each

time period. Summing over all final good firms gives the aggregate output

Y (k(t), x(t), A(t)) (2.1)

as a function of capital (k), energy (x) and labor inputs, where

A(t) ≡ egt (2.2)

is an exogenous labor-augmenting technical change process and the labor

force is assumed constant, hence normalized to unity. The technology Y (·, ·, ·)
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is linearly homogenous, increasing and concave in each variable, with positive

mixed derivatives.

Energy, x = x1 + x2, can be derived from polluting (x1) or clean (x2)

sources. The former refers to fossil energy and the latter to non-emitting

sources such as solar, wind, hydro or geothermal energy. Fossil energy (x1)

is manufactured (extracted, distilled and distributed) with an increasing and

strictly convex cost function Z(·), reflecting the fact that as the supply rate

increases, more expensive (or less efficient) sources need to be used. The

fossil energy supply curve is thus the upward sloping marginal cost curve

Z ′(·).
We assume that the clean energy (x2) production technology exhibits

constant returns to scale with a constant marginal cost, denoted p2. This

is obviously an abstraction. On the one hand, economies of scale are likely

to prevail for these immature technologies due to learning by doing or R&D

aimed at enhancing their efficiency (none of which is considered here). On

the other hand, sites suitable for harvesting these alternative energy resources

are not unlimited, so expanding them significantly will give rise to increasing

costs. Regardless of which trend dominates, allowing the marginal cost of

clean energy to increase or decrease over certain domains will not change the

main message of this work, provided the rate of change is smaller than that

of the marginal cost of fossil energy.5 The energy supply curve is therefore

5The results persist under a non-constant marginal cost of clean energy p2(x), provided
it crosses Z ′(x) once from above.
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given by

min{Z ′(x), p2},

where 0 < Z ′(0) < p2 is assumed (i.e., the most efficient fossil sources are

less expensive than the clean resources).

The (inverse) demand for energy is given by its value of marginal product

Yx(k, x,A) ≡ ∂Y/∂x. The allocation of x(t) = x1(t)+x2(t) at time t equates

supply and demand:

min{Z ′(x(t)), p2} = Yx(k(t), x(t), A(t)). (2.3)

At each point of time, given k(t) and A(t), the competitive (unregulated)

allocation of x1(t) and x2(t) is determined according to

Yx(k(t), x1(t) + x2(t), A(t)) = Z ′(x1(t)) (2.4a)

and

Yx(k(t), x1(t) + x2(t), A(t)) ≤ p2, equality holding if x2(t) > 0. (2.4b)

Let

x̄1 ≡ Z ′−1(p2) (2.5)

represent the maximal fossil energy supply rate (above which clean energy

is cheaper). When k and A give rise to Yx(k, x̄1, A) > p2, condition (2.4b)

holds as an equality. In this case x > x̄1, x1 = x̄1 and x2 = x− x̄1 > 0.
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2.2 Catastrophic climate change

Using the polluting resource at the rate x1 entails emission at the rate

e(x1) of GHG which accumulate in the atmosphere to form the stock Q

according to

Q̇(t) = e(x1(t))− δQ(t). (2.6)

The emission function satisfies e(0) = 0 and e′(x1) > ε > 0 for x1 ∈ [0, x̄1],

and δ > 0 is the rate of natural decay.6 Increasing atmospheric GHG con-

centration modifies the mean global temperature, which in turn affects large

scale natural processes with potential catastrophic consequences. Each link

in this chain of events (leading from changing GHG concentration to the

ensuing damage) is influenced by a myriad of uncertainties (Pindyck 2007,

Schelling 2007). The event occurrence date is therefore random with a distri-

bution that depends on the GHG concentration. This distribution induces

a hazard rate function h(·), such that h(Q(t))dt measures the conditional

probability that the catastrophe will occur during [t, t + dt] given that it has

not occurred by time t when the GHG concentration is Q(t). We normalize

h(·) at h(0) = 0 and assume that it is strictly increasing over the relevant

domain, i.e., h′(Q) > ε > 0 for Q ∈ [0, Q̄], where Q̄ is the maximal GHG

concentration defined as follows. If x1(t) is fixed at the maximal rate x̄1 of

6Q(t) measures the difference between the current atmospheric GHG concentration and
the preindustrial level, where the latter is the stock level at which natural emission and
decay are equal.
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(2.5) from some time t0 on, the GHG stock evolves according to

Q(t) = Q̄− (Q̄−Q(t0))e
−δ(t−t0) (2.7)

towards its maximal level

Q̄ = e(x̄1)/δ (2.8)

and the hazard rate approaches the maximal rate

h̄ = h(Q̄). (2.9)

Recent evaluations (Stern 2007, IPCC4 2007) of likely outcomes of global

warming are alarming. The current atmospheric GHG concentration is es-

timated at 430 ppm of CO2e, compared with 280 ppm at the onset of the

Industrial Revolution. Under a business-as-usual scenario, the concentra-

tion could double the pre-Industrial level by 2035 and treble this level by

the end of the century. The recent IPCC report gives 2 − 4.5oC as a likely

range for the increase in equilibrium global mean surface air temperature

due to doubling of atmospheric GHG concentration with a non-negligible

chance of exceeding this range (IPCC4 2007, p. 749). The Stern report

gives 2 − 5oC and 3 − 10oC as likely ranges for equilibrium global mean

warming due to doubling and trebling of GHG concentration, respectively

(Stern 2007). Even more disturbing is the observation that the probability

of outcomes that significantly exceed the most likely estimates is far from

negligible. The pessimistic side of possible global warming outcomes can

therefore give rise to truly catastrophic events (the usual list includes the
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reversal of the thermohaline circulation, a sharp rise in sea level, the spread

of lethal diseases and massive species extinction).

Like the conditions that trigger an abrupt event, the damage it will inflict

is fraught with uncertainties and is not easily quantified into a representative

index. A common practice is to use post-event scenarios that are easier to

understand, e.g., a GDP reduction from the occurrence date onwards or re-

duction of the growth rate by a certain percent (see, e.g., Stern 2007, Chapter

6). Such scenarios serve as the basis for evaluating a policy that recommends

to spend a certain amount today (e.g., by reducing GHG emission) in order

to eliminate or decrease the expected damage. Here we assume that upon

occurrence consumption is reduced to a certain (predetermined) rate and

grows at the (exogenous) growth rate thereafter. Other climate change im-

pacts can be postulated without changing the main message regarding the

effect of hazard endogeneity on emission policies.

2.3 Households

We maintain the iso-elastic utility of consumption

u(c) =
c1−η − 1

1− η
(2.10)

where η is the elasticity of marginal utility, assumed larger than one (see,

e.g., Dasgupta 2007, Arrow 2007, Weitzman 2007a). Let T represent the

(random) event-occurrence time, at which date consumption falls to the

(prespecified) rate cp and increases at the rate g thereafter. The (planned)
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consumption stream {c(t), t ≥ 0}, thus, generates the utility flow

{
u(c(t)) for t ≤ T

u(cpe
g(t−T )) for t > T

(2.11)

and the payoff ∫ T

0

u(c(t))e−ρtdt + e−ρT ψ, (2.12)

where ρ is the pure rate of time preference and

ψ ≡
∫ ∞

0

u(cpe
gt)e−ρtdt =

1

(η − 1)ρ

[
1− ρc1−η

p

ρ + (η − 1)g

]
(2.13)

is the post event value.

The expected payoff is

ET

{∫ T

0

u(c(t))e−ρtdt + ψe−ρT |T > 0

}
=

∫ ∞

0

[u(c(t)) + h(Q(t))ψ]e−Γ(t)dt,

where

Γ(t) ≡
∫ t

0

[ρ + h(Q(τ))]dτ = ρt + Ω(t), (2.14)

and

Ω(t) ≡
∫ t

0

h(Q(τ))dτ. (2.15)

Using
∫∞
0

[ρ + h(Q(τ))] exp(−Γ(τ))dτ = 1 and defining

w(c) ≡ 1

(1− η)

[
c1−η − ρc1−η

p

ρ + (η − 1)g

]
, (2.16)

the expected payoff can be expressed as

∫ ∞

0

w(c(t))e−Γ(t)dt + ψ. (2.17)
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The elasticity of the ”shifted” utility w′(·) is η – the same as the elasticity of

u′(·). Notice that for the event to be damaging rather than rewarding, the

optimal expected payoff must exceed the post event value ψ, i.e., the first

term of (2.17) is positive under the optimal policy. We assume that a con-

sumption stream that satisfies this condition is feasible, which presupposes

some restrictions on the model’s parameters.

It is seen from equation (2.14) that the hazard rate is added to the pure

rate of time preference to form the “hazard-inclusive” pure rate of time pref-

erence ρ + h(Q). Adding ηg gives the corresponding “hazard-inclusive” social

discount rate ρ + h(Q) + ηg.

The returns from labor and capital (including profits from the energy

sector) give the household budget constraint at time t (see details in Tsur

and Zemel 2008)

k̇(t) = Y (k(t), x1(t) + x2(t), A(t))− p2x2(t)− Z(x1(t))− c(t). (2.18)

Households choose their consumption-saving plan according to

vc(k0) = ψ + max
{c(t)≥0}

∫ ∞

0

w(c(t))e−Γ(t)dt (2.19)

subject to (2.18), given k(0) = k0. In solving this problem, households as-

sume that the intermediate inputs x1(·) and x2(·) are exogenously determined

according to (2.4a)-(2.4b). The ensuing processes e(x1), Q(·), Γ(·) and Ω(·)
are therefore also exogenous.
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2.4 Regulator

The socially optimal allocation is the outcome of

vs(k0, Q0) = ψ + max
{c(t),x1(t),x2(t)}

∫ ∞

0

w(c(t))e−Γ(t)dt (2.20)

subject to (2.6), (2.18), Ω̇(t) = h(Q(t)), x1(t) ≥ 0, x2(t) ≥ 0 and c(t) ≥ 0,

given k(0) = k0, Q(0) = Q0 and Ω(0) = 0. We denote by λ(·) and γ(·)
the costate variables of capital k(·) and GHG stock Q(·), respectively, corre-

sponding to the social allocation problem (2.20).

The regulator seeks to implement the social allocation in a competitive

environment. Following Tsur and Zemel (2008), let

β(t) =
−γ(t)

λ(t)
(2.21)

represent the shadow price of the GHG stock in capital (the numeraire)

units. When the tax rate β(t) is levied on emission e(x1) in a competitive

environment, the energy supply curve (the left hand side of (2.3)) is modified

to min{Z ′(x(t)) + β(t)e′(x(t)), p2}. Thus, the conditions that govern the

allocation of fossil and clean energy at time t change from (2.4a)-(2.4b) to

Yx(k(t), x1(t) + x2(t), A(t)) ≤ Z ′(x1(t)) + β(t)e′(x1(t)),

equality holding if x1 > 0 (2.22a)

and

Yx(k(t), x1(t) + x2(t), A(t)) ≤ p2, equality holding if x2 > 0. (2.22b)
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The Pigouvian hazard tax is the optimal β(t) corresponding to the solu-

tion of (2.20). Suppose that this tax is levied on emission. Is the resulting,

regulated-competitive allocation optimal? The answer, it turns out, is in the

affirmative. We state this result in

Proposition 1. The Pigouvian hazard tax implements the optimal allocation.

The proof is similar to the proof given in Tsur and Zemel (2008) for a sta-

tionary economy (without technical change) and is therefore omitted.

The allocation (2.22) implies that with sufficiently high tax rate (such that

Z ′(0) + β(t)e′(0) ≥ p2) the supply rate x1(t) vanishes and energy is supplied

solely from the clean source. We show in the next section that as the

economy grows, the Pigouvian hazard tax β(t) increases up to a point where

this condition holds at all subsequent times.

3 Economic growth and GHG emission

Without technical change, Tsur and Zemel (2008) found that the Pigou-

vian hazard tax reduces the use of the hazardous input but does not eliminate

it. It turns out that the effect of the hazard externality is even more pro-

nounced in a growing economy. In a growing economy the optimal use of the

hazardous input ceases at a finite time and the ensuing hazard rate vanishes

in the long run. In contrast, the competitive allocation of x1 reaches the

maximal rate x̄1 of (2.5) at a finite time and the ensuing hazard will approach

in the long run the maximal rate h̄ of (2.9). The effect of growth, there-
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fore, is to push the difference between the long run optimal and competitive

GHG emissions to the extreme: no emission under the social allocation and

maximal emission under the competitive allocation.

It is expedient to recast the economy in terms of the detrended quanti-

ties k̃(t) ≡ k(t)/A(t), x̃(t) ≡ x(t)/A(t), c̃(t) ≡ c(t)/A(t) and the production

function

ỹ(k̃, x̃) ≡ Y (k, x,A)/A = Y (k̃, x̃, 1). (3.1)

Convergence of the detrended processes to a steady state means that the

economy approaches a path of steady-state growth. The difference between

the competitive and optimal solutions is in the corresponding steady-state

levels – in particular the allocations of the hazardous and clean energy inputs.

Both the competitive and social intertemporal allocation problems include

several state variables, hence global convergence properties cannot be readily

established based on local stability analysis. Characterizing the evolution of

the shadow prices, we establish global convergence to a steady state growth

path for both problems.

Since ỹx̃ = Yx, it follows from (2.4b) and (2.22b) that the total energy

input x̃ satisfies

ỹx̃(k̃, x̃) = p2, (3.2)

provided some clean energy is used. For any capital stock k̃, let x̃(k̃) be the

x̃ level satisfying (3.2) and let

ϕ(k̃) = ỹk̃(k̃, x̃(k̃)) (3.3)
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represent the marginal product of capital. Define k̂ as the solution of

ϕ(k̂) = ρ + h̄ + ηg, (3.4)

where h̄ is the maximal long run hazard rate, defined in equation (2.9). We

assume that (3.4) admits a unique solution k̂ > 0 such that ϕ(k̃) > ρ+ηg+ h̄

for k̃ < k̂ and ϕ(k̃) < ρ + ηg + h̄ for k̃ > k̂.7 Define

x̂ ≡ x̃(k̂), (3.5a)

ŷ ≡ ỹ(k̂, x̂) (3.5b)

and

ĉ ≡ ŷ − p2x̂− gk̂. (3.5c)

With ρ + g(η − 1) > 0, it follows that ĉ > 0.8

We refer to the unregulated case as business-as-usual (BAU). The long

run behavior of the unregulated economy is characterized in the following

(proofs are presented in the Appendix):

Proposition 2. Under BAU: (i) GHG emission reaches the maximal rate

e(x̄1) at a finite time and remains at that level thereafter, giving rise to

the maximal long-run GHG concentration Q̄ = e(x̄1)/δ and hazard rate

h̄ = h(Q̄); (ii) the economy reaches a balanced growth path along which

7This assumption holds e.g. for the Cobb-Douglas technology.
8Use the linear homogeneity of Y (·, ·, ·) and Euler’s Theorem to write Y (k, x, A) =

Ykk + Yxx + YAA. Dividing by A, noting that ỹ = Y/A, Yk = ỹk̃, Yx = ỹx̃ and YA > 0
yields ỹ(k̃, x̃) > ỹk̃k̃ + ỹx̃x̃. Use (3.2)-(3.5) and the assumption that ρ + g(η − 1) > 0 to
obtain ĉ = ŷ − p2x̂− gk̂ > [ϕ(k̂)− g]k̂ = [ρ + g(η − 1) + h̄]k̂ > 0.
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k(t) = k̂A(t), x(t) = x̂A(t) with x2(t) = x̂A(t) − x̄1, Y (t) = ŷA(t) and

c(t) = ĉA(t).

The optimal policy, it turns out, tends to the other extreme, by elimi-

nating emission altogether and driving the economy towards a hazard-free

balanced growth path. Let k̂s be the unique solution to

ϕ(k̂s) = ρ + ηg. (3.6)

As above, we assume that ϕ(k̃) > ρ + ηg for k̃ < k̂s and ϕ(k̃) < ρ + ηg for

k̃ > k̂s. Since ρ+ h̄+ηg > ρ+ηg, it follows that k̂ < k̂s. Define x̂s, ŷs and ĉs

in the same way as their competitive counterparts in (3.5) with k̂s replacing

k̂. The socially optimal allocation is characterized in:

Proposition 3. Under the optimal growth regime: (i) GHG emission ceases

at a finite time and the ensuing GHG concentration and hazard rate vanish in

the long run; (ii) the economy approaches a hazard-free balanced growth path

along which k(t) = k̂sA(t), x(t) = x̂sA(t), Y (t) = ŷsA(t) and c(t) = ĉsA(t).

Equations (3.4) and (3.6) reproduce the familiar Ramsey (1928) condi-

tion, equating the marginal product of capital with the social discount rate

along the optimal trajectory. The modification here is due to the presence

of the long run hazard rate in the social discount rate: the maximal hazard h̄

under the competitive allocation, and a vanishing hazard under the optimal

regime. As the social discount rate is smaller than its competitive coun-

terpart, the long run capital stock is larger under the social allocation than

under the competitive allocation.
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For a stationary economy (with g = 0), Tsur and Zemel (2008) showed

that the Pigouvian hazard tax will not do away with GHG emission but only

reduce its use to some “bearable” rate. Why is this policy (of maintaining

some GHG stock at an equilibrium level and enjoying the benefits of the

cheaper fossil energy) not desirable for a growing economy? The explanation

is based on the evolution of the cost-benefit ratio as the economy grows. At

each point of time, the additional cost inflicted by using the clean input

rather than the (cheaper) polluting input is at most p2x̄1 − Z(x̄1). On the

other hand, increasing the discount rate represents a loss of value. Thus,

the benefit associated with reduced emissions is the forgone loss obtained

with the smaller discount rate associated with the smaller hazard. While

the cost remains bounded over time, the benefit increases as the economy

grows. Thus, the cost-benefit ratio diminishes along the path of growth and

eventually it proves worthwhile to eliminate the source of damage altogether.

These considerations are reflected in the Pigouvian hazard tax β(t), which

increases over time at the rate ηg (see equation (A.26) in the appendix).

Thus,

Z ′(0) + β(t)e′(0) = p2

must hold at some finite time, at which time conditions (2.22) imply that

the use of x1 (and GHG emission) ceases altogether. Since g and η affect

positively the rate of growth of β, each advances GHG abatement. The first,

because a higher growth rate implies that there is more to lose due to the

event occurrence; the second due to the risk aversion role of η.
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4 Concluding remarks

Under risk of catastrophic climate change, the occurrence hazard rate

augments the social discount rate, increasing and at the same time rendering

it endogenous to the emission policy. The former (increasing) effect weak-

ens the case for an early, vigorous reduction in GHG emission while the

latter (endogeneity) effect operates in the opposite direction. The competi-

tive growth policy ignores the endogeneity effect, whereas the social growth

regime accounts for both. It is thus hardly surprising that the competitive

and social allocations should differ. What is less obvious is the finding that

the two allocations lie at the extreme ends of the range of possible long run

emissions: maximal emission in the competitive regime and no emission un-

der the social regime. This property is a consequence of economic growth

and the endogeneity of the “hazard-inclusive” social discount rate.

The level at which atmospheric GHG concentration should be stabilized

and how to approach this level are central issues in climate policy discus-

sions. We find that a growing economy should eventually do away with

GHG emission altogether so that the ensuing (anthropogenic) hazard van-

ishes in the long run. This strong result surely owes to the structure of our

setup, particularly the constant price of the alternative (clean) technology

and the exogenous growth mechanism. Extensions to relax these assumptions

are needed to test for its robustness.
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Appendix

A Proofs

Proof of Proposition 2: Define, following equation (2.16),

χ ≡ ρc1−η
p

ρ + (η − 1)g
(A.1)

and write the objective of (2.19) as

ψ +

∫ ∞

0

c̃(t)1−η − χeg(η−1)t

1− η
e−Γ(t)−g(η−1)tdt, (A.2)

where

Γ(t) =

∫ t

0

[ρ + h(Q(τ))]dτ = (ρ + h̄)t + b(t),

b(t) ≡
∫ t

0

[h(Q(τ))− h̄]dτ, (A.3)

ḃ(t) = h(Q(t))− h̄ < 0, (A.4)

where it is recalled that a tilde over a variable signifies detrending (division

by A(t) ≡ exp(gt)), e.g. c̃(t) = c(t)/A(t).

Next, we rewrite (2.18) as

˙̃k(t) = ỹ(k̃(t), x̃(t))− p2x̃(t)− gk̃(t)− c̃(t) + π(x1)e
−gt (A.5)

where π(x1) ≡ p2x1 − Z(x1) > 0 is the profit from the polluting resource

when it is used at the rate x1 ≤ x̄1 and is bounded by the maximal profit

π(x̄1). Note that the profit is defined in terms of the full rate x1 (without

detrending) hence the exponent in the last term of (A.5).
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Let $ ≡ ρ + g(η − 1) + h̄ > 0. Expressed in terms of the detrended

variables, the household problem is to maximize (A.2) subject to (A.5). The

Hamiltonian for this problem is

H =
c̃1−η − χeg(η−1)t

1− η
e−$t−b(t) + λ̃[ỹ(k̃, x̃)− p2x̃− gk̃ − c̃ + π(x1)e

−gt]

and the necessary conditions for an optimal policy include:

c̃−ηe−$t−b(t) − λ̃ = 0 (A.6)

and

˙̃λ = −λ̃[ϕ(k̃)− g]. (A.7)

Define

m(t) = λ̃(t)e$t+b(t), (A.8)

yielding, using (A.7),

ṁ = −m[ϕ(k̃)− g] + m[$ + ḃ] = m[ρ + gη + h̄− ϕ(k̃) + ḃ]. (A.9)

Let

ζ(k̃) = ỹ(k̃, x̃(k̃))− p2x̃(k̃)− gk̃, (A.10)

so that according to (3.2) and (3.3)

ζ ′(k̃) = ϕ(k̃)− g (A.11)

and consider a capital stock k̃ below k̂ of (3.4), so that ϕ(k̃) > ρ+ηg+h̄. We

now show that after some finite date the optimal k̃(·) process must increase

in this region. To see this suppose otherwise, that it decreases, remaining
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below k̂. In view of (A.4), the right-hand side of (A.9) is negative hence m(·)
decreases in time. Thus, according to (A.6), the c̃(·) process increases in time

below k̂. With π(x1) bounded for x1 ∈ [0, x̄1], the difference c(t)−π(x1)e
−gt

must also increase at a sufficiently large t. Using (A.11) and $ > 0, we find

that ζ(·) increases with k̃ for k̃ < k̂. When k̃(·) decreases, the right hand

side of (A.5) is negative and decreasing in time, hence the k̃(·) process must

decrease at an ever growing rate, approaching zero at a finite time, which

cannot be optimal9. The increasing consumption process also rules out a

steady state below k̂, hence k̃(·) must increase in this region.

The above discussion implies the existence of some minimal stock k̃min > 0

such that k̃(t) > k̃min for all t. We now show that x1 reaches x̄1 at some

finite time and remains at that rate thereafter. Let x̃min be the energy rate

corresponding to k̃min such that Yx(k̃minA, x̃minA,A) = ỹx̃(k̃min, x̃min) = p2

as defined by (3.2). Let t0 ≡ log(x̄1/x̃min)/g so that x̄1 ≤ x̃minA(t), for

all t ≥ t0 (equality holding at t = t0) and suppose that x(t) < x̄1 at some

time t > t0. Using Ykx > 0, Yxx < 0 and suppressing the time argument for

convenience, we find

Yx(k̃A, x, A) > Yx(k̃minA, x, A) > Yx(k̃minA, x̄1, A) > Yx(k̃minA, x̃minA,A) = p2

violating (2.4b). It follows that x(t) ≥ x̄1 and x1(t) = x̄1 at all t > t0.

We can use (A.4), (2.7) and the fact that h′(·) is bounded in (0, Q̄) to

9A vanishing capital implies ceasing producing and consuming, reducing utility to −∞
from some finite time on.
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obtain at all t > t0

0 > ḃ(t) = h(Q(t))− h̄ > −Be−δt, (A.12)

for some positive constant B.

Consider now a capital stock k̃1 > k̂, with ϕ(k̃1) < ρ + ηg + h̄. From

(A.12) we deduce that following some time t1, the right-hand side of (A.9) is

positive hence the c̃(·) process decreases. This implies that after t1 a policy

of increasing k̃(·) beyond k̃1 during a time interval (or indefinitely) cannot

be optimal since keeping k̃(·) fixed at k̃1 during this interval (diverting the

surplus resources to consumption) is feasible and yields a higher payoff. A

steady state for k̃(·) above k̂ is also ruled out by the decreasing consumption

process. It follows that k̃(·) must approach k̂ in the long run. The derivation

of the constants of (3.5) follows from (3.2) and the budget constraint (A.5)

in a straightforward manner. 2

Proof of Proposition 3: Following the proof of Proposition 2, we express

the social problem (2.20) in terms of the detrended variables as

vs(k̃0, Q0) = ψ + max
{c̃(t),x̃(t),x1(t)}

∫ ∞

0

c̃(t)1−η − χeg(η−1)t

1− η
e−Γ(t)−g(η−1)tdt (A.13)

subject to (2.6), (A.5), Ω̇(t) = h(Q(t)), Γ(t) = ρt + Ω(t) and the usual non-

negativity constraints, given k̃(0) = k̃0, Q(0) = Q0, Ω(0) = 0. (The emitting

input x1(·) is not detrended also in this formulation.) The Hamiltonian for
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this problem is

H =
c̃1−η − χeg(η−1)t

1− η
e−Γ−g(η−1)t +

λ̃[ỹ(k̃, x̃)− p2x̃− gk̃ − c̃ + π(x1)e
−gt] + γ[e(x1)− δQ] + µh(Q),

where λ̃, γ and µ are the costate variables of k̃, Q and Ω, respectively.

Necessary conditions for an optimum include

c̃−ηe−Γ−g(η−1)t − λ̃ = 0, (A.14)

ỹx̃(k̃, x̃)− p2 = 0, (A.15)

λ̃[p2 − Z ′(x1)]e
−gt + γe′(x1) ≤ 0, equality holding if x1 > 0, (A.16)

˙̃λ = −λ̃[ϕ(k̃)− g], (A.17)

γ̇ = γδ − µh′(Q), (A.18)

µ̇ =
c̃1−η − χeg(η−1)t

1− η
e−Γ−g(η−1)t (A.19)

and the transversality condition

lim
t→∞

H(t) = 0. (A.20)

We show that limt→∞ Q(t) = 0. Suppose otherwise, then x1(t) > 0 for

arbitrarily large t. At these times, condition (A.16) holds with equality,

giving

Z ′(x1)− (γ/λ̃)egte′(x1) = p2. (A.21)

Since Yx = ỹx̃ = p2, we see that (A.21) agrees with (2.22a) where the tax

rate is set at

β(t) = −(γ/λ̃) exp(gt). (A.22)
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We show that β(t) diverges at large t, violating (A.21) and implying that x1(·)
must vanish from some (finite) time onward. Using 0 < h(Q) < h̄, we repeat

the arguments of the proof of Proposition 2 to show that the interval [k̂, k̂s]

is attractive in the long run (i.e., the optimal k̃(·) process increases below k̂

and decreases above k̂s). For k̃ < k̂s the inequality ϕ(k̃) ≥ ρ+ηg > g holds,

hence (3.3), (A.11) and (A.15) imply (using Euler’s Theorem as in footnote

8) that ζ(k̃) > 0 and ζ ′(k̃) > 0.

We now show that in the long run the optimal c̃(·) process is bounded

away from zero. Suppose limt→∞ c̃(t) = 0. Writing (A.5) in the form

˙̃k = ζ(k̃) − c̃ + π(x1) exp(−gt) we find that following some finite time, if

k̃ < k̂s, the k̃(·) process increases in time at an increasing rate, crossing

eventually the state k̂s and violating the property that the interval [k̂, k̂s]

is attractive. Similarly, if c̃(·) grows indefinitely in the long run, then the

process k̃(·) must eventually decrease in time at an increasing rate, falling

below k̂. We conclude, therefore, that in the long run both k̃(·) and c̃(·) are

bounded away from zero in finite intervals.

Next, we write the solution of (A.18) in the form

γ(t) = Meδt + eδt

∫ ∞

t

µ(τ)h′(Q(τ))e−δτdτ, (A.23)

where M ≡ limt→∞ γ(t) exp(−δt). A non-vanishing value of M implies that

γ(·) increases exponentially at the rate δ, which violates the transversality

condition (A.20). Thus, M = 0 and

γ(t) = h′(Qs(t))

∫ ∞

t

µ(τ)e−δ(τ−t)dτ (A.24)
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for some state Qs(t) ∈ [0, Q̄]. Integrating by parts and using (A.19) and

some algebraic manipulations, we obtain

δ(1− η)

h′(Qs(t))
γ(t) = (1− η)µ(t)

+

∫ ∞

t

c̃1−η(τ)e−Γ(τ)−g(η−1)τ−δ(τ−t)dτ − χ

∫ ∞

t

e−Γ(τ)−δ(τ−t)dτ

=

∫ ∞

t

c̃(τ)1−η[e−δ(τ−t) − 1]e−Γ(τ)−g(η−1)τdτ − χ

∫ ∞

t

[e−δ(τ−t) − 1]e−Γ(τ)dτ,

where the last step is obtained by integrating (A.19) from t to ∞ with the

condition limt→∞ µ(t) = 0 (which follows from the transversality condition

(A.20) when limt→∞ Q(t) > 0).

Thus, with h′(·) and c̃(·) bounded away from zero, we obtain

γ(t) = γ1(t)e
−Γ(t)−g(η−1)t + γ2(t)e

−Γ(t), (A.25)

where the functions γ1(·) and γ2(·) are bounded away from zero. When

η > 1, the second term dominates in the long run, reducing (A.25) to

γ(t) ≈ γ2(t)e
−Γ(t), where γ2(·) < 0. We can now use (A.14) to express

the tax rate β(t) ≡ −(γ(t)/λ̃(t)) exp(gt) in the form

β(t) = −c̃η(t)γ2(t)e
ηgt (A.26)

which diverges at large t. With e′(·) bounded away from zero at the relevant

x1 range, we conclude that (A.21) cannot hold at large t, hence x1(·) must

vanish in finite time.

Comparing (3.2) and (A.15), we find that the conditions that define the

total intermediate input rates are the same for the competitive and social

25



allocations. With a vanishing x1, we can repeat the arguments of Proposition

2 to conclude that the detrended ‘˜ ’ variables approach the constant values

k̂s, x̂s, ŷs and ĉs hence the social process approaches a balanced growth path

with h̄s = 0 replacing h̄ as the eventual hazard rate. The derivation of

the social parameters k̂s x̂s, ŷs and ĉs is similar to that of their competitive

counterparts. 2
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