
 האוניברסיטה העברית בירושלי!
The Hebrew University of Jerusalem         

 
 

 המרכז למחקר בכלכלה חקלאית
The Center for Agricultural 

Economic Research 

 המחלקה לכלכלה חקלאית ומנהל
The Department of Agricultural 

Economics and Management 
 
 
 
 
 

Discussion Paper No. 8.02 
 
 

On Knowledge-Based Economic Growth 
 
by 
 
 

Yacov Tsur 
and 

Amos Zemel 
 
 
 

November 2002 
 
 
 
 

Papers by members of the Department 
can be found in  their home sites: 

 מאמרי! של חברי המחלקה נמצאי!
 :ג! באתרי הבית שלה!

 
http://departments.agri.huji.ac.il/economics/indexe.html 

 
P.O. Box 12, Rehovot 76100  76100רחובות , 12. ד.ת  

    
 



November 2002 

 

On Knowledge-Based Economic Growth*  

 
 

Yacov Tsur 

Department of Agricultural Economics and Management, The Hebrew University of 
Jerusalem, and Department of Applied Economics, The University of Minnesota 

 
 and  

 
Amos Zemel 

The Jacob Blaustein Institute for Desert Research and Department of Industrial 
Engineering and Management, Ben Gurion University of the Negev 

 
 

 

 

* Running Title: Knowledge-Based Growth 
 

 

 

Correspondence address:   
Yacov Tsur  
Department of Agricultural Economics and Management 
The Hebrew University 
P.O. Box 12, Rehovot 76100 
Israel 
 
Email: tsur@agri.huji.ac.il 
Tel: +972-8-9489372 
Fax: +972-8-9466267 

 



 1

 

 

 

Abstract:  Complete time paths of growth processes are derived for 

economies with an endogenous labor-augmenting knowledge sector.  

Depending on the production technology, the effect of knowledge on 

labor productivity, time preferences and capital endowment, a variety of 

optimal growth patterns emerges, ranging from knowledge-based 

balanced growth paths, to no knowledge accumulation at all.  It is found 

that long run considerations alone may not be sufficient to determine 

endogenous growth prospects, as short-term concerns may prevent an 

economy from ever growing large enough to realize its long-run growth 

potential.   
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1.  Introduction 

 The various mechanisms that give rise to endogenous growth, in light of the 

large variations in growth rates observed across national economies, have attracted 

much attention since Solow’s [1,2] seminal contributions.  Early attempts to 

endogenize Solow's technological progress residuals include Arrow's [3] learning-by-

doing approach and Shell's [4,5,6] treatment of knowledge asset as an additional 

sector subject to policy decisions.  The abundance of models that continued this line 

of research emerged some two decades later, following the works of Romer [7,8], 

Lucas [9], Grossman and Helpman [10,11,12], Aghion and Howitt [13] and others.  

Detailed accounts of the different approaches, as well as exhaustive surveys of the 

relevant literature, can be found in Aghion and Howitt [14], Solow [15], Mundlak 

[16] and Lucas [17].   

 The present effort adopts Shell's [4,5] framework of a two-sector economy 

with the traditional consumption/capital-commodity sector and a knowledge-asset 

sector.  Knowledge is taken to represent the stock of intangible (know-how, 

education, human capital) goods and services that enhance labor productivity.  It does 

not fall as manna from heaven nor obtained indirectly through accumulated 

experience.  Rather, knowledge is generated through intentional learning activities 

that consume resources.  Society, then, must decide at each time period how to 

allocate its available resources among consumption, capital accumulation and 

knowledge accumulation, thereby determining its growth prospects.  Our framework 

bears some similarity to Lucas' [9], in that both models analyze resource allocation 

decisions between production and knowledge (or human capital) accumulation.   

In the conclusion of his illuminating exposition of growth theory, Solow [15] 

stresses the importance of short and medium run considerations that are often 
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overlooked.  Indeed, we find that assessing long-run endogenous growth prospects 

may require information on decisions made during the entire time span.   

 We derive complete time profiles of optimal capital accumulation (growth) 

and knowledge accumulation processes and examine the conditions that support 

endogenous growth.  We find that growth processes exhibit a turnpike property, in 

that they reach a certain (turnpike) path as rapidly as possible (in a sense precisely 

defined in the text) and proceed along it thereafter.  When the effect of knowledge on 

labor productivity is linear the condition for growth depends on the production 

technology, time preferences and a scale parameter.  If this condition is met, the 

economy grows along the turnpike at a constant endogenous growth rate.  When 

knowledge affects labor productivity nonlinearly, whether or not endogenous growth 

prevails depends also on capital endowment.  It is possible that long-run 

considerations support a balanced (endogenous) growth path, but short-term concerns 

prevent the economy from ever growing large enough to realize its long-run growth 

potential.   

 The analysis is carried out in the (knowledge-capital) state space and makes 

extensive use of geometric arguments.  The methodology has recently been used by 

Tsur and Zemel [18] to study R&D in backstop substitutes for scarce resources when 

the latter are essential factors of production.  It is applied here to study the details of 

endogenous growth mechanisms.  In essence, we identify four prototypical 

economies, based on the production technology, time preferences and how knowledge 

affects labor productivity, and show that the optimal growth policy depends on the 

economy's type and its capital endowment.  A wide range of growth patterns emerges, 

explaining why knowledge-based sustained growth is optimal for some economies but 

not for others.  We also find large variations in the time profiles of knowledge 
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accumulation policies, ranging from early vigorous accumulation (when capital 

endowment is large enough) to delayed learning that allows capital buildup early on.  

The optimal processes themselves, thus, can be used to address policy questions such 

as what part of income should be devoted to learning at different growth stages.   

 The next section sets up the economic environment and lists necessary 

conditions for the optimal capital and knowledge accumulation processes.  In Sections 

(3) and (4) optimal growth processes are characterized for linear and nonlinear 

knowledge effects, respectively.  Section 5 concludes and the appendix contains 

technical derivations and proofs.  

2.  The economy  

A single composite good is produced at the rate Y = F(K , A(N)L), using capital 

(K), labor (L) and knowledge (N).  Knowledge, thus, enhances the efficiency of labor 

according to an increasing productivity function A(N).  The common assumptions that 

F is linearly homogeneous in its respective arguments, i.e., F(K,L) = Lf(k), k = K/L, 

with f satisfying f(0) = 0, f(∞) = ∞, f '(k) > 0, f '(0) = ∞, f ′(∞) = 0 and f "(k) < 0 are 

maintained.  To focus attention on endogenous growth, increase in the labor force and 

exogenous technological progress are assumed away.  

At each time instant t, a fraction αt ∈ [0,1] of the income Y is allocated to 

finance knowledge accumulation activities, so that .  Knowledge 

itself is taken to represent the (intentional) accumulation of labor-productivity-

enhancing activities, such as education and training.  These activities will be referred 

to generically as "learning" (learning-by-doing is not considered here).  With 

increasing A(N), the dynamics of N implies   

YNdtdN ttt α=≡ &/

),()( ttttt AkLyAGA α=& , (2.1)
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where 

)/(),( AkAfAky =  (2.2)

is income per capita and G(A) is the marginal knowledge productivity A'(N) expressed 

as a function of A (when A(N) =Nξ , for example, G(A) = ξA(ξ−1)/ξ ).   

The remaining income, (1−α)Y, is used for consumption and investment in 

physical capital.  Thus, ( , which in terms of the per-capita variables 

k = K/L, y = Y/L and c = C/L becomes   

CKY ttt +=− &)1 α

ttttt cAkyk −−= ),()1( α& . (2.3)

Utility is derived from consumption according to u(c) = (c1−σ−1)/(1−σ) with 

the intertemporal elasticity of substitution parameter 1/σ assumed not to exceed unity 

(this ensures that capital will not be completely consumed at a finite time). 

The optimal growth policy consists of the trajectories of income fraction 

devoted to knowledge generation (αt) and consumption (ct) that solve   









= ∫
∞

−

0
},{00 )(),( dtecLuMaxAkV t

tc tt

ρ
α  (2.4)

subject to (2.1), (2.3), kt ≥ 0,  ct ≥ 0 and 0 ≤ αt ≤ 1, given the endowments k0 and A0 

and the utility rate of discount ρ.  For convenience, knowledge endowment is 

normalized such that A0 = 1.  

 With λ and γ representing the current-value costate variables of k and A, 

respectively, the current-value Hamiltonian is 

Ht = Lu(ct) + λt[(1−αt)y(kt,At) − ct ] + γtLG(At)αty(kt,At). (2.5)

Necessary conditions for optimum include  

Lcu tt /)(' * λ= , (2.6)
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where αt
S is the singular solution (characterized below), and λ and γ evolve according 

to  

])()1)[(,(1 ttttttttt ALGAky γαλαρλλ +−−=−& , (2.8)

 
tttttttttttttt AGLAkyALGAky γαγαλαργγ )(),(])()1)[(,(2 ′−+−−=−&

 
(2.9)

(y1 and y2 denote the derivatives of y with respect to k and A, respectively).  The 

transversality conditions are,  

(a)  limt→∞{ktλte−ρt} = 0    and    (b)  limt→∞{Atγte−ρt} =  0. (2.10)

We turn now to characterize the optimal growth (capital accumulation) and 

knowledge accumulation processes for linear (Section 3) and nonlinear (Section 4) 

knowledge productivity functions A(N) .  A few words on terminology are in order.  

In the growth literature, steady state growth is sometimes used to represent 

exponential growth.  Here we reserve the term steady state to situations in which the 

optimal processes converge to finite values and the economy approaches stagnation.  

Situations in which the processes increase indefinitely are referred to as unbounded 

growth, and the special case of constant endogenous growth rate is called explicitly 

exponential growth.   

3.  Linear A(N) 

We characterize here the complete time evolution of the optimal knowledge 

and capital accumulation processes when A(N) = N.  Our analysis is based on two 

characteristic lines defined in the (A−k) state space and extends straightforwardly to 

general A functions (see the following section).   
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With A = N, the function G(A) of (2.1) equals unity for all A and can be 

dropped.  Condition (2.7) identifies three possible knowledge accumulation (learning) 

policies: no learning (α = 0), denoted o-policy; maximal learning efforts (α = 1), 

denoted m-policy; and singular learning (0 ≤ α ≤ 1), denoted s-policy.  The optimal 

policy consists of selecting among these three possibilities at different phases of the 

planning horizon.  Given the learning regime, only capital remains as an independent 

state variable and the optimal growth policy reduces to a single-state problem.  The 

selection among the three learning policies, thus, reduces the two-state problem (2.4) 

into a series of single-state problems.   

The selection task, it turns out, depends on the relative positions of two 

characteristic lines defined in the (A−k) state space.  The first line corresponds to the 

singular s-policy of (2.7).  Implementing the singular policy during a finite period of 

time requires that both λ = Lγ and  hold during that period, which, noting 

(2.8)-(2.9), implies   

γλ && L=

),(),( 21 tttt AkLyAky = . (3.1)

Noting that y1/L represents the marginal productivity of K (aggregate capital), we see 

that condition (3.1) requires that along the singular line capital and knowledge are 

equally productive at the margin, i.e., their marginal rate of substitution, y2/(y1/L), 

equals unity.  With x = k/A, it is seen that y2/y1 = f(x)/f '(x) − x ≡ z(x), where z(x) is 

increasing and z(0) = 0.  Thus, condition (3.1) implies z(kt/At) = 1/L and defines a 

straight line in the A−k plane, kS(A) = χsA, with a slope χs given by   

χs = z−1(1/L).  (3.2)

We call this line the singular line and show below that it serves as a turnpike process 

for growing economies.   
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The tendency to equate the marginal productivity of capital and knowledge is 

intuitively obvious when we note that they both compete for shares of the same 

income source.  If capital is more productive at the margin, i.e., y1/L > y2, the loss in 

income associated with the decrease in capital due to learning exceeds the income 

gain associated with the additional knowledge generated by the same learning effort, 

hence this effort is not warranted.  Indeed, we verify in the appendix that the o-policy 

(α = 0) is the optimal policy for this case.  Conversely, when y1/L < y2, increasing 

capital is less beneficial than increasing knowledge, hence the capital process must 

decrease in this case, either via the m-policy (α = 1) or via the o-policy with c > y.   

An additional line in the A−k plane is defined by the steady state conditions 

, or, in view of (2.1) and (2.8), by  0== λ&&A

y1(k,A) = ρ. (3.3)

This equation relates the marginal productivity of capital to its cost—the utility 

discount rate—and yields a unique solution for k, denoted k(A), which is recognized 

as the optimal steady state of k when knowledge is fixed at A.  We refer to k(A) as the 

k−line and note that (2.2) and (3.3) reduce to f '(kt/At) = ρ, yielding again a straight 

line k(A) = χkA with the slope  

)(' 1 ρχ −= fk .   (3.4)

Since (3.3) is derived from steady state conditions, it implies that a steady 

state of the two-state problem (2.4) must fall on the k−line.  In fact, we establish 

(proofs and technical derivations are presented at the appendix) 

Property 3.1:  The optimal knowledge and capital processes corresponding to (2.4) 

must either (i) converge to a steady state on the k−line, or (ii) grow indefinitely along 

the singular line. 
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Which of these two possibilities is realized depends on the relative location of 

the two characteristic lines.  In particular, we find (see appendix) 

Property 3.2:  (i) If the k−line lies below the singular line for all feasible knowledge 

states, the economy converges to a steady state. (ii) If the k−line lies above the 

singular line for all feasible knowledge states, the economy grows indefinitely.  

The linear forms derived above for the k− and singular lines render it easy to 

detect which of these two cases prevails:  χs >χk implies convergence to a steady state 

while χs <χk implies sustained growth.  

A growing economy, with χs  < χk, first approaches the singular line at a most 

rapid learning rate: no learning (α = 0) and capital buildup while below the singular 

line, or maximal learning (α = 1) and decreasing capital while above the line.  Once 

the singular line is reached, the learning rate is so tuned as to drive the economy on a 

sustained growth path along it (Figure 3.1).  Thus, when k0 < χs, learning is delayed 

under the o-policy while capital is increased until it reaches χs, following which the 

s-policy is implemented and the economy keeps growing along the singular line 

(Figure 3.2a).  When k0 > χs, a vigorous knowledge accumulation policy is initiated 

under the m-policy (α = 1) until the singular line is reached, at which time the singular 

policy is adopted (Figure 3.2b).  For a growing economy, then, the singular line serves 

as a turnpike which the economy approaches at a most rapid learning rate and along 

which it grows (exponentially, as we show below).   

Figure 3.1 presents optimal k and A trajectories in the state space for a 

growing economy.  Arrows indicate the direction of evolution over time.  The 

corresponding time trajectories of α, A and k when k0 < χs and k0 > χs are depicted in 

Figures 3.2a-b.   
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Figures 3.1, 3.2a-b 

Depending on the initial capital, the converging economy (with χs > χk) may 

or may not support knowledge accumulation.  The optimal initial learning policy is 

determined in terms of some threshold capital level k1 > χs as follows:  When k0 ≤ k1, 

no learning is ever warranted, implying an o-policy that leads to a steady state with 

A = A0 = 1 and k = k(1) = χk .  If k0 > k1, the entire income is initially devoted to 

knowledge accumulation (α = 1) under the m-policy, followed by an o-policy of no 

learning and decreasing capital, leading to an eventual steady state on the k−line with 

A > 1.  The switch from the m-policy to the o-policy occurs above the singular line, 

which is crossed as the process evolves toward the steady state below.  Thus, when 

χs > χk, regardless of the initial endowment, the economy will eventually stagnate.  

It remains to characterize the turnpike growth processes for a growing 

economy with χs < χk:  

Property 3.3:  The turnpike income process yt
S grows exponentially according to 

σ
χχ )(')(' ks

S
t

S
t ffg

y
y −

=≡
&

.  (3.5)

The corresponding capital (kt
S), knowledge (At

S) and consumption (ct
S) processes are 

proportional to income, hence grow at the same rate g.  The fraction of income 

devoted to knowledge accumulation along the turnpike is the constant  

 αS = g/[Lf(χs)]  (3.6)

(it is verified in Appendix B that αS lies between 0 and 1). 

The turnpike growth rate g = [f  ′(χs) − f  ′(χk)]/σ  of (3.5) suggests an interest-

rate interpretation for f  ′(χs).  To see this, consider the problem of allocating 
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consumption over time according to  subject to 

 k








∫
∞

−

0
}{ )( dtecuMax t

tc
ρ

,tttt rKcyk +−=&
∞ ≥ 0 and k0 given, where ρ is the utility discount rate, r is the 

interest rate and yt is an exogenous income stream.  Standard optimization yields 

σρ /)(/ −= rcc& .  In our case (cf. (3.4) and (3.5)) σρχ /))('(/ −= sfc&c .  f '(χs), then, 

plays the role of an interest rate:  Along the turnpike, investing in knowledge yields a 

return f '(χs).  The slope of the singular line is thus related to an effective interest rate 

associated with knowledge buildup due to technological progress.  For the economy 

to grow, the interest rate must exceed impatience—the utility discount rate ρ = f  ′(χk).   

The Cobb-Douglass production technology f(k) = akβ, for example, yields 

χs = β/(L(1−β)) and χk = (aβ/ρ)1/(1−β).  The condition f '(χk) < f '(χs) for growth 

becomes .  The scale (L) effect is evident: there exists a 

critical population L

)]1/()[1( 1 βββββρ −−−< La

c corresponding to χs = χk such that small economies (with L < Lc) 

converge to a steady state whereas larger economies grow indefinitely at a rate that 

increases with L.  The economy must be large enough (or impatience small enough) 

for the public good nature of knowledge to have an impact that justifies sacrifice 

today for future benefits.1    

The endogenous exponential growth of (3.5) is directly linked to the 

assumption that A(N) is linear.  Linear A(N) implies constant returns to A in the 

knowledge generation equation (2.1) along the turnpike (where k is proportional to A).  

Solow [15] identifies equivalent assumptions in a variety of endogenous growth 

models and argues that deviations from these assumptions give rise to economies that 

either diverge to infinity at finite time or fail to exhibit long-run endogenous growth. 

                                                 
1  Positive scale effects were common in earlier endogenous growth models, but have recently lost 
some appeal due to lack of empirical support [19-24].  
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For example, Lucas' [9] model gives rise to endogenous exponential growth only 

under the linear human capital generation process assumed in his equation (13) [9, p. 

19].  Solow's critique applies to the present model too, in that A(N) that gives rise to 

increasing returns to N in knowledge generation can yield a diverging economy, while 

decreasing returns force the economy to stagnate at a (static) steady state, as we shall 

see below.  The two models differ, however, in one important aspect:  whereas in 

Lucas [9] the linear relation between  and A is assumed, here this relation is a 

property of the singular line and it holds since it is optimal for the economy to grow 

along this line. 

A&

Neither the diverging nor the stagnating scenarios appear promising.  Does 

that mean that only the linear specification for A(N) is of interest?  Not necessarily; 

there is another possibility, namely, a general specification of A(N) approaching 

constant returns for large N.  It might appear that this case merely reproduces the 

linear productivity of the previous section in the long run and the economy must 

eventually grow exponentially.  But this conclusion can be misleading.  The reason is 

that the long-run behavior of an economy depends on whether knowledge and capital 

will ever grow large enough to move the economy into the growth regime.  Thus, it is 

possible that based on long run considerations the economy should eventually evolve 

along a balanced growth path, yet short run considerations prevent it from ever getting 

there; the economy stagnates along the way with no (or too little) knowledge to be 

able to pull itself from poverty.  

In the conclusion of his exposition, Solow [15] stresses the importance of 

short run considerations that are often overlooked by growth theories.  The results of 

the following section put forward another argument supporting this view: evaluating 
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long run growth may require knowledge of the entire growth process, since long-run 

behavior may not be path-independent.   

4.  Nonlinear A(N) 

The analysis of the linear case in Section 3 characterizes the complete time 

evolution of growth paths.  It is extended here to provide a full characterization of 

growth processes under more general specifications, assuming that A(N) is increasing 

and A(N0) = 1.  Prospects for endogenous growth are then assessed.   Further 

generalizations might replace the labor-augmenting (Harrod-neutral) form assumed 

here by other forms of technological progress, such as Solow- or Hicks-neutral.  The 

shape and location of the characteristic k− and singular lines should be modified 

accordingly, but the analysis remains the same.  

The derivation of Section 3 is repeated, taking account of the terms involving 

G(A) in the dynamic equations for A, λ and γ.  For the k−line we find k(A) = χkA 

where the slope χk is again given by (3.4).  Thus, the k−line retains its linear form.   

The modification of the singular line is more subtle.  Condition (2.7) for the 

singular solution is λ = LG(A)γ, hence (2.8)-(2.9) yield y1 = LG(A)y2 as the 

generalization of (3.1) and define the singular line kS(A) as the solution of  

z(kS(A)/A) = 1/(LG(A)), (4.1)

where it is recalled that z(x) = f(x)/f ′(x) – x.  One sees that the ratio χs(A) = kS(A)/A 

now depends on A, with χs′(A) = −G '(A)z(χs)/(G(A)z'(χs)).  Thus, if G(A)→∞ for large 

A (e.g., when A(N)=Nξ and ξ > 1) the singular line must lie below the k−line above a 

certain A value, while when G(A)→0 the singular line must lie above the k−line for 

large A.  Finally, when A(N) is asymptotically linear, so that G(A)→G∞ = lim A(N)/N 

and the latter limit obtains a finite positive value, the relative location of the k− and 
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singular lines at large A depends on whether the asymptotic slope χs(∞) corresponding 

to z−1(1/(LG∞)) exceeds or falls short of the slope χk of the k−line.   

These considerations give rise to four prototypical economies:   

Type 1:  The singular line always lies below the k−line; 

Type 2:  The singular line always lies above the k−line; 

Type 3:  The singular line crosses the k−line once from below;  

Type 4:  The singular line crosses the k−line once from above.2 

The optimal processes for Type 1 and Type 2 economies have been 

characterized in Property 3.2 and the discussion following it (the linearity of the lines 

is irrelevant for this property).  We consider now the other two types, in which the 

characteristic lines intersect at some point, denoted .  For a formal 

derivation, we refer to the appendix. 

)ˆ,ˆ()ˆ,ˆ( AAkA kχ=

Optimal processes for Type 3 economies 

In general (see exception below) the optimal (A,k) processes of Type 3 

economies approach the singular line at a most rapid learning rate and move along it 

to a steady state at the intersection point ( .  Thus, when k)ˆ,ˆ kA

,ˆ( kA

0 < kS(1) = χs, the 

o-policy (α = 0) is initially implemented, allowing capital to build up until it reaches 

kS(1), at which time the s-policy is implemented and the economy evolves along the 

singular line, approaching a steady state at  (Figure 4.1).  If k)ˆ 0 = kS(1), the 

s-policy is immediately implemented and the (A,k) process evolves along the singular 

line towards the same steady state.  For larger capital endowments, k0 is compared 

with a critical capital stock k3 > kS(1) defined by the property that the m-policy (α = 1) 

                                                 
2 Multiple crossing of the characteristic lines cannot, in general, be ruled out.  This introduces some 
ambiguity regarding the identification of the optimal steady state, but otherwise yields no further 
insight and is therefore ignored.  Similarly, we consider here only non-decreasing singular lines.   
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brings the (A,k) process to the intersection point ( .  When k)ˆ,ˆ kA S(1) < k0 ≤ k3, the 

m-policy is initially implemented to increase knowledge and decrease capital until the 

singular line is reached, at which time the s-policy takes over to stir the (A,k) 

processes along the singular line to a steady state at the intersection point (Figure 4.1).  

Thus, when k0 ≤ k3, the singular line is a turnpike to which the (A,k) processes proceed 

at a most rapid learning approach (α = 0 while below the singular line and α = 1 while 

above it) and along which they evolve toward the steady state .  )ˆ,ˆ( kA

Â

If k0 > k3, the m-policy is first implemented, followed by a switch to the 

o-policy at some knowledge level  and above the singular line.  The o-policy 

involves decreasing capital, moving the system towards a steady state on the k−line 

segment below the singular line (see Figure 4.1).  While Type 3 economies encourage 

some knowledge accumulation (A is increased to 

AA ˆ>

 or above), economies of this type 

do not support sustained endogenous growth.   

Figure 4.1 

Notice that A(N)/N → 0 can give rise to Type 2 or Type 3 economies only, 

implying that no endogenous growth is possible in the long run.  Consider, for 

example, the Cobb-Douglas technology f(k) = akβ and A(N)=Nξ with ξ < 1.  The 

singular line is given by kS(A) = β/[Lξ(1-β)]A1/ξ and must lie above the linear k−line 

for large A.  It will start at A = 1 above the k−line if β/[Lξ(1−β)] > χk = (aβ/ρ)1/(1−β), 

yielding a Type 2 economy.  Otherwise, the characteristic lines cross and the 

economy must be of Type 3.  Whether or not learning activities will be undertaken 

and the eventual knowledge level depend on the economy type and on its capital 

endowment.  
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Optimal processes for Type 4 economies 

For Type 4 economies the intersection point (  cannot be a steady state 

and the optimal policy depends on the endowment k

)ˆ,ˆ kA

0 vis-à-vis two threshold capital 

levels k4a ≤ k4b (with kS(1) ≤ k4b) as follows (see Figure 4.2):  (i) When k0 ≤ k4a, no 

learning is ever warranted and the o-policy is implemented to drive capital to a steady 

state at χk.  (ii) When k0 > k4b, the m-policy is initially adopted until the (A,k) process 

reaches the singular line, at which time the singular policy is implemented to drive the 

process along the singular line in an unbounded growth path.   

For k4a < k0 < k4b the optimal policy depends also on the relative positions of 

k4a and kS(1) in the following way: if kS(1) ≤ k4a, (as in Figure 4.2), then initially the 

m-policy is carried out, followed by a switch to the o-policy at some (A,k) point above 

the singular line with   The o-policy drives the system towards a steady state on 

the k−line below the singular line.  If k

.ÂA <

S(1) > k4a, then the (A,k) process proceeds 

towards the singular line at a most rapid learning approach.  Upon reaching the 

singular line, the s-policy is adopted, yielding a path of unbounded growth thereafter.   

Figure 4.2 

Unlike Type 3 economies, where the turnpike process converges to a finite 

steady state at the intersection point, here the turnpike involves growth along the 

singular line.  On the other hand, Type 4 economies allow situations in which no 

learning is warranted (when k0 ≤ k4a) whereas Type 3 economies always call for some 

learning efforts.  

5.  Concluding comments 

 This paper addresses a long-standing economic problem, namely, the tradeoff 

between consumption/saving of a material commodity on the one hand, and 
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accumulating knowledge to enhance future productivity, on the other.  The problem 

was first considered by Shell [4,5] and has recently regained interest following Lucas' 

work [9].  Here we adopt Shell's framework of deciding, at each point of time, on the 

desirable rate of consumption and on the fraction of income devoted to support 

knowledge accumulation activities.   

The analysis is carried out in the (knowledge-capital) state space in terms of 

two characteristic lines dividing this space: the k−line, representing the steady-state 

capital for any fixed knowledge level, and the singular line, along which marginal 

gains and losses of capital and knowledge due to learning just balance.  Depending on 

capital endowment, the four prototypical economies defined by these lines display an 

assortment of growth patterns: 

(i) Type-1 and Type-4 economies have the potential to sustain long-run growth.  If 

they realize this potential, they display turnpike characteristics: the optimal processes 

reach the singular line—the turnpike—at a most-rapid-learning-rate (maximal or 

delayed learning while above or below the turnpike, respectively), and grow along it 

thereafter.   

(ii) Endowed with any positive capital, Type-1 economies always grow.  A Type-4 

economy will not realize its growth potential if its capital endowment is too small.  In 

such a case the economy stagnates at a finite state.  

(iii) Type-2 and Type-3 economies may grow for a while but eventually stagnate at a 

steady state, with a knowledge level depending on capital endowment.   

Assessing the prospects for endogenous growth, then, requires information on 

both the type and capital endowment, so that the entire growth process can be derived.  

The complete time profiles of the optimal capital and knowledge processes can be 

used to address policy questions also in the short run, such as what fraction of national 
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income should be devoted to learning activities at any given stage of economic 

development.  We find that regardless of what happens in the long run, an economy 

need not accumulate knowledge from the outset.  With small capital endowments, it is 

typically preferable to delay knowledge accumulation until enough capital had been 

generated.  Large capital endowments, on the other hand, call for vigorous initial 

learning activities at the maximal affordable rate, to be later followed by a moderate 

learning rate or no learning at all.  

The type classification reveals that some economies are capable of sustaining 

endogenous growth, pending sufficient capital endowment, whereas others need a 

structural change (i.e., a change of type) to gain this capability.  External infusion of 

capital—a common means of foreign aid for stagnating economies—can move those 

of the favorable types unto a path of self-sustained growth, whereas for the latter 

types it can have only short-term effects.   

The approach taken here is normative, in that we look at socially optimal 

outcomes, rather than at actual outcomes under various political and industrial 

organizations, market conditions and incentive structures.  The same methodology can 

be used to study the learning decisions of a (dynastic) family, distinguishing the effect 

on productivity of the family's own knowledge from that of aggregate knowledge, 

which is external to the family (as in Lucas [9]).  Other extensions consider different 

forms of technological progress, e.g. Hicks-neutral and Solow-neutral, as well as 

allowing for exogenous technical change and population growth.  Since our results are 

scale-sensitive, introducing exogenous growth is expected to give rise to a wealth of 

interesting phenomena.   
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Appendix A: Optimal policies for the four economy types 

We derive the optimality of the policies for the four economy types introduced 

in Section 4.  The analysis is carried out in the (A-k) state space and makes use of the 

characteristic k− and singular lines.  The optimal (A,k) process departs from (1,k0) and 

its evolution depends on its position vis-à-vis the characteristic lines.  We shall 

frequently use terms like “above the singular line,” meaning “when k > kS(A).” 

The k−line k(A), introduced in (3.3) as the solution of y1(k,A) = f '(k/A) = ρ, 

obtains the linear form k(A) = χkA  for every specification of the function A(N).  Since 

the line is defined by the steady-state conditions  it follows that   ,0== λ&&A

Claim 1:  An optimal steady state (A*,k*) falls on the k−line, i.e., k* = k(A*).  ■ 

Indeed, Claim 1 is consistent with the identification of k(A) as the steady state of k 

when knowledge is fixed.   

Since f ' is decreasing, ρ < y1 holds below the k−line.  Thus, using (2.7) and 

(2.8),  below the k−line.  This, together with (2.6) and u″(c) < 0, implies that 

 holds below the k-line as well.  The reverse relations hold above the k−line 

under the o- and s-policies, (with α = 0 and α = α

0<λ&

0>c&

S, respectively), yielding 

Claim 2:  The optimal consumption process increases in time below the k−line under 

all learning policies and decreases in time above it under the o- and s-policies.  ■ 

 Turning to properties of the singular line, we recall that this line is defined by 

the requirement that condition λt = LG(At)γt of (2.7) holds during a time interval.  

Using (2.8) and (2.9) for the time derivatives of the shadow prices and (2.1) for the 

corresponding derivative of A, we determine the singular line as the trajectory 

Λ(kS(A),A) = 0, where Λ(k,A) = y1(k,A) − LG(A)y2(k,A).  Using (2.2), we obtain 
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z(kS(A)/A) = 1/(LG(A)), where z(x) = f(x)/f '(x) − x.  When A(N) is linear, G(A) reduces 

to a constant and the latter result implies that the singular line is linear, kS(A) = χsA. 

For more general specifications of A(N), we consider in this work only situations in 

which the singular line increases.   

Using the properties y11(k,A) < 0 and y21(k,A) > 0 we find that   

Claim 3:  Λ(k,A) > 0 below the singular line and Λ(k,A) < 0 above it.  ■ 

 According to (2.7), the optimal learning rate is determined by ζ = LGγ −λ: 

α = 1 when ζ > 0 (the m-policy);α = 0 when ζ < 0 (the o-policy), and α = αS when 

ζ =  = 0 (the s-policy).  Using (2.8) and (2.9), one finds ζ&

                                                            (Α.1) .),(])()1[( ρζαγλαζ +Λ+−= AkALG&

Since the shadow prices are positive, we conclude:    

Claim 4:  (a)  When the m-policy holds below the singular line, ζ e−ρt→∞.  (b)  When 

the o-policy holds above the singular line, ζ e−ρt→ −∞.   ■ 

 Observe that allowing the faster-than-exponential divergence of Claim 4 to 

proceed permanently is inconsistent with the transversality conditions (2.10).  Since a 

steady state above the singular line involves an o-policy, Claim 4b implies  

Claim 5:  A steady state cannot fall above the singular line. ■   

 Claim 4 entails restrictions also on the dynamic processes.  For example, if the 

capital-decreasing m-policy is adopted at or below the singular line, the sub-optimal 

behavior of Claim 4a will be followed permanently.  Hence, 

Claim 6:  An m-policy can hold only above the singular line. ■   
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In fact, an m-policy can hold only during a finite period, after which it must be 

replaced by either an o-policy (above the singular line) or an s-policy (on the singular 

line). 

 As long as an o-policy holds, the capital process is monotonic in time because 

the problem is essentially one-dimensional (knowledge remains constant under the o-

policy).  If an o-policy holds above the singular line, it must involve decreasing 

capital until the singular line is reached, for otherwise the sub-optimal behavior of 

Claim 4b will be followed permanently.  Now, ζ must be negative when the singular 

line is reached from above by an o-policy.  Since no other policy can hold below the 

singular line (Claim 6), this k-decreasing, constant-knowledge policy must converge 

to a steady state on the k−line segment below the singular line. 

 Initiated below the singular line, the (A,k) process under an o-policy cannot 

cross it.  Neither can it switch to another policy below the singular line (an s-policy 

can hold only on the singular line and Claim 6 precludes the m-policy below the 

singular line).  The only two possibilities left are to converge to a steady state below 

the singular line or to reach the singular line (with ζ = 0) and switch to the s-policy.  

We summarize these considerations in  

Claim 7:   (a) When initiated above the singular line, an o-policy continues 

permanently and the (A,k) process (with A remaining constant) converges to a steady 

state on the k−line segment below the singular line.  (b) When initiated below the 

singular line, an o-policy either converges to a steady state below this line or reaches 

the singular line where it switches to the s-policy.  ■   

 Turning to the s-policy, we recall that it can proceed only along the singular 

line.  Moreover, using (A.1) we find that once a singular policy has been initiated 
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(with ), the (A,k) process cannot leave the singular line without violating 

Claim 6 or 7 (in other words, the s-policy is trapping).  In view of Claim 1, the 

following characterization holds: 

0== ζζ&

Claim 8:  An s-policy either converges to a steady state on the intersection point of 

the characteristic lines or grows indefinitely along the singular line. ■   

 To decide between the two options offered in Claim 8, consider an s-policy 

that grows permanently along a singular line segment above the k−line.  According to 

Claim 2, this policy involves a decreasing consumption process.  However, the policy 

of staying at the initial state (diverting to consumption the funds allocated by the 

singular policy to increase the capital and knowledge stocks), is feasible and yields a 

higher utility.  Therefore, the singular policy cannot be optimal.  Of course, a singular 

policy that drives the (A,k) process along a segment above the k−line during a finite 

period, and upon reaching the intersection point moves on to a singular segment 

below the k−line cannot be ruled out.  These considerations imply 

Claim 9:   An s-policy cannot be confined to an increasing segment of the singular 

line above the k−line.  ■   

We apply these results to characterize the optimal processes corresponding to 

the four economy types introduced in Section 4.  It turns out that the steady states 

themselves, as well as whether the economy converges to a steady state, depend on 

the initial capital level.  

Type 1:  Here the k−line is always above the singular line.  Claims 1 and 5 

forbid the existence of any steady state, hence the economy must grow permanently 

along the singular line (Figure 3.1).  When k0 < kS(1) the o-policy is invoked, 

increasing capital until kS(1) is reached (Claim 7b), following which the process 
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evolves along the singular line (Figure 3.2a).  In contrast, when k0 > kS(1) the o-policy 

is not allowed (Claim 7a) and the m-policy is followed until the singular line is 

reached and the s-policy takes over (Figure 3.2b). 

Type 2:  In Type 2 economies the k−line always lies below the singular line.  

In this case, no point along the k−line can be ruled out as a steady state.  According to 

Claim 9, unbounded growth along the singular line cannot be optimal.  Therefore 

when k0 ≤ kS(1), Claim 7b implies an o-policy leading to the steady state (1,χk).  

Moreover, since ζ is negative at (1,kS(1)) (otherwise an o-policy is not optimal), ζ  < 0 

also for some capital stocks above kS(1), implying the same policy from these states as 

well (Claim 7a).  For even larger capital stocks, however, the associated value of ζ 

must turn positive.  To see this, we solve (A.1) backwards in time (using the reversed-

time τ = −t normalized such that τ = 0 indicates the time when the singular line is 

crossed and ζ0 < 0 and kS(1) are the corresponding values of ζ and k at that time) with 

α = 0 and Aτ ≡ 1 and find   Above the singular line 

Λ < 0 and for sufficiently large τ, this result entails ζτ > 0 which is inconsistent with 

the o-policy.  Thus, there exists a threshold level k

.])1,([
00

ρττ ρ
τ λζζ −∫ Λ−= edsek s

ss

1 > kS(1) (corresponding to ζτ = 0) 

such that the o-policy leading to (1,χk) is adopted only when the initial capital does 

not exceed it.  

If, however, k0 > k1, it is desirable to initially activate learning at full capacity 

under the m-policy.  The singular policy is not favored by Type 2 economies (Claim 

9), hence the m-policy cannot extend to the singular line.  The variable ζ, therefore, 

must decrease and vanish at some (A,k) state above the singular line. This implies a 

switch to the o-policy which leaves A constant and decreases capital towards a steady 

state on the k−line, as Claim 7a implies. 
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Type 3:  A Type-3 economy is characterized by the property that the k−line 

crosses the singular line from above (Figure 4.1).  It follows from Claims 1 and 5 that 

an optimal steady state must lie on the k−line segment with   Suppose 

0 < k

.ÂA ≥

,Â

0 < kS(1).  Claim 6 forbids the m-policy while the s-policy can be adopted only on 

the singular line, hence it must be optimal to initially delay knowledge accumulation 

and apply the o-policy.  Since k(1) > kS(1) Claim 7b implies that it is optimal to delay 

learning (keeping α = 0) and increase capital until kt reaches kS(1), and proceed 

thereafter along the singular line towards the intersection point (     ).k̂

According to Claim 9, it cannot be optimal to continue the singular policy past 

the intersection point (where the singular line lies above the k−line).  The only steady 

state allowed on the singular line by Claim 1 is the intersection point.  Thus, we 

deduce from Claim 8 that the optimal (A,k) process must converge to the steady state 

 ).ˆ,ˆ( kA

 With larger endowment k0 > kS(1), delaying learning is no longer 

advantageous (Claim 7a) and the optimal policy is to initially set α = 1, increasing 

knowledge and decreasing capital until the (A,k) process reaches the singular line at 

some time.  From that time on, α is reduced to the singular value, and the process 

continues along the singular line to the steady state    ).ˆ,ˆ( kA

Evidently, the higher the initial endowment k0, the higher is the point at which 

the singular line is reached.  In fact, there exists some threshold initial stock k3 > kS(1) 

such that the (A,k) process initiated from (1,k3) under the m-policy meets the singular 

line exactly at (  (Figure 4.1).  To see this, we solve the dynamic equations 

backwards in time,  setting α = 1 and using the reversed time τ and the initial values 

 and 

)ˆ,ˆ kA

Â=Akk ,ˆ 00 = == ττ )ˆ(0 cuL ′==τλ  where  is the consumption rate at the steady ĉ
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state.  The threshold stock k3 is determined from the solution as the state kτ 

corresponding to the reversed time τ  when Aτ = 1.  Using Claim 3 and the time-

reversed version of (A.1) with ζτ=0 = 0, it is verified that 

 along the solution and the m-policy is indeed 

optimal all the way back to (1,k

0),(
0

)( >Λ−= ∫ −τ τρ
τ λζ dseAk s

sss

),ˆ( kA

AA ˆ1 ≤≤

3).  When k0 > k3, the m-policy brings the process to a 

point  above the singular line.  In such cases, the m-policy continues to higher 

knowledge stocks, but it cannot meet the singular line above the k−line (Claims 6 and 

9).  At some point above the singular line the variable ζ vanishes and learning 

activities abruptly cease, switching to an o-policy that leads the process to a steady 

state on the k−line segment below the singular line.  Thus, (  is the optimal steady 

state whenever k

)ˆ,ˆ kA

0 ≤ k3, while larger endowments imply higher asymptotic knowledge 

and capital stocks.  

Type 4:  Here the k−line crosses the singular line from below (Figure 4.2).  

Claims 1 and 5 restrict optimal steady states to lie on the k−line segment with  

.  In contrast to Type 3 economies, Claim 9 forbids the optimal process to 

converge to the intersection point  along the singular line.  However, 

unbounded growth along the singular line cannot be ruled out.  The dynamic 

behavior, then, depends on two critical capital stocks defined by the following 

properties: k

)ˆ,ˆ( kA

4a is the maximum endowment for which it is optimal to avoid learning 

altogether and approach the steady state (1,χk).  (If the endowment k0 = χk implies 

approaching the singular line, set k4a = 0.)  Obviously, for all 0 < k0 < k4a it is optimal 

to follow the o-policy to (1,χk).  k4b is the minimum endowment in excess of kS(1) for 

which eventual growth along the singular line is optimal (Figure 4.2).  (If the 
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endowment k0 = kS(1) implies unbounded singular growth, set k4b = kS(1).)  To find k4b 

we note, using Claims 1 and 5, that there must exist a minimal level AA ˆ≤≤1  such 

that initiated from the state (A,kS(A)) on the singular line, the optimal process must 

follow the s-policy of unbounded growth.  The critical level k4b is obtained by solving 

the dynamic equations, initiated at (A,kS(A)), backwards in time with α = 1 until A = 1 

is reached.  Evidently, k4b ≥ k4a, and for all k0 > k4b it is optimal to initially implement 

the m-policy that will drive the process to the singular line and then switch to 

unbounded growth under the s-policy.  To characterize the behavior for intermediate 

endowments with  k4a < k0 < k4b we distinguish between two cases: (i) k4a ≥ kS(1) and 

(ii) k4a < kS(1).  In the former case (depicted in Figure 4.2) an m-policy is initially 

adopted, to be replaced upon the vanishing of ζ at some point above the singular line 

by an o-policy that crosses the singular line and drives the process to a steady state on 

the k−line below.  The latter case implies k4b = kS(1) because any point on the singular 

line gives rise to a growing s-policy.  Delayed learning under the o-policy leads the 

process to (1,kS(1)).  Once the singular line is reached, the s-policy of unbounded 

growth takes over. 

 

Appendix B:  Proof of Property 3.3 

We derive the optimal growth rate under linear productivity, with G(A) = 1.  

The condition χs  < χk gives rise to sustained growth along the singular line with 

kt = χsAt, hence (2.1) and (2.3) imply c = (1−αB)y, where B = 1+χsL = Lf(χs)/f '(χs) is a 

constant depending only on L (cf. (3.2)).  The singular policy, then, is determined by 

the one-dimensional optimization problem  
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−= ∫
∞

−

0
}{0 )],()1[()( dteAAyBLuMaxAV t

ttst
S ρ

α χα  (B.1)

subject to (2.1), At ≥ 0 and 0 ≤ αt ≤ 1/B, where A0 is the knowledge productivity state 

at which the s-policy begins.  (For convenience, we reset the time at which the 

singular process starts to t = 0.)  With the current-value Hamiltonian given by 

),,()],()1[( AALyAAyBLuH ss χγαχα +−=  (B.2)

the necessary conditions include  

Bcu /)( γ=′ , (B.3)

and, observing that (3.1) implies dy(χsA,A)/dA = y1B/L = f '(χs)B/L,  

,)(/ 1 Φ−=−=∂∂−= γργργγ yAH&  (B.4)

where, according to (3.4)   

Φ ≡ f  ′(χs) – f  ′(χk) > 0.  (B.5)

Thus, γ = γ0 exp(−Φt) and (B.3) and the specification u(c) = (c1−σ−1)/(1−σ) imply  

c = (B/γ0)1/σ exp(Φt/σ) = c0exp(gt). (B.6)

Thus, consumption grows exponentially at the rate 0 < g < Φ.  

On the singular line, y = Af(χs), hence (2.1) reduces to  

and c is expressed as c = (1−αB)Af(χ

)()( ss fBALAfA χαχα ′==&

s).  Taking the time derivative and using (B.6) we 

find   

),1)(1(/ −−= αδαα BBgB &  (B.7)

where δ  = f '(χs)/g > 1.  Equation (B.7) is readily integrated, yielding 

])1([)1/()1( tgexpBB −=−− δψααδ , or 

])1([
])1([1
tgexp
tgexpB

−+
−+

=
δψδ
δψα . (B.8)
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The choice of the integration constant ψ requires some care: with δ > 1, any 

non vanishing value that avoids divergence at finite time implies that Bα converges to 

unity in the long run with 1 ])1([ tgexpB −−≈− δα  (The notation at ≈ bt signifies that 

the ratio at/bt approaches a constant as t→∞).  It follows that 

])([][ tfexptgexp s)]1)((/[ BfcA s χδαχ ′=≈−=

([()(

 hence 

1])) =−Φ− t′≈− fexptexpA s ρχργ  (cf. (B.5)), violating the transversality 

condition (2.10b).  Thus one must choose ψ = 0, reducing αS to the constant 1/(δB) 

(which gives 3.6) and ensuring that 1 − Bα > 0.  Moreover, a constant learning 

fraction implies the y and A (and therefore k as well) are all proportional to the 

consumption c and grow exponentially at the same rate g. 
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