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Iterative Least Squares Estimation of Censored Regression

Models With Unknown Error Distributions

Yacov Tsur and Amos Zemel

1. Introduction

Regression models with dependent variables which are incompletely

observed are pervasive. Restrictions on the observations occur, for example,

if a measuring device fails to give correct values beyond a given level, or

when the dependent variable, by its nature, is limited to a specific range

(e.g., can take only positive values). The literature is abundant with

further examples. Models describing such situations, known as censored

regression models, cannot be readily estimated using standard Least Squares

(LS) techniques due to the bias introduced by the censoring. When the error

distribution is specified the elimination of the bias is relatively simple; a

detailed treatment of this case is given in Breiman, Tsur and Zemel (1989).

The problem becomes involved in the more practical case of unknown error

distributions.

In this work we develop an estimator of the parameter vector of censored

regression models which does not require knowledge of the underlying error

distribution. We describe a simple, iterative algorithm to obtain this

estimator and show that it is consistent and asymptotically normal. Each

iteration consists of two steps: First, one fills in the missing data using

predictors based on the observations and on current parameter estimates.

Improved parameter estimates are then obtained by applying LS methods as if

no data are missing. The predictors used to fill in the missing data are

derived from estimators of the corresponding expectations of the errors

conditional on all available information. The construction of such predictors

in a way which generates consistent estimators, yet requires only few, simple

and fast computations is the key feature of our algorithm.
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A similar procedure was suggested by Buckley and James (1979) and further

investigated by James and Smith (1984) and by Ritov (1990). Our procedure

differs in the way the empirical estimators of the error conditional

expectations are evaluated. The proposed empirical estimators were also used

by Lee (1988) in the context of semiparametric truncated regression models.

Other approaches to estimate censored regression models without

specifying the error distribution have been discussed by Powell (1984, 1986),

Duncan (1986), Fernandez (1986), Horowitz (1986), Nawata (1990), Tsiatis

(1990), and Ritov and Fygenson (1990). The estimators studied in these works

were shown to be consistent and asymptotically normal. Some of them, however,

are not easy to implement and their application to data may become

computationally cumbersome.

When the EM algorithm of Dempster, Laird and Rubin (1977) is applied to a

censored regression model with Gaussian errors, one obtains an iterative LS

procedure, where in each iteration the missing data are replaced by their

expectations conditional on all available information (Tsur (1983)). The

resulting estimator was shown to maximize the likelihood function, hence it is

consistent and efficient. It is of interest, then, to find out whether such

an iterative LS procedure maintains desirable large sample properties when

applied to models with non normal (but known) distributions. Breiman, Tsur

and Zemel (1989) answered this question in the affirmative and further showed

that this iterative LS procedure (referred to as the EP algorithm) possesses

excellent convergence properties.

Proceeding along this line of thought, the next quest to pursue concerns

the properties of a similar procedure in which distribution-free empirical

estimates of the error conditional expectations are employed. Indeed this is

the main theme of this work. Analyzing the algorithm based on the new

empirical conditional expectations, we find that the governing equations are
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very similar (asymptotically) to those corresponding to the case of known

error distributions, and that the distribution-free EP estimator is consistent

and asymptotically normal.

We begin, in Section 2, by describing the EP algorithm and define the EP

estimator. In its strict form, the estimator is defined as a solution of a

fixed point equation. Due to discontinuities in the empirical estimates, such

a solution may not always exist in finite samples. We thus generalize the

solution concept from a point to a neighborhood that shrinks (at a rate faster

than 1//N) with the sample size N and prove, in Section 3, the existence of a

/N-consistent solution. Consistency of the EP estimator, then, requires the

identification of the consistent root if more than one solution exists. The

selection of this root is based on a minimization criterion recently proposed

by Lee (1988) for the truncated case. Finally, we show that the EP estimator

is asymptotically normal and derive its limiting covariance matrix.



4

2. The EP Algorithm and Estimator

We consider a model in which the data (yi,xi) are generated by the

mechanism

yi - MAX(O,ao+xi.o+ui), i-1,2,...,N

where yi are observed scalars, xi are iid K-dimensional observed vectors, ao

is an unknown intercept parameter, So is a K-dimensional vector of unknown

slope parameters to be estimated, ui are iid error terms distributed according

to some unknown cdf F with E(ui) - 0, and N is the number of measurements.

The value (Yi-O) indicates that yi is missing, otherwise Yi>0.

Let x - xi - x, where x - Ex(xi), be the shifted regressors expressed as

deviations from the mean. Let e. - u. + ao + x'po be the shifted errors with

mean E{e.) e - ao + x'io and cdf F (z) - F(z-e). Let zi --o - x'.Po and

zi- -x';o, so that zi - Zi - e. Thus, recalling ei - u + e, one has~. Thus, recaling 61 1

F (z) - F(zC) and E(e|e<zi ) - E(ulu<z t) + e. Because F is always evaluated

at a shifted argument we suppress the subscript e without risking confusion.

Denoting the index sets corresponding to the observed and missing cases

by M - (i: z° < ei) i (i: yi > 0) and M - (i: z. > ei) - (i: yi - 0), the
i 1 1 1 1 

model can be equivalently presented as

x'fi o + ei ; iEM +

yi - , i-1,2,..,N. (2.1)
i 0 ;f iM(2.1)

Model (2.1), expressed in terms of the shifted regressors and errors, will be

referred to as the shifted model. The N by K matrix whose i'th row is x'i is

denoted by X and X is its partition to the observed cases, i E M+.

The EP algorithm is an iterative procedure to estimate the slope vector

Po. Each iteration consists of two steps: an Expectation (E) step and a

Projection (P) step. The idea is to replace the missing values yi, i E M , by

their expectations, using all the available information including the

parameter estimate obtained in the previous iteration. These values for yi
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are then employed to find an improved estimator for Po.

(r)E-step: Given the values (Br) of the r'th iteration, the next values of

yi are calculated as:

~~Y~~~~~i ~;i-M+
yi(P 1(r)) -{yi r) . (2.2)

x'I )+ E{eIl<-x'.p r - e/F(-xi' ) ;ieM

P-step: In this step h(r+l) is found by projecting Y(P)) on the space

spanned by the columns of X:

f(r+l) - (X X) X, y(P)), (2.3)

where Y(fir)) is the N-dimensional vector whose elements are y.( (r)) of eq.

(2.2). Eq. (2.3) is the usual LS formula for unlimited observations. With a

known error distribution, Y((r)) is readily calculated yielding a procedure

which converges geometrically to a unique point which is consistent and

asymptotically normal (Breiman, Tsur and Zemel 1989). Lacking knowledge on

the error distribution, E{(ee<-xi.(r) )-e/Fx~((r)) must be estimated

empirically. Buckley and James (1979) used the Kaplan-Meier Product Limit

Estimator of the error distribution. We suggest the following estimator. For

a real variable z and a given vector f, let

H(i,z) - (y.-x'P) I(y -x' > z > -x'P) (2.4)

jEM

and

M(9,z) - MAX ( I(y -x'fi < z) + I(-x'P < z) , 1) (2.5)

jieM jEM

where I(-) is the indicator function defined as unity when its argument is

true and zero otherwise. The empirical estimator of E(ele<z) - e/F(z),

evaluated at f, is defined as

E e(,z) - -H($,z)/M(,,z). (2.6)

Substituting Ee ((r,-x) ()) for E(e|l<-x (r)) - e/F(-xp (r)) in eq. (2.2),

the E-step is complete and can be followed by the P-step.

The implementation of the algorithm proceeds along the following steps:
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1) Form the shifted regressor matrix X using the mean i x a/N as an estimate

of x.

2) Set (o), an initial value for the parameter vector.

3) Fill in the missing yi values as given by eq. (2.2) using E e(,-x'i) with

the current f-estimate (E-step).

4) Update P according to eq. (2.3) (P-step).

5) Return to step 3 unless
K

I(r+l) (r) 112 - ((r+l)- (r) 2

decreases below some predetermined convergence requirement.

6) Once the convergence criterion is satisfied, adopt the last value of $ as

the final estimate.

The limit of this iterative process is the EP estimator and may be

considered as the solution to the Fixed Point Equation (FPE)

0 - (X'X)-1 X'Y(P). (2.7)

The discontinuities (with respect to P) in E may cause situations in

which the FPE does not have a solution (the same problem was noticed by

Buckley and James (1979) for their estimator). Practical experience shows

that the EP algorithm then settles to oscillations among several fixed values

instead of converging to a unique fixed point. Once this situations has been

identified, the iterations are terminated; the criterion to select the proper

oscillation point is described below. A related ambiguity stems from the

theoretical difficulty in proving the asymptotic uniqueness of the solution of

the FPE. Although it is shown in the next section that the FPE must have a

consistent root, it is not clear that every solution is indeed consistent.

One can, however, identify the consistent root among a given set of possible

solutions (arrived at, for example, by starting the algorithm at different

initial values in a situation where such non uniqueness occurs), according to

the following criterion: Let
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Mc( ,z) - I(yj-x' 2 z > -x'P) (2.8)

jeM

and

Ee (,z) - H(P,z)/Mc(,z) (2.9)ec C

be an estimator of E(e|e>z) (cf. Eq. 2.6). Define also

Qe() (yi - x+( - Eec (p2-Ixi.)/N (2.10)

i M

and evaluate Qe for every solution of the FPE. The root corresponding to the
N

minimum value of Q is adopted as the EP estimate.
N

The FPE is here presented as a result of a specific iterative procedure.

In the following section the solutions of this equation are analyzed without

reference to the particular algorithm used to obtain them. Thus, the results

presented below are valid for any method of solution, yet the EP algorithm

proposed here is particularly convenient for numerical implementation.
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3. Asymptotic properties

We derive in this section the consistency and asymptotic normality of the

EP estimator. The analysis is based on properties of the FPE. As explained

above, this equation does not necessarily have a solution for every finite

sample. Therefore, the term "solution to the FPE" must be generalized,

allowing deviations that diminish as the sample size N increases. We show the

existence of a consistent and asymptotically normal "generalized solution" to

the FPE, and verify that the EP estimator coincides with this particular

solution. Aiming at simplicity, the derivations are based on a set of

assumptions which are somewhat restrictive but clarify the proofs. In

general, we assume uniform bounds when weaker moment conditions may suffice.

Several generalizations are possible, but the investigation of the minimal

conditions under which the results hold will be carried out elsewhere.

In addition to the standard condition that the regressors are

statistically independent of the errors, we require:

Assumption 1:

(i) xi are iid with a distribution having a bounded support.

(ii) X'X/N is uniformly positive definite (upd).

(iii) The distribution of z -x'po, induced by the distribution of xi, has

a bounded density.

(iv) For z restricted to the bounded support of zi, the error distribution

is bounded: 1 - 6 > F(z) > 6 for some 1 > 6 > 0, and the density

f(z) -F'(z) is bounded.

(This implies that the functions E(z) - E(e|e<z) and E'(z) - dE/dz are also

bounded.)

(v) E(e4 ) < o.

The empirical conditional expectation E is the key ingredient of the
e
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algorithm. We begin by deriving an important consistency property of Ee . Let

N

z. -x '. and N(P,z) - I(z < z). For F(z) > 0, the following result holds:

Theorem 1: E (Po,z) -H E(e|e<z) - e/F(z) provided N(oo,z)->c .

(All proofs are presented in the appendix.) Theorem 1 claims that for the

true parameter, Po, the evaluation of E at any z within the support of z.
e 1

provides a consistent estimator of the quantity required to fill in the

missing y-values (cf. Eq. (2.2)). This consistency property has motivated

definitions (2.4)-(2.6) of the empirical conditional expectations. Note that

the relevant sample size is N(P,z) rather than N. This technical difficulty

is addressed throughout the derivations.

Using Theorem 1 we next show that Po is an asymptotic solution of the FPE.

The notation 0 (1) is used to denote a variable having a mean and a variance
qm

which are o(l) and 0(1), respectively. A variable is o (1) if both its mean

and variance are o(l). Let W(P) - Y(p)-Xp and observe that, since X'X/N is

upd, 0(p)-X'W(P)/VN can serve as a measure of the degree of precision to which

the FPE is satisfied. At Po, 4 assumes a particularly simple form. Let

Si eiI(i>zi) + (E(zi)-e/F(zi))I( fizi); ai-Var(si), Z be the N by N

diagonal matrix with elements ai and V - E (X'ZX/N). Assumption 1 ensures

that V exists and is positive definite. Then, we can prove

Theorem 2: Under Assumption 1, O(Po) - N(0,V).

Theorem 2 immediately implies that Po is an asymptotic solution of the FPE:

Corollary: Under Assumption 1, vN((X'X)-X'Y(Bo) - Po) - Om(l).

Moreover, Theorem 2 plays a key role in the derivation of the asymptotic

distribution of the EP estimator (cf. Theorem 6 below).

The observation that Po solves the FPE asymptotically suggests the

existence of solutions that approach Po as N-> '. However, as mentioned in
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Section 2, the FPE may not have an exact solution for any finite sample.

Nonetheless, the solution concept can be slightly generalized to vectors that

satisfy the FPE to a better approximation than Po. Then, as shown below, it

is possible to verify the existence of a consistent and asymptotically normal

"generalized solution", which coincides with the EP estimate.

Definition: A vector p is a solution to the FPE if +(p) - o (1), that is if
qm

VN((X'X) -1X'Y() - P)- 0.
qm

Since (fl9o) - 0 (1), po does not qualify as a solution and we need some
qrn

preparations to show that generalized solutions indeed exist.

Let x. ,X and z. represent respectively xi, X and z° after ordering

the regressors xi according to their projections on Po:

1 ~j oi < j = z < z.
1 j

Define the K by K matrix

0 - x(o)' r(I-A)X(°)/N. (3.1)
N

Here r is an N by N diagonal matrix with

.ii - -(z ) FiE' + 1 - Fi + fi/Fi' (3.2)

where Fi, E' and f. are evaluated at zi° ) and A is the N by N matrix

1 o 0 o ,... . a
1 2 1/2 0 0 0 0

A - . 1/ 3 1/3 0 0 0 (3.3)

'i/ n-1) 1/(n-l) 1/(n-l) 1/(n-l)... 1/(n-l) 

The ordering has been introduced in order to specify A as a fixed (non

random) matrix. Without ordering, the rows of A would have to be permuted

according to the (random) order of z °

We are now ready to establish the following result:

Theorem 3: Under Assumption 1, for any p such that AP - f-fo - O(1/IN),

AO - +(p) - O(Po) - -f0 VNAP + oqm(l).

According to Theorem 3, the FPE is essentially linear in a small region around

According to Theorem 3, the FPE is essentially linear in a small region around
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pa and the matrix 0 is nothing but the derivative of -(fiP)/VN with respect to
N

P. The condition needed to guarantee the existence of a consistent solution

to the FPE is therefore equivalent to the condition required for nN to be

uniformly nonsingular. In fact, a solution can (in principle) be constructed
A

explicitly, using the Newton-Raphson value PN = 8P + 0nN1 (o)/VN. The matrix

N plays here the role played by X'X/N in the uncensored regression model.
N

For censored regression with a known error distribution, the corresponding

matrix is X'rX/N (Breiman, Tsur and Zemel, 1989). The matrix A represents,

therefore, the modifications introduced by the use of the empirical

conditional expectation.

The explicit form of N can now be used to investigate its properties,
N

taking into account the random nature of X. (It so happens that the matrix

corresponding to 0 in the unshifted model becomes singular as N -, o; this
N

explains the use of the shifted model.)

As mentioned above, the cost of having a non-random A is the need to

order xi, which disturbs the independence among the rows of X. Therefore, it

is expedient to introduce a normalized regressor matrix Z - . on which

the effect of the ordering is restricted in the following sense: the elements

of the first column retain the original ordering of zo whereas the elements of

the other columns, while not yet independent, are uncorrelated with zero

means.

Let A - E(X'FX/N), Co - 11A1/2oli and b - A1/2Po/Co. Construct K-l unit

vectors bz....b such that the K by K matrix B - (b ....bK) is orthogonal.

The normalized regressor matrix is given by Z -XA-1/2B. It is verified that

fil - -x'io/Co. We denote the cdf of these quantities, induced by the

distribution of xi, by F (.). The definition of Z is meaningful, and its

desirable properties are guaranteed if the following assumptions hold:
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Assumption 2:

(i) X'rX/N is upd;

(ii) E(ikl il -z) - 0 for all k>l and all z.

Condition (i) is standard for censored regression models and its validity is

discussed in detail in Breiman, Tsur and Zemel (1989) in the context of known

error distributions. In view of Assumption 1, it holds trivially if e20.

Condition (ii) implies some symmetry on the distribution of the vectors fi.

It holds, for example, for any distribution that depends only on the norm of

its argument, i.e. the regressors xi (after normalization) have no preferred

direction in the K-dimensional space. Weaker symmetries are, in fact,

sufficient.

We denote by Z(0) - (fik) the ordered normalized regressor matrix and

observe that Z' ()r(I-A)Z(°)/N = B'A-1/2' A-1/'B. Thus it is sufficient to
N

investigate the conditions for the nonsingularity of the former matrix. The

condition involves the distributions of both the errors and regressors and

takes the form:

Assumption 3: - Jr -(C r) (r-E(f)f f,(d- Jr -y(Cr)E' ()F(O)dS v 0

where Ez(S) - E(fill il<) and E'(f) - dE(f)/df - (f-ES ()]f (f)/F(f).

Assumption 3 implies that the typical increase in f-Ez(f) is not exactly

counter balanced by the decreasing function 7. By the definition of Z,

f 2y(C o)f (f)d - 1, so that an alternative way of writing the condition is

If (COf)Ez(f)fz(r)df - 1. The next result is based on the observation that

Z'(°)r(I-A)Z(°)/N converges (in quadratic mean) to the unit matrix except for

its 1,1 element which equals 6. Thus we arrive at the following theorem,

which establishes the existence of a VN-consistent solution to the FPE.

Theorem 4: Under Assumptions 1-3:

(i) nN converges in quadratic mean to a nonsingular limit n.
A

(ii) P - P + -lVb(0 )/VN is a VN-consistent solution to the FPE.
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In view of Theorem 4, the EP algorithm (or any alternative method of

solving the FPE) seems to provide a promising procedure for generating

consistent estimators. Indeed, if one starts at a S-value which is close

enough to 3o, the linear nature of (fp) in that region ensures that the

consistent solution will be found. However, the results presented so far

discuss local properties only, and do not rule out the existence of solutions

which are remote from Po. In order to establish consistency one needs global

results that ensure uniqueness (to O(1/VN)) of the solution. For this

purpose, too, the n matrix formalism might prove useful since a generalization

of Theorem 3 to arbitrary AP entails consistency if the generalized 0 is

nonsingular. Indeed, for certain simple distributions explicit expressions

for this matrix could be derived. The identification of sufficient conditions

for nonsingularity is, however, more involved.

An alternative approach is based on recent results obtained by Lee (1988)

for truncated regression models. Using a smooth version of the empirical

conditional expectations, Lee (1988) constructed a consistent estimator for

the truncated model by minimizing a sum of mean-corrected squared errors.

Obviously, Lee's method can be applied also to censored models. However,

smoothing procedures tend to complicate the computations and an attractive

feature of the EP algorithm is lost.

In the censored case it is preferable, therefore, to employ the EP

algorithm to obtain solutions to the FPE. When more than one solution is

found, the selection of the consistent root proceeds as described in Section

2. Let Fc(z) - 1 - F(z); Ec(z) - E(ele>z) and EC (z) - E(e2 le>z). An

empirical estimator to Elc(z) is defined in eq. (2.9) and used to construct

the objective function Q (p) in eq. (2.10). Taking expectation over ej, we
N 3

define the following quantities:

hj(iz) - FC(z + A)I(z > zj)(Elc( + A) -A );
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N N
m.j(,z) - Fc(Z + Aj)I(z > ); EC(Pz) - h (9,z) / Emj(,z)

j-E 1 j -1 

and

QN) - E F (z )Var(c|>z0) + E('zi)+i-Elc(Z 2) NC i \ J J E E>Zo

- QN(B) + N F(zc ) (Ec( ,zi)+A2i- l )) / N

Obviously, Po minimizes QN (note that the rightmost term above vanishes at

Po). Since it can be shown that (Q ()-Q (3)) -q 0, we can expect that of

all solutions to the FPE, the one that yields the lowest value of QN () is the
N

consistent root. In fact, some additional assumptions are required. Let

Ec(U,zi ) - E (y+zly+z>zi>z). Note that E is continuous in f, and

Ec(o,zi) - Ec(Z').

Assumption 4:

(i) po is an interior point of a compact set S .

(ii) For every E( SP and xi,xj in the support of X, the error cdf satisfies

Fc (zi +A ) > 6 >0.

(This condition is a generalization of Assumption l(iv)).

(iii) For every P E SP, E{ Elc(z°)-z°-(E c(,z)-z) } 0 if P * po.

The identification condition (iii) ensures that Po is the unique minimizer of

QN($). It was originally proposed by Lee (1988) who gave heuristic arguments

for its validity. With the aid of Assumption 4, the following consistency

theorem can be derived:

Theorem 5: Let (m)m-1 .M be the set of distinct (to O(1/VN)) solutions of
A

the FPE. Then, under Assumptions 1-4, P - argmin QN(fm) is a / N-consistent
m-l..M

estimator of Po.

Theorem 5 is similar to Theorem 4.1 of Lee (1988) but differs in two

important respects. First, QN is the nonsmooth objective function. Second,

the minimization is carried out over a finite set. In this way we utilize the
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global properties of Lee's procedure while retaining the computational

simplicity of the EP algorithm.

Applying Theorems 3 and 4 to the VN-consistent P gives
A ^

~(o) - -AX + o (1) - nVN(P - Bp) + o (1) - C/N(P - 8o) + o (1).

According to Theorem 2, k(fo) ) N(O,V) while Theorem 4 ensures that n is

nonsingular. Thus we arrive at

A

Theorem 6: Under Assumptions 1-3, VN(c - Do) N(O0O'O ' 1 ).
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4. Concluding remarks

A major problem in the study of estimation procedures of censored or

truncated regression models which are robust with respect to the specification

of the error distribution is the need to establish asymptotic uniqueness of

the solutions. Many of the estimators are defined as the extremum points of

some underlying objective function. Estimators of this kind benefit from the

well-developed techniques to analyze extremum estimators, and the conditions

under which they are consistent (i.e., the true parameter is asymptotically a

unique extremum point) are usually identified. However, these estimators tend

to be computationally cumbersome, since they entail optimization of objective

functions which are either non-differentiable or require smoothing procedures.

A different class of estimators is defined by fixed points of some

iterative estimation procedure. These estimators are often more tractable

computationally, but it is more difficult to verify that their estimation

equations have unique solutions. (See, for example, Ritov (1990) on the

properties of the Buckley and James (1979) estimator). Under favorable

conditions, the fixed point solutions are also the extremum points of

objective functions. The EP estimator, for example, maximizes the likelihood

function when the errors have normal distribution (Tsur, 1983) and a convex

generalized sum-of-squares function for non-normal, but known, error

distributions (Breiman, Tsur and Zemel, 1989). For the general,

distribution-free, case the construction of a proper objective function is

more difficult.

These observations lead us to the structure of the EP estimator proposed

in this work. It is produced by an iterative algorithm which first locates

the solutions of the estimation equation, then selects the consistent root if

multiple roots are found. The second stage establishes the connection to the
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extremum estimators and ensures the asymptotic uniqueness of the solution.

However, both stages employ the simple, discontinuous empirical conditional

expectations, permitting fast and easy numerical implementations.

The insistence on the simple empirical conditional expectation entails a

certain complication in the theoretical analysis: the relevant sample size for

the empirical estimators is only a fraction of N. Thus, the convergence of

these estimators is not uniform. This situation is in contrast to Lee's study

(1988), where smoothing and trimming procedures ensure uniform convergence and

simplify the subsequent analysis. For the EP case, however, it is found that

the relevant correction terms are typically O(logN/VN) and do not affect the

asymptotic properties of the estimator.
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Appendix: Proofs of theorems

The following result is central to the analysis.

Lemma 1: For some vector A, let zj - -x'., A- - , - 3o, A. xjA,
N - N J J J '

N(f,z) - z I(zj<z), A - Z AI(zj<z)/N( ,z),j-1 j1 j

E (z) - E(z) - e/F(z) + A(E'(z)+(l-F(z))/F(z)+eF'(z)/F 2(z)

Then, for z such that F(z) o 0, F(z+A) o 0 and N(9,z) v 0:

(i) E{Ee( ,z)} - El(z) + O(N(P,z)-) + 0(A2);

(ii) Var{Ee ( ?,z )) - 0(N(f,z) -).

Proof: Rewrite Eqs. (2.4) and (2.5) as

H(B ,z) - ZJ(ej-Aj)I(e >z+Aj)I(zj<z),j-1 J- J J J 

M(9,z) - MNI(ej<z+A.)I(zj<z).
J-i J J J

(The probability that M(8,z) - 0 is 0((1-F(z+A))N ¢
(

z )] so the corrections due

to the exclusion of this case can be neglected). Taking expectation with

respect to e, one finds

E{eI(e>z+A)} -e E(z+A)F(z+A) - e - E(z)F(z) -(E(z)F(z))'A + 0(A2 ).

Thus

E - E (,z} -e + E(z)F(z) + (E(z)F(z))'A + (l-F(z))A +0(A2 ).

Similarly

M E }N(S, - F(z) + F' (z)A + O(A2),N NC8,z)!

cov (-H(fi,z) M(~,z)l 
° N(,z) ' N(,}z) -EHEWN(fz) + O(A/N(P,z))

and

Var -H ( z )} _ O(N(B,z) - ).

N(f,z)
Note that the central moments oN(,z) are of the same order (in powers of

N(,z)) as those of M('z) - NII(<F-I(E)]I(z.<z) / N(f,z), which may beviewed as N(f,z) s -with sucess py 
viewed as the average of N($,z) lid Bernoulli trials with success probability
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E . Thus, we apply the well known bounds on the moments of Bernoulli trials
M

and the bound M(P,z)>l to verify, using Lemma 1.1, that the mean and variance

( (E -M(,z)/N(,z)) 1-EM 

of B- M(M,z)/N(f,z) N(,z) satis

B (E -M(-f,z)/N(,z))2 1-E {E -M(f,z)/N(f,z)) 

2 M
E(B) - Et( M EM - )----Z- ( E[ O(N(Pz )

Similarly, Var(B) - O(N(P,z)2).

The empirical conditional expectation is written as

, -H(f, z) -H(f,z)/N( +l,z) E 1 ( /E + B/E M
Ee M(3,z) E ( E N(+,z) H

-M 

from which we derive E(E - E /E, + O(N(f,z) 1). (The contribution of B is

neglected using Cov ( -H(z )-H(, Var Z}. Var(B)). Expanding to 0(2),
neglected using Cov N-f,z),B < VarN

one finds

EH/E M - E (z)+ 0(A 2)

yielding the desired value for E(E ).

The bound on Var(E ) is obtained along the same lines and requires the

evaluation of higher moments of H(f,z), M(3,z) and B. The details are

omitted.

Lemma 1.1. Let M be the maximum between 1 and the sum of N i.i.d Bernoulli

variates with success probability F > 0, then, for all k > 3:

(i) Et }- - o(1/N2); (ii) E{[( - 0(1/N%.

Proof: Let a > 0 and dk - E{ 'Nl }, then dk - 0(N1 a ) for all k > 3a. To

N a if IF-M/NI k< N k

see this, define b - , thus b > IF-M/N k and therefore

1- if |F-M/Nlk | N-

dk <N E(b/ (M/N)) - )E(l/(M/N)|b-l +) + N E/M/N)|bl)Pr(
bs l ) . Now,

Pr(b-l) < N2aE(IF-M/Nl2k
) - O(Nz2-k) and E(1/(M/N) b-l) - N, so the first term
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is O(N a +l ) - O(N 1') if k > 3a. For the second term, E(1/(M/N) |bl) < N

and N aE(l/(M/N) Ibl)Pr(bol) - O(N1-a). Choosing a - 3, it follows that

dk - O(N-2) for all k > 9. For k - 8, write

El EI - + E IF/N + M/ I /F. The first term is O(N- ) and the
M/N F ' M/N

second term has k - 9. In this way we can reduce the exponent to k-4. For

k-3, use E((F-M/N)3) - O(N-2) to get E (FM/ O(N ). Part (ii) is
M/N 3

derived in the same way.

Theorem 1: E (Po,z) - E(cee<z) - e/F(z) provided N(Po,z)- co.

Proof: Follows immediately from Lemma 1, setting A - 0 and letting

N(B3o,z) - o.

Theorem 2: Under Assumption 1, b(Bo)-_ N(0,V).

Proof: The derivation is based on U-statistics techniques to resolve the

difficulties due to the dependence among w.. We introduce the following

short-hand notation: Iji-I(zj<zi); Ni-N(Bo,z')- j Ii; Hi-H(0o,zi);

M -M(Po,zi); F.-F(z ); E -E(e z)/ I-I( z); s-(1-Ii)+E I1 2 1 2 1 1 i ii 

((N.szi) if z.>z.r0, - );,.0 i i - 13
ri(Ee(P'Zi)-Ei)Ii Wi-si i; (Nmax'Smaxmax' ax 1 (Nsz) if zo 

(Njsjj if zj i
and HOT denotes high-order-terms involving powers of Ni and Nj such that

i j
N- E EHOT - o(l).

Following Lemma 1 we write

-'Hi F-M/N (1-Fi)/Fi o )
E(PoZ 0 ) - NH i (l+ + B/F i .

F where (E -N i 

Thus, ri- rli+ ri where r .i-(EiFi-H B )Ii/(N F2 ) andi ii A 1~21 ii i i ii i 
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J -Hi 1- F -M i/Ni + Fi)/Fi1 I

2i - { N1 - - + NiF.J iN i .F. ii
Ni i 1

N

The term involving r i can be ignored, as [ xiri/V/N - 0 (cf. Lemma 1). The

1i-1 N

second term has been constructed to ensure that E(rzi)-0, thus [ xir2 //N has
i-l

the structure of U-statistics, albeit not in the standard symmetric form.

Indeed, a straightforward evaluation gives

i E( N X - XI +mi

where Smi - mI(em>Zi ) + EliI( mzi) and

msi - (m I(e >zi) + EliFi) + E iFi(I(emszi) - Fi) Notice that each iN

depends only on e and hence is independent of TNm for all m'# m. Thus

N N

TN - 'rNm is a convenient approximation to T xiri//N. Obviously, E(TN)-O.
M-mS~~~~~~ ~ ~ii

Furthermore, E(s s) Var(s ), E(s' ) 0(1), E(s' .s') - 0(1) and
m Mj m Smax) E(Ssmi ) O(1) E(Sij) O(1) andm m

Var( N) E xxI I m Var(s a)/(N.N) + HOT. Since
~Nm Nij jmi mj max J

II - I(z < min(zi,zj°), the summation over m is easily carried out:
mi mj m JJ

Var(TN) - Var(INm) N L X xix Var(smax)/Nmax
m i j

Following Lemma 1, we find E(ri) - 0 and Cov(r2i,rzj) - Var(smax)/Nmax + HOT,

rso t Varxr2 / E Ai (smax max (')
i- i j

(E xr 2i/N - i2 Var E xir i//N Var(N) - o(l) (cf. Lehmann, 1975,

pp. 362-363). Thus, E xiri/N - ) - 0.
i-1

Having observed that the term with si' has a negligible contribution, we

(-··- ·· XiImi /adobtain
consider the quantities Nm- xmsm - s /N and obtain

(+(Bo) - wNm) -] °0. The moments of wN are evaluated in the same way

as those of TNm: E(wNm) - and
as those of ~Nm: E(wNm) - 0 and
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E(w*W (<-) x x'V Var(sm)/N + x.x:I I .1 .Var(s )/(NiN j.)

-±~i j

( Nm Nm Xm r(m)/ N I j Ximlmj max

N Viar(s,)/Ni xN x.m I jVar(s )/N

Summing over m, the contributions of the last 3 terms add to

x xmx'Var(sm)/N - o(l). Thus,
mLm m m)

m

Var( Nm ) - x'Var(s )/N + o(l) -> X'ZX/N-4 V

(the qm-convergence is with respect to the X-distribution). By Assumption 1,

V is positive definite. A similar derivation, using E(Is 3 |)<., yields

E((SwNmk)) - O(log (N)//N) - o(l) for every component k-l,2,..,K of uNm. It

follows that the quantities (X'ZX/N) w/ form a double array satisfying all

the required conditions for the CLT to hold (cf. Chung, 1974, Theorem 7.1.2).

Thus (X'ZX/N) 1/2 WN -m- N(0,I) and V(fo) -- N(0,V), as asserted.
m

Theorem 3: Under Assumption 1, for any P such that AP p- P-o - 0(1//N),

AV, - (S) - () o) = -() - /NAB + oqm(l).
N

Proof: For P - Po + AP we write

wi(P) - (ei-Ai)I(fi>zi) + Ee(P,zi)I(i <zi). Using Lemma 1, we obtain

E{wi()} - - E(zi)F(z i ) - A(l-F(zi)) + F(z?)EEe(),z i ) + (A )

- 7(zi)(Ai()-Ai) + O(N(P,zi) -) + 0(A2).

The function 7 is defined by eq. (3.2) and Ai(P) - ENAjI(zj<zi)/N(,z i).

Ordering xi according to zi, it is seen that the vectors with elements Ai and

Ai can be written as X(° A and AX( AP, respectively where X (° ) is formed

from the ordered regressors and A is defined by eq. (3.3). Thus, recalling

that Et((So)) - o(l),

E(A) - X(o)'r(A-I)X(o)Ai// o(N + O[ i-1/N + o[ N N-3/2)
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- -nVNAB + o(l).

This result is not yet quite what is needed, since the ordering is

carried out according to zi rather than zi, leaving n dependent on P. To
1 1 N

remedy for this we show in Lemma 2 that Ai(P) - Ai(fo) - O(N(fio,zi) ). It

follows that the additional term introduced by evaluating 0 at Po is also of
N

o(l). The more tedious evaluation of Var({A) is carried out in the same way

as the derivation of Var((p8o)) in the proof of Theorem 2. One notes that the

leading terms are proportional to A8 and therefore Var({A) - o(l) although

both Var({(po)) and Var(o(f)) are of 0(1).

Lemma 2: Under Assumption 1

(i) ExN(9,zi) - N(o,z')} - O(Nl||A||).

(ii) Ex{N(o,zi ) A (P) - A(fio)) - O(NIA 112 ).

In particular, for AP - O(1//N), E zN(Boi,z i)(-) - Ai(Po)) = 0(1).

Proof: N(9,zi)-N(8o,zi) - I(zj<zi) - I(z°<z) - I(z-A<z- ) - I(z<z).

i Ji i i

Let e - 2-Sup||x|||A4| - 0(A8), then IN(P,zi) - N(<o,zi)l I(|Iz-zil<e).
x i 

jsi

For a given zo, (i) follows immediately from Assumption l-(iii). Furthermore,

Ai(I(z <zi) - I(z<zi)) - N(P,z ) - N(o,z)
A (P) - A (Po) - ) A (P) - 1 

i 1 N(Po,z ) N(Po,zi)
O Ojoi

or N(po,z)lAi(9P) - -A i(o) < 2e E I(|zj-z|l<e) and (ii) is derived in the

jfi

same way as (i). Corresponding bounds can be deduced for the variances.

The proof of Theorem 4 utilizes:

Lemma 3: Under assumption 2, for all C in the domain of F
z

(i) E fik IC - ) - 0 for k>l and all i.
ik iK i'*' 
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(ii) Elk jk I il- - 0 for k> or k'>l and i'j.

(iii) E ~(O)0(() (0) Ekkik(ii) jo mk"'o) (o) - 0 for k>l and ij i1l i'm, or k'>l and j'i

j'l jAm, or k">l and l4i l^j lrm, or k"'>l and m'i mij mol.

Remark: It follows that the corresponding unconditional expectations also

vanish, so that except for k-l, fik mimic the properties of the unorderedik

fik-

Proof: Denote by p(fil) the index of fil after ordering, indicating that

p(ril)-l elements of the first column of Z are smaller than il while N-p( il)
N

elements are larger. Thus fik) ' jk I((jl)-i) . Taking expectation, we

obtain

^ik 'il - ZJ j-E (klP(~jl)i;fjl-[)Prb(p(fl)-iri'i) '

i-h k fProb l (( )-ls conit o)l

The last step follows since given rjl-S' P(<jl)-i entails conditions on ml

for moj only and hence is independent of Sjk- The resulting sum vanishes

identically because E(ijk jl--T 0 according to Assumption 2(ii). Thus, (i)

is established. Parts (ii) and (iii) are derived following the same reasoning,

utilizing the factorization property

E kfmk'jl - ml-") - E(jkIjl -) Emk' |m 1-" 

Theorem 4: Under Assumptions 1-3:

(i) nN converges in quadratic mean to a nonsingular limit 0;

(ii) 0 - po + 0-1 (o)//N is a /N-consistent solution to the FPE.

Proof: We recall that (i) is equivalent to the proposition that

Z' (r)(I-A)Z( )/N has a nonsingular limit. Ordering plays no role in the
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evaluation of Z' (Frz')/N, so the definition of Z implies Z' (O)FZ' /N - I,

and only Z' ()rAZ()/N requires further consideration. We begin by showing

that (Z' ()rAZ /N)mk- 0 unless m-k-l. For j>2 let Rjk - fik (-1)
I ~n - Jmk qm j ik

jr)mk - jm jl Jk^ 
w ^/i -

and ('o)-y(CN)-m l)R Lemma 3 implies that- 

(where f is the density function of %l))' and
ji=

N () (o) (lo) (( _o) (o)
Var1 E L* -Y(Co.jl )Rjk /NJ 0 if kol or mr'l. Thus, only rAZ I/Nj 1

survives. To evaluate this element we write it in terms of the unordered

N f s il i jIi N. >0

regressors as E Sjl-(CoSjl)Rj/N, where Rjl 1 il i j 

j-i j if N.- 0

Ejm 7(C°Sl )Rji) - j(C°)E(R|ji j -- )fz()d1. It is convenient to treat

differently the cases where F (r) is large or small, i.e., for some e>O, let

-F w (e) and consider first > . As in the derivation of Lemma 1, we write

il I( i< jl)/NIN NIN - F (/l)N

jl Fz( j) N/N

N /N - F Z )and
and verify that E -Fjl) -) and

N Nj/Nl J

Var| N;/N 1 i jl - (l/(NF()). Thus,

N./N J z

E(R sjl- ) - E(0f + o(l/(NF(0))). F or m<. we use the fact that Rl is

bounded to obtain j-(Co()E(R jlleI-f f z() d - 0(e). Finally, by choosing

min

e such that e - 0 and Ne - wo we get

E([j 1s(Cor)Ri) -+ fjT(CO)E()R )fz()d . A similar derivation gives
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VarRjl E(fjl)) -4 0. It follows that

(Z'¢(rAZO)/N) 1 1 - fjl7(Co jl)Ez(fl )/N -4 0. The sum on the lhs'

consists of independent terms, each with the mean ffY(Cof)Ez ()fz(f)df. Thus

(Z' WFAZ() /N)1 -qm ff(CO)EZ(f)f )d.

In fact, the same reasoning can be used to show that

(Z'(o)rz()/N) 1 1 q fS27(CoO)fz(f)dr - 1.

Summarizing, all the elements of Z' ()r(I-A)Z()/N converge to the

corresponding elements of I except for the 1,1 element, whose limit equals

8 - f f 7(Co)[.r-Ez(f)jfz()dy, which establishes (i). Let 0 denote the

probability limit of N and define p - Po + n-1'(Po)//N. According to theorem

2, (qo) - 0(1), and the nonsingularity of 0 implies that VN(-fBo) is also

A% A
O (1). Thus, we can use Theorem 3 to obtain b(pf) - (fo)- VNN(6-6o) +

o (1) - ob(P) - Q/N($-$o) + o (1) - o (1), implying that $ is aqm qm qm

/N-consistent solution to the FPE.

Theorem 5: Let ({mm)1. .M be the set of distinct (to 0(1//N)) solutions of
A ethe FPE. Then, under assumptions 1-4, P - argmin Qe(P ) is a v'N-consistent

m-l..M
estimator of Bo.

Proof: We first show that for every P E S$, Qe()-( q .
le, QN P) QN(P)--qm O.

Qe () - Q0() - ((y+z) I(y1>O) - (E (z)-2E (z)A +^)F (zF ) / N

»-1

+ 2, IEN (fi,) [(Ec(z)-A) C (I(yi>o N

N 
+ ^ I(y,>0) (EZ i iz i )- i+Zi) >0 / N

I i I ec C i~~~~~~~
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+ e i) (I(i>O) - Fc(Z)) / N.

For given X, we evaluate the expectation and the variance of each 
term. Since

i - e -A EI(yI>O) F- cF(z); E( iI(yi>O)) E (zo)Fc(zo); and

E2eI(Yi>)) - Ec (zZ)F (zi), the expectations of the first, third
I 1 1 J 2C i C 1

and fifth terms vanish while the corresponding variances are 0(1/N).

Moreover, (yi+z,)I(yi>0) and Ec (f,zi) are independent and

E E 0(az) - E(P,z))- O(/N(P,zi)), Var(EC ( (1/N(,z)) and

Var(E2c(pz)) - 0(l/N(P,z.)) (cf. the derivation of Lemma 1). It follows

that the expectations of the remaining terms, involving E c(',zi), are

O(log(N)/N) and the variances are O(log (N)/N2).

For the rest of the derivation we consider moments with respect to the

distribution of X. First, we fix z. for some i and verify that,

E((i,z)Iz i) Ec(',zi) + 0(l/(NF (z.))) and

Varf(r ,z)zl - 0(l/(NF (zi))) where NFZ(Zi) - EfN(.zi) Iz . Next, we

replace Ec(,z i) with Ec(9,zi) and define the following sum of independent

quantities:

Q (8) - Fc(Z'){Var(ele>zt) + (Ec(,zi)+Ai Elc(Z ) / N.

Now, when F (zi) is small, the corresponding variance of Ec(,z i) is large.

Nevertheless, we can follow the reasoning of the proof of Theorem 4, separate

the cases where F is large and small and integrate over the distribution of
z

zi to obtain E(QN(P) - QN(8))2 0 uniformly on S . QN() can, therefore, be

approximated by Q(A). Furthermore, E (QN() - Q*(P))2 0 uniformly on S ,

where

Q (P) - E {F(z){Var(eIe>Zo) + (E (,zi)+Ai Elc(Z))2}}

is continuous in A.

It has already been noted that 6o minimizes QN(3) for every sample X.
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Thus, it must also minimize Q (6). In fact, the identification condition

4(iii) ensures that So is the unique minimizer. Calculated at the consistent

root of the FPE, QNe() converges (in quadratic mean) to the global minimum

Q (po), whereas, by virtue of the identification condition and the continuity

* e
of Q (P), at any other root the corresponding value of QN is kept well above

N~e

this minimum. It follows that the choice of the root that minimizes Q (P)

provides a consistent estimator.

A

Theorem 6: Under Assumptions 1-3, VN(P - Bo) N(O,'OVI' ).

Proof: Given in the text.
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