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A Time-Sequenced Approach to the

Analysis of Option Value

by

Theodore Graham-Tomasi

I. Introduction

Burton Weisbrod's 1964 seminal article on option value spawned a

large literature which addresses the following question: will an individual

who is uncertain about his or her future demand for a good be willing to

pay a premium, in excess of the expected value of use, for the right to

retain the option of future use? This difference between maximum sure

willingness-to-pay for the option of future use (option price) and the

expected value of future use (the mathematical expectation of Hicksian

consumer surplus) is option value.

It generally is conceded that when preferences are uncertain, option

value can be positive or negative (Smith, 1983, and Bishop, 1982, provide

overviews of this literature). These results are of dubious theoretical

interest, but of some practical importance.

They are of dubious theoretical interest because, given current

institutions, the option price is the correct ex-ante measure of welfare

change under uncertainty (Anderson, 1979). If compensation for a change

in regime could be exacted ex-post, after uncertainty was resolved, then

the expectation of Hicksian equivalent variation would be an appropriate

ex-ante measure of welfare change. Alternatively, if contingent claims

markets exist, then the expected value of equivalent variation again is

appropriate (Graham, 1981). However, neither contingent claims markets

nor the ability to determine ex-post compensation exist. Therefore, it may
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be concluded that option price is relevant to measuring welfare changes under

uncertainty and expected consumer surplus is irrelevant. Why then should we

study option value?

The answer to this good question is that the sign and size of option

value is of considerable practical importance in project analysis. Individual

option prices may be assessed (perhaps) by contingent valuation techniques, but

these analyses are quite expensive to undertake. One-way tests for project

acceptance based on expected surplus would be available if the sign of option

value is determinate. For, if a project passed (failed) a benefit-cost test

which uses expected surplus measures and it is known that option value always

is positive (negative), then the project could be accepted (rejected).

Naturally, this approach leaves a zone of indeterminancy, which may be

filled only if the magnitude of option value is known. As well, if the issue

is the optimal size of a project, then the magnitude of option value, and

not just its sign, must be known. Of course, this is equivalent to saying

that you need to know option price. This has led some investigators (Freeman,

1984, and Smith, 1984) to seek a bound for option value. Unfortunately, useful

analytical results along these lines have been difficult to obtain.

Most of the option value literature has dealt with Weisbrod's original

notion of demand uncertainty. The difficulty that arises in establishing

a sign for option value is the need to compare the marginal utility of income

across states: with different utility functions in each state, nothing

definite can be said in this regard. This realization led Bishop (1982) to

consider supply-side options. That is, if demand for a resource is certain

but its supply is uncertain, then the problem of state-dependent marginal

utility of income is eliminated and the sign of option value can be established.

Freeman (1985) has pointed out that Bishop only studied one case of supply-side
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uncertainty and concluded that in the other 
cases, option value again is

indeterminate.

The assumption of the supply-side analyses 
that demand is certain, but

supply is not, seems relevant to many current resource policy issues. 
As

well, based on the positive analytical results 
obtained by Bishop (1982),

more work along these lines appears warranted. 
In this paper, supply-side

option value is investigated.

In the option value literature, analyses 
most often have been based on

static models and have used the common postulate 
that individual preferences

satisfy the von Neumann-Morganstern axioms 
and, hence, have an expected utility

representation. In these analyses, little attention has been 
paid to under-

lying choices and constraints. This is natural, given the well-known foundations

of expected utility analysis. However, it is argued in this paper that this

possibly has led to a misrepresentation of 
actual choice situations of interest

in policy discussions.

In particular, it seems that inadequate attention has been paid to

temporal aspects of the risky choices at issue, and the timing of possible

solutions of uncertainty relative to the 
time when choices must be made.

Consideration of temporal risk (in the sense of Dreze and Modigliani, 1972)

undermines the expected utility foundation on which previous 
research has

been based. Since most, if not all, actual choices involve temporal risk,

this appears to be a serious problem.

The issue of time sequencing has been raised in the option value litera-

ture in the guise of quasi-option value (Arrow and Fisher, 1974). Here, the

central issue is the timing of choices relative to the timing of resolution

of uncertainty. Specifically, Arrow and Fisher and others 
(see Henry, 1974;

Epstein, 1980; Hanemann, 1983; and Graham-Tomasi, 1983) seek to determine if
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the prospect of learning reduces the benefits of implementing irreversible

investments relative to the case when learning is ignored. The general result

is that, even under risk neutrality, there is a benefit to maintaining flexi-

bility (a quasi-option value of not undertaking irreversible investment-)

due to expected learning possibilities. In fact, Conrad (1981) suggests that

quasi-option value is equal to the expected value of information. Here, I

very briefly address quasi-option value (QOV)(Smith, 1983 calls this time-

sequenced option value) and its relationship to the time sequenced approach

taken here.

The paper is organized as follows. In the next two sections, a certainty

model is used to establish what one wishes to measure in.the stochastic

case and how these measureLments can be used to select a project. Section 2

addresses individual welfare change measures, while Section 3 provides a

review of how a planner could use information on individual welfare change

to choose a project. In Section 4, possible sources of uncertainty are

discussed. Section 5 contains an analysis of supply-side option value

in a setting where there is no temporal risk and individuals have standard

von Neumann-Morganstern utility functions. I provide an alternative approach

to that used by Bishop (1982) and Freeman (1985) and am able to obtain some

positive results. In the sixth section, the problems introduced by a move

to temporal risk is studied and several results from this literature are

derived in terms of supply-side uncertainty. The results here are quite

negative: temporal risk greatly complicates the study of option value. The

next section shows in the case of uncertainty how the planner could use

individual welfare change measures to select a project. This section also

addresses quasi-option value. The final section provides a discussion and

points out some empirical implications.
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It should be stressed at the outset that this paper is exploratory in

nature. It represents an attempt to draw inferences from the general economic

literature on temporal risk for the modeling of option prices and option

values in the analysis of projects with uncertain environmental consequences.

There remains a great deal of work to be done. I seek here to illustrate the

kinds of difficult questions that arise when time is composed with uncertainty

in the study of welfare change and project appraisal.
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2. A Certainty Model: The Individual

In this section, a simple model of a project in a dynamic setting and

measures of welfare change are set out. This will serve as a foundation

for the stochastic models to be analyzed in the sequel. It also has some

important implications for project analysis which carry through to the sto-

chastic case and, therefore, to the study of dynamic option prices.

The individual has preferences over alternative sequences of goods con-

sumed and environmental quality. Let ct En (Euclidean n-space) be a vector of

consumption goods at date t. Included in ct are labor supplies (measured as

negative) as well as visits to recreation areas. Let c = (cl, ..., cT) be a

sequence of such consumptions; the individual's time horizon is date T. Prices

of consumption goods are given by the spot price vector pt e E . This includes

the prices of visits to recreation areas.

The level of environmental quality at various locations at date t is

given by a vector qt e Em. This vector is exogenous to the individual. How-

ever, as the individual has preferences over alternative quality vectors,

these have components measured in an "individual payoff-relevant" fashion.

The vector qt will depend on the "output" of a "project" that is being

anticipated. A project is represented by a sequence of points on the real

line v = (vl, ... vT) which may be thought of a "project size." Of course,

the project may outlive the individual; generally T * T. Often, a project

is represented in the literature by

vt 0 if the project is not implemented all t
1 if the project is implemented

But this is not necessary and the more general approach allows alternative

"phasings" of projects, which may be important under uncertainty.
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The project affects payoff-relevant environmental quality variables

via a biological/physical process function. Thus, a project may affect fish

populations of relevance to recreationists by controlling amounts of a pollu-

tant which is detrimental to ecosystem functioning more generally. In a

dynamic model, the history of outputs of a project, as well as the history

of environmental quality will affect current enviornmental quality. This can

be captured by specifying a difference equation which governs the time path

of environmental quality which does not have a Markovian structure. Let

t = (V1' V2' *' ' Vt-)

qt q ' q ' . t-l he

Then

qt+l = f(vt' vt' St' qt)- (1)

Regarding individual preerences, it is assumed that all individuals

are finite-lived. Let zt = (Ct, qt) he a consumption goods/environmental

quality bundle at date t (zt e En x Em) and let z = (z ... , ZT). For

notational convenience, let nT mT
notational convenience, let = E x E . The following axioms concerning

individual behavior are posited to hold.

Axiom 1.1: Each individual's choices from Z are
represented by a binary relation R
on Z where R is a weak order and R is
monotonic.

Axiom 1.Z: Let i be the usual topology on Z. Then
{z: z £ Z, z R y} e C and {z: z E Z,
y R z} E E for every z, y e Z.

The following representation theorem is well known.
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Theorem 1.1: If individual preference orderings satisfy

axioms 1.1-1.2, then there exists a real-

valued utility function U(z), continuous

in the usual topology on Z, such that

z R y iff U(z) > U(y).

Proof: Fishburn (1970) theorems 3.1, 3.5, and Lemma 5.1.

Let a E (0,1) be the (constant for convenience) one-period, market rate

of interest at which individuals can borrow and lend. The individual has an

exogenous sequence on non-wage incomes {w}t . Then the budget constraint may be

written

Tn t=T t Tt=T t-
B(pT,w,a) = {C E T E T: a . c < n t w ; c e C }

t=l t=l
nT

T = t-l ) and C E is the set of feasible
where p = (P' ..., pT), w = a wt

consumptions, assumed closed and bounded below.

It is natural to impose the following assumptions:

Al: B(.) is non-empty.

A2: {wt} is bounded.

nT
It is clear that B(.) is compact in E .

Let

TT T T
V(pT,q ,w,a) sup {U(z) : c e B(p ,w,a)},

c

where q = (ql, ..., qT). Since U is continuous and B is compact and non-

empty, the supremum is attained.

In a world of certainty, we can define measures of welfare change using

T T
this intertemporal indirect utility function. Let (po,qo) be the initial

situation and let (pv,qv) be the situation subsequent to implementation of a

project v. The compensating variation (cv) and equivalent variation (ev) are
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defined implicitly by (suppressing a)

T T T cv)
V(p ,qo,w) = V(pv, v w-cv) (1)

T T T T T
V(P, qv, w) = V(Po, qo, w+ev). (2)

An important special case of this arises when the utility function U is

separable. Here, I impose more structure on preferences by means of the

following axiom.

Axiom 1.3: (z : z e Z, z R y) and (z : z e Z, y R z)
both are open in the usual topology on Z
(continuity) and are convex.

To discuss separability and the existence of instantaneous utility

functions, reconsider the sequence z. Recall z e En x Em; z is con-

structed by considering the T-fold Cartesian product of En+ m with itself

Tand with z an element of this space. Now, consider preferences

on each zt individually. Thus, let Z = tl Zt where (Zt, St) is a

topological space for each t. Let H = it t be the product topology for Z.

It is well known that if each (Zt, t) is a connected and separable space,

then (Z, i) is connected and separable in the product topology. Therefore,

it makes sense to discuss properties of the instantaneous utility functions

which are similar to those of the overall utility function discussed above.

Let-t = (Z ' t-1 zt+l' " zT ) be the consumption/quality

bundle at all dates other than date t. For fixed z_t = Z 0t the preference

ordering R induces a preference ordering on Zt given by xt R x' if and
-t

only if (xt xt) R (x_t, x') for any xt, x'I in Zt.
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Axiom 1.4: For each t e (1, ... , T) x t R x t
-t

implies x t R x x' for all x_t e I Z..
-t i* t

The following theorem provides a utility function representation for

separable preferences.

Theorem 1.2: The preference ordering posited in Axioms 1.1

to 1.4 may be represented by a continuous,

quasi-concave function U: I Zt + E which
t

may be written

U(z T ) = (u(z), ..., T(ZT))

where u : Zt + E and : E + E, and

TJ as well as each u t is increasing, continuous

(in the product topology and usual topologies

respectively) and quasi-concave.

Proof: The existence of a continuous utility function

taking the separable form is proved by

Katzner (1970). That the component functions

U and u are quasi-concave if U is (which follows

from axloln 1.3), is shown by Blackorby, et al.,

(1978), Theorem 4.1.

Let yt be income allocated to consumption at date t, and let Bt(t,y t )
=

(c: pt . ct < yt, ct e C). Define Vt(pt,qt,y t ) = max (U(ct) :c t Bt())

Ct

Then
t=T t=T

V(pt,q,w) = max {fJ({V(Pt,qtwt)} ): a t < 

{wt} t= t t=l

The instantaneous indirect utility functions can be used to define instantan-

eouc measures of welfare change, i.e.,
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V (p o0 q 0 w 0 ) = V V)
V Vt t t t -

Vt(pttw ) = Vt(Pt,q + evt, wt), for t E [O,T].

Here, when the project is implemented, the consumer may respond by reallocating

income through time as well. This point is crucial, for it creates the follow-

ing inequality:

T ~~~T T V ~v t =1'
V(p -, qv -cv,cv ) 

t=O

t=T t =T
V(pv,q, I at (wt - cv) = V(p ,q,W- aC cv ).

t=1 t=1

This implies, since V is increasing in its second arguenrent, that

t-lcv > t a 
tcv

Thus, if the present value of consumer surplus is non-negative, so is the

present value welfare change measure cv.

Similarly,

t a Ievt > ev,

whence if the present value of equivalent variations is negative, so is the

true welfare charge measure. These give two one-way tests, but leaves a zone

of indeterninancy. Moreover, we have the following theorem.

Theorem 1.3: There is no U with U, 0 and {ut} continuous,
increasing, and quasi-concave, such that the
present value of instantaneous cvt or evt is an
exact index of welfare change for all projects.

Proof: Blackorby, Donaldson and Moloney (1984).

Before turning to an assessment of how the equivalent variation measure

of welfare change for individuals can be used in making choices among projects

by a social planner, I introduce the intertemporal expenditure function and

discuss briefly the money metric measure of welfare change.
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Dual to the lifetime indirect utility function introduced 
above is the

lifetime expenditure function defined by

T T o T T o
V(p , q , w) = V° <=> E(p, q , V ) = w.

The money metric (see McKenzie and Pearce, 1982) is defined by

Y(v) = E(pT(0), qT(), V(pT(v), qT(v), w)).

The definition of the expenditure function shows that

ev(v) = Y(v) - w. (2)

The money metric gives minimum the cost of achieving the level of the utility

with the project, when the project has not been implemented. Since Y is a

monotonic increasing function of an indirect utility function, it is itself an

indirect utility function. Importantly, both the ev and the money metric are

invariant to increasing monotonic transformations of the underlying ordinal

utility function.

The money metric and equivalent variations possess an important 
property

that the compensating variation does not have. The cv is not an exact measure

of welfare change in that it may not correctly rank several projects relative

to a base project, although it will correctly make pairwise comparisons

(lause, 1975; Chipman and Moore, 1980).

To sum up the results of this section, the equivalent variation and

money metric are useful measures of individual welfare change due to the

implementation of a project. In a dynamic setting, these should be defined
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relative to the lifetime indirect utility or expenditure functions. This

would seem to underscore the usefulness of survey techniques in eliciting

willingness-to-pay since lifetime compensation measures (or their annualized

equivalent) can be directly assessed. However, the lifetime approach does

create a few difficulties for the definition of an appropriate criterion

for selection of a project by the planning authority. These are addressed,

at least partially, in the next section.
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3. Project Selection under Certainty

The difficulties of moving from individual to social valuations of

projects are of two kinds. The first is the much discussed possibility

of providing an axiomatic foundation for a social preference ordering or

welfare function which is based on individual orderings. This issue is

not addressed here; the existence of a preference ordering for the planning

authority which has certain properties is merely asserted. The second diffi-

culty derives from the focus on lifetime indirect utility functions in

Section II. In particular, if it is asserted that the planner has preferences

over indirect utilities, and it is not assumed that each "generation" con-

sists of a single individual (see, e.g., Ferejohn and Page, 1978), then some

work is required to establish a benefit-cost foundation for social choices.

T T
The individual theory above used the sequences p and q , which are

sequences with terminal date corresponding to the individual's planning

horizon. These are subsequences of pZ = (p,,...,pT) and qT = (ql,...,qT)

where T is the horizon relevant to the planning authority. These price

and environmental quality sequences depend on the project that is imple-

mented. The environmental quality sequence depends on the project as repre-

sented by equation (1). In the sequel q (v) is used to denote this depen-

dence. Being purposely vague, I write p (v) as well. It is assumed that both

of these functions are unique without specifying conditions under which this

will be true. For t (T , r),

q+s+l = f((T Os ) 'O, qt+s' qt+s )

where s is the zero vector in ES. Similarly, let t = Pt() for

t e (T, T).
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The set of possible projects is given by ACET, A = {vEET : v is

feasible}. An individual is said to care about a project if his/her

lifetime indirect utility varies with changes in v. Formally, agent i cares

about the project set A if V(pT(v), q (v), w) t V(pT(v'), qT(v), w) when

v v' for some v, v', e A.

There are several ways in which an individual might not care about a

project. If the individual is not alive, then (presumably) Vi (.) = 0

for all v e A. As well, some prices might not depend on the project and an

individual might not consume any of the goods (including recreation) with

project-sensitive prices. If Vi is independent of changes in environmental

quality when consumption of recreation is zero and the individual does not

care about price changes for goods (s)he does not consume, then (s)he will

not care about the project. This is the case of "weak complimentarity"

discussed in the valuation literature (Bradford and Hildebrandt, 1977).

Let Mi = {t : i cares about A at t}, and let t(i) = inf {t : t e Mi}.

To avoid mathematical complexities which are not of concern in this paper,

the following assumptions are imposed.

A3.1: The number of agents at each date t is
finite.

A3.2: T < A.

A3.3: t(i) < T - Ti for all i.

Let I = {i : t(i) = t} and denote the power of I by I . Individual i's

planning horizon is given by Ti; purely to ease notational burden, I

assume that T1 = T for all i.

The vector of lifetime indirect utilities is a vector in E , where

T

I = It. By A3.1 and A3.2, this is a finite-dimensional space. The planning
t
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authority is presumed to have preferences on E as given in the following axioms.

Axiom 3.1: The planner's preferences are represented

by a binary relation P E x E where P
is a weak order, which is monotonic and

continuous in the usual topology.

Under axiom 3.1, P can be represented by a real valued social welfare function.

Theorem 3.1: If the planner's preferences satisfy axiom 3.1,

then there exists W : E + ;, with W con-

tinuous and such that W(V ,...,V ) > W(V1,...VI)
1 I -1 -I

if and only if (V1 ..., V) P(V V

Proof: Fishburn (1970).

Theorer 3.1 establishes a social welfare function defined on sequences

of lifetime indirect utility profiles. However, a problem arises in this

approach. The arguments of W are individual utilities, which can be sub-

jected to an arbitrary monotonic transformation with affecting underlying

behavior. Undertaking such a transformation may drastically change the

social rankings involved. Clearly, this is an undesirable characteristic

for a social welfare function to have. Rather than dealing carefully with

specification of W, it is more convenient to measure the arguments of W

such that they are invariant to such monotonic transformations. The money

metric described in the previous section is an obvious candidate.

Furthermore, one is interested in deriving social rankings of alterna-

tive projects induced from this ranking of utilities. That is, one seeks a

ranking P* defined by v P* v' if and only if g(v)P g(v'), where g: A + E

given individual lifetime utility vectors as a function of projects. An

important special case for which this is straightforward and which will be

useful when uncertainty is introduced is where the social welfare function
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is linear. Thus, I impose
i=I

A3.4: W(V1 , VI) = b
i=l

The implementation of a project entails a cost and, therefore, the

central planner must devise some method of financing the effort. Assume

that lump-sum financing is possible. Let the spot expenditures required to

implement a project v be given by

k(v) = (kl(v), ..., k (v)).

The planner has several options for financing project v. A financing scheme

is a vector of payments s(v) = (s (v), ..., s (v)) which specifies si(v),

the payment by agent i to finance project v. The set of feasible financing

schemes is given by

t=t i i tiT

S(v) = {s(v) : X a 1 s (v) > a1 kt(v)}
t=l i=l t=l

The central authority will choose a feasible project/financing scheme

pair so as to maximize social welfare. That is, it will solve

max ii b. Y*i (v),
veA

where

Y*i(v) = yi(vs*i (v) ) = Ei(pT(O) qT (VO))Ti i(pT() (v),wi is*i(v))

for

s*(v) e argmax Xi b.Yi(v,s i (v)).
s(v)eS(v) 

It is interesting to point out that the following theorem governs a relationship

between choices of v and choices of lifetime indirect utility vectors.

Theorem 3.2: v P* v' if and only if

Ji bi [evi(v) - evi(v')] > 0.



+ + + + +

Proof: By theorem 3.1, V P V' iff W(V)>W(V'), where V=(V , ... , VI).
+ +

Whence by A3.4, V P V' iff

Ii bi [V (v) - Vi(0) - (Vi(v') - Vi(0))] > 0.

i i
Since Y is a utility indicator and yi(0) = w

+ +

V P V' iff Ei bi[Yi(v) - wi - (yi(v') - wi)] > 0,

By definition of P* and by (2), the result follows.

The magnitude of ev (v) will depend on the financing scheme used. It is

not possible to separate these decisions. McKenzie (1983, chapter 8) shows how,

the ordinal properties of W can be used to determine losses due to use of non-

optimal financing schemes.
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4. Uncertainty

I now turn to possibilities for generalizing the framework developed in

the previous section to the case of uncertainty. As discussed in the introduc-

tion, it is critical that when uncertainty is addressed, that it is clear what

it is that uncertainty surrounds, who faces the uncertainty, and what that agent

can do about it. There are several ways that uncertainty can enter the model

developed in Section II of the paper. Here several are identified that seem

relevant in the option value literature:

(i) Ecological uncertainty. Given a v e A it is not known what level of

environmental quality will obtain. This may be represented by making (1) a

random function. There are two ways to capture this, each representing a dif-

ferent source of uncertainty.

First, one could think of the function f itself as being unknown. That is,

one may not know how ecosystem function maps projects into environmental quality.

Second, even if the true f is known, the sequence of quality outcomes might be

stochastic. In fact, both of these are operating to make uncertainty relevant.

If the former operated without the latter, a simple experiment at date zero

would resolve all of this type of uncertainty. If the latter operated without

the former, then learning about ecosystem function would not be possible unless

it is interpreted as trying to discover the probability law driving the

stochastic process; clearly biological investigation seeks more than this.

(ii) Economic uncertainty. It seems plausible to assume that future prices

and incomes are risky.

(iii) Preference uncertainty. The majority of the literature on option

value has investigated the implications of state-dependent preferences (demand
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uncertainty) where individual preference orderings are uncertain.

(iv) Political/Regulatory uncertainty. The project itself may be risky.

The project may entail some enforcement which may be applied at various levels

in the future or may no yield compliance.

(v) Social uncertainty. When confronted with a project which can be imple-

mented at alternative levels and where aggregate willingness to contribute to

funding the project is involved, individuals may hold uncertainty about the

contributions of other agents. This often is discussed in terms of strategic

bias in contingent valuation assessments of willingness-to-pay where the pre-

sumption is free-riding behavior, but this is a special case of more general

problems of social interdependence in provision of public goods.

(vi) Planning uncertainty. Even if agents know their own preferences, the

planning authority may not know then. Thus, the planning authority may have

uncertainty about preferences even if individuals do not.

The theoretical option value literature has focused on uncertainty of types

(i), (ii), and (iii) above, though one analysis of time-sequenced option value

has examined uncertainty of type (iv) (Grahan-Tomasi, 1985). The ecological

uncertainty has taken a particular form in the literature on supply-side option

value (Bishop, Freeman, 1985), in which quality either is good enough to allow a

particular recreational activity or quality deteriorates to the point where the

activity no longer is available. Thus, just two states are possible. It is

common in this literature to see this uncertainty represented as price uncer-

tainty, with the entry fee for activity at the rate equal to some finite price

of the activity is available and an infinite price if it is not. A generaliza-

tion of this approach is presented below. Usually, though not always (Hartman

and Plummer, Freeman, 1984) it is assumed that prices of other goods and income

are non-stochastic.
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5. Individual Uncertainty with an Expected Utility Representation

The majority of analyses of option value employ a static model and use an

expected utility representation of individual preferences. In this section I

take a similar approach to modeling preferences and investigate extensions of

the material developed above to the case here. The focus is on ecological

uncertainty, that is, on supply-side uncertainty. Given a project, there is

a probability structure on environmental quality induced by the probability

structure on ecosystem functioning. To gain an expected utility representation,

a static problem is analyzed. In section 7 I consider a two-period problem.

Let (Q, T, p ) be a probability space. The function f defined in (1) can

be turned into a random function representing the two sources of ecological

uncertainty in the following fashion. Let

= {f: Em x E x + Em: f if continuous,
is Borel measurable relative to T for all fixed

(g,v) e E x E, and p - integrable}.

Assume

A5.1: f e (f, ... fF) fi for all i,

with ri = Prob [f = fi].

Then, the induced probability measure on environmental quality, conditional on

the project v and initial (non-random) enviornmental qualtiy q is

P (Q) = i P{@ e Q: f(qo v, W) e Q1} Q i

for Q1 e (Em), the Borel sets of Em.

In this section it is supposed that the individual has preferences on the

space of probability measures on (Q1) which satisfy the non-Newmann and

Morganstern axioms. Formally, let L be the space of lotteries on environmental

qualtiy, i.e.,
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L = {V(Q1) v e A}.

Axiom 5.1: The individual's choices from L are representable
by a binary relation R which satisfies

(i) is a weak order

(ii) (p1 R 2) => apl + (1- a)p3 R ap2 + (1 -a)p3

for p , p , n c L and ac(O,1)

(iii) ( 1 R p2) and (P2 R p3) => apt + (1 - a)p3 R p2

and p2 R 81 + (1 - )p 3 for some a, $ e (0,1)
1 2 3

and p , p , n E L.

Then one can show

Theorem 5.1: For all p , v e A, let the sets {ip e L:,v R p° } and

{p e L: po R p} be open in the weak topology and strictly
convex. Then there exists a continuous function

V: E3 n + 2m+l + E such that

P R <=> IfV( )d > f V(. )dp° ,

where
sup

V(PO' P1, w, cO, q,' q1
) = C1 E B(Po' p'1 w, cO)

U(co' q0 , c1 , ql) for B(.) = {cl: aP 1C1 < w1 + a w2}.

Moreover, this supremum is attained, and

C1 E arg max U(-) is continuous.
C1 E B(-)

Proof: The existence of the functions U and V follow from Axiom 5.1
and Fishburn (1970), Theorem 8.4. Continuity of V follows from
openness of the upper and lower contour sets (Varian, 1978).
That the supremum is attained derives from the Weierstrauss
Theorem, the continuity of U and the compactness of B(*).

Upper semi-continuity of c1 follows from the maximum principle

of Berge (1963); but c1 is unique due to the strict convexity

of the upper contour sets of p, and therefore cl is continuous.

To define welfare measures for changes in the measure pv due to choices

of v E A, let p° be the measure induced by project 0 E A. For further

reference, let F°(q,) and F (ql) be the probability distribution functions
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for P° and p . There is a one-to-one correspondence between p and F (Ash,

1970). The compensating option price (COP) and equivalent price (EOP) are

defined implicitly by

fI V(p, q, w - COP(v))dp v = fJ V(p, q, w)dp°.

fI V(p, q, w)dp v = Jf V(p, q, w + EOP(v))dp.

These, of course, are natural analogs of the cv and ev measures of welfare

change defined in Section II. In most of the option value literature, the COP

measure is called the option price (e.g. Smith, 1983; Freeman, 1985). As

discussed in the introduction, considerable attention has focused in this

literature on the relationship between COP and the expected value of consumer

surplus. The motivation for this concern is two-fold. First, in the absence of

contingent claims markets, or the ability to extract ex-post compensation from

agents, it is thought that COP is the proper measure of ex-ante WTP for the pro-

ject. Second, since consumer surplus measures are used to determine project

choice (as in Section 3 of this paper), investigators are interested in

whether use of consumer surplus over or under estimates true ex-ante WTP.

One difficulty with this discussion is that the COP measure only is an

appropriate index of welfare when binary choices among projects are being made.

This is for the same reason that the cv measure is inappropriate. This is

stated formally in the following theorem.

Theorem 5.2: The COP(v) measure is not a valid measure of welfare
change.

Proof: Define certainty equivalent environmental quality levels
CEQ(p, w, co, 1i) by

f V(p, q, w, co, q)dp = V(p, CEQ(-), w, Co)).

Then by definition,

V(p, CEQ(p, w, co, i) w - COP(v),c )) =

V(p, CEQ(p, w, C0 , op), w, C )).
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But, by arguments in Chipman and Moore (1980), COP(v) only
is a valid index for binary choices. If there is more than
one v e A other than v = U, COP may not rank these correctly.

In their analyses of option value, Schmalensee (1972) and Bishop (1982)

uses the EOP. Of course, whether EOP or COP is used will not matter if there

are only two possible projects.

As discussed above, much of the option value literature is concerned with

the relationship between an ex-ante measure such as COP or EOP and the expected

value of ex-post measures. Freeman (1985) has pointed out that the supply-side

of many of these analyses is a special case of the more general case of a change

in distribution that he (and I) consider. In particular, these analyses

presume that only type (iii) uncertainty, demand uncertainty exists, substitute

two degenerate measures p° and pi on the supply side, and let m = 1.

Briefly, the formulation is as follows. Let V be the individual's indirect

utility function, a Borel measurable function of w e Q, and let pD be a probabi-

lity measure on the a-algebra on Q. On the supply side, assure that Bi and

p both are degenerate, assigning probability one to outcomes q and

q respectively. Then, in state 0, the equivalent variation ev(0) is

V w)(p, ) V(p, , , w + ev(3)),

and the expected equivalent variation is

fev(p)dFD(B).

The following result has been much-discussed.

Theorem 5.3: With p and pi degenerate and p non-degenerate, EOP
can be greater or less than expected equivalent
variation.

Proof: The proof follows that of Bishop (1982), where our definition
of ev is substituted for his.
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Note that in the formulation in Bishop and elsewhere (e.g. Andersen, 1981)

it is assumed that under 0 e A, ql < q1m where qmin is the minimum quality

such that the site is not available. This is formalized as q1 => Clj = 0 where

Clj is visits to the site and is accomplished by a pricing function p(v) with

Plj ( U) =; Plj ( v) = Plj < -.

The literature which addresses ecological uncertainty in the absence of

preference uncertainty is somewhat confusing regarding definitions of equivalent

and compensating option price. In the definitions above, equivalent option

price (EOP) uses the situation without the project as a base adn asks how much

money must be given to the individual to forego the benefits induced by the pro-

ject. The compensating option price (COP) uses the situation with the project

as a base and asks how much can be taken away from the individual to return

him or her to the pre-project level of utility.

In the analyses by Bishop (1982) and Freeman (1985) of ecological uncertainty,

only two situations are compared; thus, the difficulty of ranking projects by

the COP measure may not arise. However, it is important to note that the proof

of Theorem 5.2 used a certainty equivalent approach. Iihen one defines a welfare

change measure for each state, then which measure is appropriate may depend on

whether the before-project or after-project probability measure is degenerate.

Both Bishop and Freeman study a model with only two possible outcomes, one

of which corresponds to a level of quality such that use of the site is zero.

They then define the ex-post compensation measure in the state in which the

resource is available by income change that equates indirect utility with and

without the resource. This is the natural approach. Here, I consider a model

with many possible states. Thus, the ex-post measure for each state is defined

relative to with and without project realizations of quality. That is, if
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q° E Q is the realization without the project and qV Q is the realization

with project v C A, then ev(q , qV) and cv(qV, qO) are defined implicitly by

(suppressing p)

V(q , w - ev(q ,q )) = V(q, w)

V(q° , w) = V(q, w - ev(qv, q0 ))

In the most general situation in which there is risk about environmental

quality both with and without the project. Then expected values of ex-post

welfare measures are given by

f f ev )Y(q q )dFv (qv )d FO(qo) = I cv(qVqo)dFO(qO)dFV(qV)

Having chosen a base outcome given by the first argument of the ev(.,.) and

0 V' 0
cv(.,.) function (e.g., ev (qO, qV) gives the ev of a move from outcome q°

without the project to outcome q with the project), both of these will correctly

0
compute the welfare change in each state. That is, conditional on outcome q ,

the L.H.S. measure will assign the same welfare measure to two indifferent with-

V
project outcomes q . The same is true for the R.H.S. where the conditioning

base event is the with-project event q .

Returning to the analyses of Bishop (1982) and Freeman (1985), consider

two special cases. In the first, the situation without the project is risky,

while the project provides a desirable sure outcome, and in the second, environ-

mental quality without the project is given by a sure undesirable outcome, while

the project provides a risky quality. These correspond to Case B and Case C in

Freeman (1985), respectively; he notes that Bishop studies Case B.

Consider first Case B. Here, since the situation with the project is

fixed, it makes some sense to use the cv measure in each state. Then, a fixed

base is used for comparison to each of the risky outcomes without the project.

It is easy to show that the COP is greater than the expected value of the

ex-post cv measures, at least for a finite number of states.
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Theorem 5.4: (Bishop, 1982) Let F°(q) be non-degenerate with

probability mass o°= (1°, ... , 11I) and let FV(q)

v
be degenerate, with Prob [q = qV] = 1. Then, if V(.)
is strictly concave and increasing in income, the
COP is greater than the expectation of cv.

Proof: The cv measure in state i is defined implicitly by

V(qV,w - cvi) = V(q,w).
Compensating option value is defined by

Xi ni V(qi,w) = V(qV,w - COP).

By concavity of V(w,q) in w,

V(q ,w - cvi) < V(qV,w - COP) + (COP-cvi)V (qV,w-COP).

Since the LHS is equal to V(w,q ) by definition,

multiplication by HII gives

0 V(qiw) < TIV(qVw-COP) + nIo(COP-cvi)V (qVw-COP).1 1 1

Summing over i yields

lii V(qi,w) < V(q ,w-COP) + V (qV,w-COP)[COP-°n icv ].

By the definition of COP,

0 < V (qV,w-COP)[COP-li cvi],w ii

which provides the result.

Actually, with many possible states, the use of the cv as the ex-post compen-

sation measure and COP as the option price, and the definition of cv in each

state allows a simpler proof than that used by Bishop in the two-state world.

Next, consider Case C. Freeman (1985) uses a cv measure and proves that

the sign of option value (the difference between COP and the expectation of ev)

is ambiguous. Here is presented a similar result, and also it is shown that

with an equivalent option price approach and use of ev in each state, the sign

of option value can be determined.
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Theorem 5.5: Let F(q) be non-degenerate with probability mass

nv = (1 , ... , T), and let F°(q) be degenerate

with Prop [q=qo] = 1. Then, with V increasing

and strictly concave in incore, the relationship
between COP and expected cv is not determinate.
A sufficient condition for COP - E(ev) to be

positive is that the marginal utility income is
the same for each state.

Proof: The cv in each state is defined by

V(q ,w-cvi) = V(q,w)

and COP is defined by

iRi nV(qiw-COP) = V(q°,w).

By strict concavity of V in w,

V(qi,w-cv i ) < V(q ,w-COP) + [COP-cvi]V (qi,w-COP).
w

<=> V(q°,w) V(qVi,w-COP) + [COP-cv ]V (q',w-C(P)

<=> ni V(q°,w) < nH V(q , w - C OP)+H v [CO P - cv ]V (ql,w-COP).

This holds for each i, whence by definition of COP,

U < 1i IIN[COP-cvi ]V (q ,w-coP)

The difficulty in establishing a sign for option value

is presented by the marginal utility of incorme. If
i

this is the sane at (w-COP) for each q , then this
term can be factored out to yield

O < COP - i n cvi.

The value of an equivalent option price approach is that the marginal utility of

income term appears only with a fixed state. Thus, equivalent option value is

positive.

Theorem 5.6: Assume the conditions of Theorem 5.5. Then EOP is
greater than E(ev).

Proof: The proof is exactly the same as for the proof of

iTheorem 5.4 using EOP and ev defined by

V(q ,w-ev ) = V(qi,w)

iV(qi,w) = V(q°,w-EOP).
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The discussion of the relationship between the ex-ante measures of COP and

EOP and the expected value of ex-post measure cv and ev is due to a desire to

determine if use of cv and ev in project evaluation systematically over or under

estimates true ex-ante WTP. However, two points may be made. First and most

obviously, knowing that expected ev underestimates EOP is not particularly use-

ful if you don't know by how much. Thus, Smith (1984) tries to find a bound for

the size of the discrepancy. Unfortunately, Smith's approach requires a fairly

strong restriction on preferences and only works for two possible states.

Second, most analyses of projects do not use the expected ev or cv measure.

Rather, they ignore uncertainty altogether and presume that the expected outcome

is the true outcome. Thus, they calculate the H{icksian welfare measure at the

expected value. formally, let

ev(q) = ev(fndFv(g))

ev(q ° ) = ev(fqdF°(q)).

f ev( ) > ev(), then the project is said to make the individal better offIf ev(q ) e ), then the project is said to make the individual better off

and the analysis proceeds as in Section 3. It may be possible to derive an

approximation to EOP based on readily observable variables and the deterministic

ev using expected values. The author will present such an approximation in a

future paper.
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6. Individual Uncertainty: Generalized Expected Utility

The model of the previous section, which predominates the option value

literature, is static; this was captured in the previous section by assuming

that C0 is fixed and concentrating on the relationship between C1 and ql. As

well, it was assumed that C1 could be chosen after observing ql. When this

assumption is dropped and the model becomes dynamic, there are two difficulties

that arise.

First, atemporal von Neumann-Morganstern (vN-M) utility theory applied

in a dynamic setting requires that preferences on income (or here, environ-

mental quality) be defined solely on income vectors. In the language of

dynamic programming, a plan for choosing actions given states induces a

probability distribution on the vector of payoffs. As optimal plan (if one

exists) is one that maximizes the expectation of vN-M utility function on

such vectors. As pointed out by Kreps and Porteus (1978), this rules out

the possibility that an individual may prefer earlier to later resolution

of uncertainty. They illustrate this by the following example. Suppose

the payoff vector is (5,10) with probability 1/2 and (5,0) with probability

1/2. Then under the vN-M axioms, since 5 is the first-period payoff for

sure, the individual should be indifferent between a flip of a fair coin

at t = 0 and a flip of the coin at t = 1 to determine which vector obtains.

In fact, individuals may prefer earlier resolution of uncertainty.

Kreps and Porteus (1978, 1979) derived a generalization of atemporal

vN-M theory, which they called temporal von Neumann-Morganstern utility

theory. In their theory, uncertainty is dated by the time of its resolution.

These entities are called temporal lotteries. They present axioms for prefer-

ences defined as these temporal lotteries which allow a temporal vN-M



-31-

representation. Below, their framework is applied to our problem concerning

environmental quality.

The second problem that arises concerns induced preferences when a

choice must be made before uncertainty resolves. Even if all uncertainty

resolves at a single date and the underlying preferences on consumption

have an expected utility representation, induced preferences will, in general,

not satisfy the independence axiom and will be "non-linear in the probabil-

ities." This has been observed by Mlarkowitz (1959), lossin (1969), Spence

and Zeckhauser (197z), and Dreze and Mlodigliani (1972). Kreps and Porteus

(1979) derive necessary and sufficient conditions for induced preferences

in the temporal case to take the temporal vN-tM for;. These are quite strong.

Machina (1982, 1984) has proposed an approximation approach called generalized

expected utility theory, which copes with this difficulty without sacrificing

the basic foundation of expected utility theory. In this section, these results

are developed in terms of a model of ecological uncertainty.

Uncertainty is represented in same way as in the previous section. lJe

assume that the space a of possible realizations of the "experiment" giving

rise to environmental uncertainty is compact. Let )t be the space of Borel

probability measures on Qt.

Lemma 6.1: Dt is a compact metric space.

Proof: By assumption, f is continuous function onto

Qt for fixed qt- 1 By Theorem 3.5 in Kolmogorov and

Fomin (197U), Qt is compact: 0t E" so it is a

metric space. The result follows froi Parthasarathy

(1967), Theorem 6.4.

Endow D with the weak topology. If g(q) is continuous, then the weak

topology is the weakest topology for which the functional f g(x)dp(x) is
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continuous for pU D. Alternatively, one could give Dt the Prohorov metric,

since convergence in the Prohorov distance of a sequence of measures on a

Polish space is equivalent to weak convergence of this sequence (Lukacs, 1975,

p. 74).

Clearly, the probability measure on 1 is conditioned on the realization

of q0 due to the strucLure of the function f. Thus, define D( as the space

of all Borel probability measLres on (0 x U). Ilerents of DO are called

temporal lotteris;. I introduce the following axioms on individual prefer-

ences regarding probability measures.

Axiom . 1: T'e relation R is asyrmletric ;irc
neigatively transitive.

Axiom 6.2: The sets [jp E DO : pUK p] and

[pO E DO : P(' R pU] are both open

in the weal topolory.

Axiom 6.3: If p( R P nd a e (0,1), tlheo

iapu ( - a) p'] R [rap + (1 - a) p6i.

Axiom 6.4: Let Pio be degenerate with outcome (q),pl).

If (q,pl) :1- (Ou,pl ) and a £ (0,1), then

[a 0 , apl + (1 - a) pP I|,, al -r (I - a) p

Axiom 6.1 and 6.2 are obvious analogs of Axiom 5.1 and the condition of

Tlieorei. 5. regardinlg continuity. *Axior o.J is a subs t i ttitltioP axior sirilar

to Axiom 5.2 for time zero; Axiom 6.4 is a substitution axior for tire ].

Ihe folloving restates Theorr 2 in irep:;s nd c )rlcr;s (l/c7).
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Theorem b.1: Axioms 6.1 to 6.4 are necessary and

sufficient for these to eyist continousl

ruinctions Vl : x'! X i i; ! i i L .'

..;7itr L ]ipc'resiig in its second argument

such that if V0 : Q0 x D1 + E is given by

tFi 1el~ p i, iK p,' i i; ,1,! c'' i' 

r , j I )=*' / f ' ' f i jo ) 
r
i I

Olen II \! I I

Proof: Kreps and Porteus, 1978, Theorem 2.

The relationship hct ccun t ur.i-r; I ' v'.- tlo" ;is ; i l-, .' :,.i ,,

*. , r i.rl cheory studied the previous section is given by the followiig

result.

! I ;t ; .. Il l t K.: , J . i ' , f I ' -

tl i,,i. l i.;sp rle nt:ltion collapses to

the atemporal vN-N utility. This is
the case if .lni( orl]" i!, in ;!,(iri in t-

is- :* A .i. i;. I LI t).- 

ic ,al - (it - ai ) .. I a(,;<p) - ( L -a)(,Oi.),

where 1 is the equivalence derived from R in the usual way.

Proof: Kreps and Porteus, 1978, Theorem 3

and its corollary.

Thus, the kinds of analyses usually undertaken in the literature of

option value, where atemporal vN-I utility is assumed, can be extended

without modification if preferences satisfy the substitutiorn ;i:il: s and

are neutral to the resolution of uncertainty. However, it seens unlikely

that individuals are neutral with respect to the resolution of uncertainty.

Consicer now the induced preference problem and the relationship

between the timing of choices of CO and the tining of the resolution of
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uncertainty. As mentioned above, induced preference generally will not

have an expected utility representation. In fact, it generally will not

have a temporal vN-t1 representation. Kreps and Porteus (1979) derive necess-

ary and sufficient conditions for the former to take on the latter form.

Note that in the above formulation, the first-period consumption

decision was not explicitly introduced. At date zero, after observing the

outcome of the temporal lottery pi, the agent chooses C( from B(.), the

budget set. Note that it is possible to have uncertainty enter the

buc',,t Set (via income or price uncertainty), so that the constraint set

for time zero decisions depends on the realization of the date zero lottery,

as long as it does so continuously.

In the previous section, the conditions of Theorem 5.1 were stated

assuming q0 fixed. Alternatively, it could be assumed that the individual

chooses (C0,C1) after observing the outcome of (qo ql). I now uncouple

these. Continue to assume preferences representable by the expectation

of the continuous vN-M function V: QO x Q1 x B + E, just as in Section V.

Here, however, after observing qu, the agent chooses C) to maximize

*

fQ (Q ) V(qO,ql,CO,Cl ) d 1l'

The following states standard properties of value functions.

Lemma 6.2: V* : Q0 x D1 + E defined by

V*(qo,pl) = sup fQ1 V(O,lC C')d Pl
C(eB(. ) (') V(o o

is continuous, the supremum is attained,
and C*: Q( x D1 + B is continuous.

Proof: The proof is a fairly tedious restatement
of results from the dynamic programming
literature (see Kreps and Porteus (1 9 7 9a))
and not reproduced here.
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Induced preference can now be edfined on DO by

R0 11 if fQ(Q) V*(q0 , 1) d 0 > SQl(n) > v* (q0o,1) d po

Lemma 6.3: R0 is asymmetric, negatively transitive,

continuous, and satisfies the substitution
axiom for t = 0.

Proof: Kreps and Porteus (1979) Proposition 2.

Thus, induced preference satisfies axioms 6.1 to 6.3, and by Theorem 6.1,

induced preference is temporal vN-M if axiom 6.4 holds, i.e., if the

substitution axiom holds for t = 1. The following results follow from

Kreps and Porteus (1979).

Theorem 6.3: Induced preference is atemporal vN-
if and only if, for all

1l and 1', C (1p) =C (pi).
1 0 1

Proof: By Kreps and Porteus (1979) Lemma 1,
the C* : QO x D1 + B given by

C*(q0,'1) = arg max V(qo,ql,,W1,CW CoCl)dBl,
C0 E B(-)

is an upper-semicontinuous correspondence.
By Proposition 2 and Corollary 1, induced
preference is atemporal vN-M if and only if

C*(qol) n C*(q,p 1) = 0. Theorem 6.3

follows from this result and the fact that
C*(qO, p1) is singleton-valued under the

assumption of that upper and lower contour
sets on Do under R are strictly convex sets.

Theorem 6.4: Induced preference is temporal vN-M if and
only if

(i) (qo0,l) I (q0,i) implies C*(q0,p) =

C*(qo, p1)

(ii) (q0 ,ul) R (qo,11) implies (qo, a1 +

(1 - a)p1) R (qOil) for all a e (0,1).
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Proof: Kreps and Porteus (1979), Proposition 4
provide a statement for non-singleton C*.
The result is immediate.

These results are quite strong and not easily checked. Sufficient con-

ditions take the form of a restriction on the form of the utility function.

The following result generalizes one in Kreps and Porteus (1979).

Theorem 6.5: Suppose that

V(qo q1 , w*0 W, Co, c 1 ) = 41(qo, co ) +

42 (qo' C0o) 3(qo q1' c1), let

U1 (qo q1,' Co) - 3 and let uo(q, 8)

E max +1 + 42(j)B for 8 E T(q), where
c eB

0

T (q) = { e E: E = l( ) 3 (.)d 1 for U e D}.

Then if oi is strictly increasing in 8,

induced preference is temporal vN-l1 with
U1 and o0 representing induced preference.

Proof: It suffices to verify the substitution
axiom for t =1; the result then follows
from Theorem 6.1. This is obvious from
the fact that V is linear and increasing

in 8 and a is linear in p1. By hypothesis,

max(4 1 + 42 B(u1)) - max (41 + 2 B(.i))>). But,

max [n 1+ I2 (a[ +(l-a)i))]-[max(4 1 +p 2 5(({+(l-a)i )]

= max(4 1 + u2 acB(u 1) + 42(1 - a)(p1)

- max(l 1 + 4d ac(p{) - (j(1 - a0()

= max( 1 + i2 aB(,1)) - max(4[ + c a(i(p) > 0.

While this condition is straightforward, it is restrictive. Kreps

and Porteus (1979) develop an approximation to induced preference which is

temporal vN-M, but do not claim that theirs is a "best" approximation in any

sense. Machina (1982, 1984) makes use of "generalized expected utility

theory," which does make use of a best approximation under the assumption

that induced preferences are Frechet differential.
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Before embarking on this approximation procedure, let us summarize

what the issues are. The agent is assumed to have a vN-M utility function

defined on (q0, CO, al, C1). When C1 is chosen, everything else is known.

Maximizing out C1 provides the function V(q(, ql, CO). Given some q0, the

distribution on ql is known, based on the function f. First period consump-

tion CO is chosen after qo is observed, but before ql is. Thus, one can use

Co(q 0, Fl(ql q0 )) as this optimal choice and define

V(q) = JV(q 0 , q ,. C*(q(, F 1 (q 1 | q()))dlI1 (q1 ().

Overall rankings of temporal lotteries F0 on (!() x D are made on the basis

of J(Fo) = f (qo) dF°(qO).

Now, it is clear that preferences on temporal lotteries are linear in

the probabilities given by F . However, the induced preferences on F1 are

not linear in the probabilities; Kreps and Porteus show that they are convex.

Machina's (1982, 1984) insight uses intuition from ordinary calculus: a

differential of a non-linear function is the best linear approximation to

that function at that point. Thus, the best linear approximation to the

non-linear preference functional is provided by differentiation provided it

is smooth. The appropriate concept of differentiation here is Frechet differ-

entiation.

I begin the application of Machina's analysis to the option value problem

by converting the above analysis to the use of distribution functions. For

i i A

each pj b. there is a unique distribution function F. in the space D. of
J1 J Jl

distribution function on Q(2). Endow the space D. with the weak topology,

as with the space D.. Machina uses the notion of the Frechet derivative of

the value functional. This requires that one define a norm on the space

Dj = {(F* - F) I F, F" e D., X e }.

Then the following result holds.
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Lemma 6.3: The topology of weak convergence on D. is induced by

the L metric

d(F,F*) = F*(q) - F(q) dq.

Proof: tiachina (1982), Lemma 1.

The norm on AD. is then | X(F* -F) X | d (F,F*). One can now discuss the

differentiability of the induced preference functional

J(F1 ) = fQ ( a ) V(I qC, o(q ,F 1 (ql4 oo)) dF 1(l ao

Assume that J(F 1 ) is once Frechet differentiable. That is, assume that

there exists a continuous linear functional t2 (*,F 1) on AD1 such that

lim J(F*) - J(F 1 ) - ~(F1 - F1 ; Fl) =
IIY* - F II F 0 --- l---- ^ -^---IIF* - F i 

Machina (19b2) shows that existence of p(., *) implies the existence of a local

0 s 1
utility function 6(', F1) such that for any F1 and F1 e D1

J(F) - J(F) = (ql; F7) [dFl(gl | q) dFl(ql q) + (F - F1 .

where 0(-) is a function of higher order than its argument. Thus, the difference

in preference the functional consists of a linear term plus a higher order tern.

The linear term is the difference in the expectation of 9(.) with respect to

the two distributions. Thus, the induced preference ordering takes on a local

expected utility representation.

These local utility functions can be used to analyze "large" changes in

distributions by use of a path integral. Let 8 £ [0,1]; we define the path

{ ( ; a) I e [0,1]} from F° to FV by F(.; 8) = Fv + (1 - B)F ° . Then

V(F v ) - V(F ° ) is given by the integral of dV(.; 8) dB as 8 runs fronm to 1.

Machina (1982; 1984) provides a number of useful results regarding the

local utility functions 0(°,.) and the overall rankings of temporal prospects

based on the funcation J(o). For example if all local utility functions are
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concave, then overall choices will exhibit risk aversion. Thus, one would expect

results that rely solely on risk aversion to carry over to the generalized case.

Unfortunately, this is not so for Bishop's proof of the non-negativity of

supply-side option value. The reason is familiar: establishing the sign of

option value for supply-side uncertainty requires a singly utility function.

Here, the utility function corresponding to F is different than the utility

function corresponding to FV if F° and FV are sufficiently different. Thus, for

projects which significantly will affect environmental quality, the assumption

of one utility function cannot be used when there is temporal risk. Formally,

I state this as

Theorem 6.6: Under temporal ecological risk, the sign of supply-

side option value is indeterminate, if F° and Fv
differ "significantly."

The main result of this section, Theorem 6.6, is a negative one. The sign

of supply-side option value is indeterminate when risk is temporal under con-

ditions that allow its determination when risk is timeless. However, Machina

(1984) derives a numberof useful results concerning monotonicity and concavity

of the induced utility function V(qo,q1 C*(.)) and distributions that are ordered

by stochastic dominance or differ by increases in risk. I will not repeat these

here; the results generally are not surprising given that most propositions in

the timeless setting relying on risk aversion carry over to the temporal setting

if all of the local utility functions exhibit risk aversion. While many of

Machina's results could rule out from consideration certain projects in A, it is

apparent that a total ordering on A generally would not be forthcoming based on

these results. For example, if a project induces a distribution which differs

by a mean preserving increase in risk from the distribution induced by v° , then

v P* v° never would hold if individual utility functions are concave in q1. But

certainly most projects of interest will give rise to changes in mean as well as
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increases or decreases in risk.

Of course, this does not mean that welfare evaluations cannot proceed

when individual's face temporal risk. As with the static option price, one

knows what one wishes to measure and one has techniques available, i.e., con-

tingent valuation methods, to obtain it. The relevant measure is EOP defined by

J(F (q), w) = J(Fo(q), w-EOP(F, F , w)),
0' 0 0

where J(F, *) is defined as above an alternative temporal lotteries, where

FV is the temporal lottery induced by project v e A and 0 e A is the "project"

which is defined by the status-quo. What one is unable to obtain in this frame-

work is the sign of option value. This seems to be an elusive quest.
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7. Project Choice Under Uncertainty

As in the case of certainty, it is up to the central planner to select a

project from A, based on individual willingness-to-pay for them. Three issues

arise here. First, suppose that there is no planning uncertainty. That is, the

planner is able to obtain EOP (F° , F , w) for each individual and for each

v e A. The analysis proceeds exactly as in Section 3; based on the weights bi

of the social welfare function, the planner selects v e A such that the weighted

EOP is maximal, after incorporating a feasible financing scheme for the project.

The second question that arises concerns the possibility that the planner's

preferences can be formulated over projects such that the planner's preferences

satisfy the von Neumann-Morganstern axioms. Clearly this will only be the case

if individual utilities satisfy these axioms. Thus, in this section I consider

a static model. The answer to this question, based on Wilson's (1968) analysis

of the theory of syndicates, demonstrates the appeal of the linear welfare func-

tion. This is undertaken below.

The third question concerns the assumption, maintained throughout the paper

so far, that uncertainty is exogenous. As Bishop (1982) points out, there is a

connection between supply-side option value and the literature on quasi-option

value (Arrow and Fisher, 1974), in which learning may take place.

Regarding the question of project selection, I now incorporate into the

risky choice problem the financing decision, and determine a relationship bet-

ween group and individual payoffs as functions of the project and outcomes of

the random event.

Suppressing dependence of a previous quality, if project v e A is imple-

mented and event w e S obtains, realized environment quality is f(v,w).
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Individual i's assumed von Newmann-Morganstern utility function is

Vi(q, w) = V i(f(v,w)w) and equivalent variation is defined by

V (fuw)w - ev (V,a)) = Vi(f(v,w),w).

As in Section 3, under financing scheme s(v) E S(u), i pays s (v). The payoff

to person i from implementation of project v is m (v,w) = evi(v,W) - si(v).

Since environmental quality is a public good, the group payoff from imple-

menting project v is

g(V,w) =E mi(v ,t) = levi(v,w) - k(v).
i i

To develop a tie to the linear welfare function of section 3, begin by sup-

posing that the planner seeks to implement a financing scheme that is Pareto

efficient.

Denote the expected utility of the ith agent under project v by

fi i Ji(v,si(v), Fi )
-fvi(f(v,), w - s (v))dF (w).

The standard proofs of the following lemmata are omitted.

Lemma 7.1: The set T(v) defined by T(v) = {Jl(v,s ,Fi): s 1 e S(v)}
is convex.

Lemma 7.2: If s(v) is Pareto efficient then there is a set of

weights {bi(v), i = 1, ... , I} with hi(v) > 0 such
that s(v) solves

max I bi(v) J(v,si(v),Fi(W).
s(v)ES(v) i

The following result is stated by Wilson (1968).
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Theorem 7.1: s(v) is Pareto efficient if and only if there exist

non-negative weights {b1(v)} and a function X(v,w)

such that

(i) s(v) c S(v)

(ii) b v (.) hi(w) = X(vw) X = 1, ... , 1

for almost all w C Q for which bi(v)hi(w) > 0, where

h = Fi (), i.e., h is the density corresponding to

i's subject probability measure on w.

"Proof": By Lemma 7.2 the planner wishes to solve a constrained
minimization problem, with weights defined by the

tangent hyperplane to T(v). This hyperplane exists by
Lemma 7.1. The function X(v,w) can be thought of as

the Lagrange multiplier in the constrained maximization

problem, where the constraint is given by (i). Thus,
s(v) and X(v,w) can be found as by finding (pointwise)

a paddle-point of the Lagrangean, i.e., by solving

sup inf L(bi Ji hi,k)
s X

where

L(X) = { bi(v)V(f(v,w),w-si(V))hi(w) - si(v)X(v,W)}

This theorem concerns the choice of a Pareto efficient financing scheme.

The central question of this analysis concerns the overall problem faced by the

planner, which includes the choice of a feasible project. The central question

is whether there exists some overall utility function such that, in choosing a

Pareto efficient project, the planner will maximize the expectation of this

function. The answer to this question is stated in the next proposition.

Theorem 7.2: There exists a group utility function V (q,w) such

that the choice of a Pareto efficient project involves
solving

max fV°(f(v ,w),w)dw.
vEA

if bi(v) are independent of v.
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Proof: Given Theoren 7.1, the overall problem is to solve

sup f inf {Ak + X sup [bi Vi hi - Xsi]} dw.
veA X i seS

Define the "rent" measure

i(d i ) - sup[Vi(q,x) - d.x].
1

x

Then the above probler can be simplified to read

sup f inf {It[b hi i( A .)] - Xk}dw.
vEA X i b'h 1

Define

V°(f(v,w),w,v) E inf {i [bi(v)hi pi( X ) - Xk}.
X i bilh 

Then the preferred project solves

sup j V (f(v,W),w,v)dw.
VEA

This V° will depend on v only through the transition
equation on environmental quality if the weights

bi(v) are independent of v.

The theory of syndicates, applied here to the analysis of provision of a

public good, concerns the relationship between individual preference represen-

tations and group preference representations. The key result is that if the

social welfare function is linear (as in Section 3), then there is a "utility

function" for the planner such that choice of efficient projects amounts to

maximization of the expected value of this function.

It is important to note that the only source of uncertainty in the model is

ecological uncertainty. There is no planning uncertainty (in the language of

Section 4) since the planner is assumed to know the individual vN-M utility

functions and the individual probability density functions. With planning

uncertainty, the planner does not know these individual preferences.
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The case of pure planning uncertainty raises a number of interesting

problems of analysis. The first concerns the form of the planner's objective

function. Anderson (1979) has proposed that planner's preferences in this

situation be assumed to take an expected utility form. This approach might be

considered to be controversial. Second, since uncertainty gives rise to possi-

bilities for learning, there is a possibility that the planner can devise a

mechanism to discover the true preferences of individuals. This issue is the

topic of the large literature on incentives. That is, can a principle (in this

case the planner) design an incentive scheme which induces an agent (individuals

in society who care about the project) to act in accord wtih the principle's

goals (reveal their preferences for a public good). The theory of incentives

has been reviewed recently by Laffont and Maskin (1982). They study par-

ticularly simple forms of individual utility functions (quasi-linear) and

planner choice rules which are similar to those posited here where the indivi-

dual "weights" are the same for all individuals. While it appears that the

literature abounds with impossibility theorems, these are often seeking incen-

tive schemes with quite strong properties. It would seem possible for the

planner to learn something of individual preferences which will be of use.

The third issue is that raised by the literature on quasi-option value.

Until now, all of the timing of resolution of uncertainty relative to the timing

of choices in projects and consumption has been assumed exogenous. The QOV

literature seeks to deduce the effect of possibilities for learning on

willingness to undertake projects which are irreversible.

In terms of the current model, let A = A x A1, where At = [0,1]. Suppose

that Int At
= for t = 0,1, and that projects are irreversible in that

v = 1 => v = 1, while v = 0 is consistent with v = 0 or = 1. The QOV

literature then compares two decision frameworks. In one framework it is
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assumed that no new information will become available. Thus, the planner

chooses immediately from A one of (0,0), (0,1) or (1,1). In the other decision

scheme a sequential decision is possible, i.e., conditional on vo, and the out-

come of an experiment y s Y that provides information, the planner chooses

* *
v1 (Voy). Clearly, if v = 1, then v1 = 1 irrespective of the outcome of the

*
experiment. However, if v = 0, then vl (U,y) is undertaken. Using a backward

induction approach, the optimal choise of v can be determined based on a like-

lihood function for the experiment. Provided the information service Y has

value (increases expected payoff) the central result of the QOV literature is

that, if v* = (1,1) is optimal in the non-sequential decision framework, it may

*
be that v = 0 is optimal in the sequential decision framework. The difference

0

in expected payoff with V = 1 in the non-secuential and sequential cases is

QoV.

This result is intiutively plesing and corresponds to Nlachina's (1984)

observation that an individual never will prefer a temporal prospect to an iden-

tically distributed timeless one. In the context of the current model, it

appears that merely observing the outcome qo constitutes learning since the pro-

bability distribution on ql is conditioned on the outcome ao due to the nature

of the transition equation f. Thus, learning here can be passive and involves

no cost. Of more interest, since this surely will be recognized by a planner

and built into the sequential decision framework, is the possibility of actively

learning about which f e D is the true ecological process function. An experi-

ment which involves this additional source of learning would be sufficient for

passive observation of q . This would give rise to an additional source of QOV.

Mluch of the analysis in the QOV literature assumes that Int At = C, as

above. Graham-Torasi (1983) presents a model of pure planning uncertainty
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for the case At = [0,1] in which the concept of "quasi-option tax" (QOT) is pre-

sented. Although his model is very different than that considered here and so

the details of the analysis are not relevant, QOT is an adjustment to initial

development benefits in the learning case that would lead to the same level of

initial development as in the non-sequential case. Moreover, QOT is a poten-

tially estimable number, given bythe expected present value of the second period

loss if an irreversible decision is implemented at the myopically profitable

level, where the loss is averaged over the possible states of nature under which

the decision-maker would reverse the decision if he/she could.
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8. Discussion

In this paper, I have attempted to explore the foundations of supply-side

option value and project appraisal under uncertainty. The key result is the

following: when temporal risk is present, the analysis of option prices and

option values significantly is complicated. Since almost all situations

discussed in the option value literature involve temporal risk, the analyses of

this literature seriously are called into question. However, this is not really

a significant insight since most of the analyses of option value have a negative

result: option value is not determinate in sign. The key insight for the ana-

lytical option value literature is the following: existing studies in which

positive results have been obtained, e.g., Bishop's (1982) result on supply-side

option value and our own Theorem 5.6 in the same area, no not hold in an obvious

way under temporal risk. As well, Freeman's (1984) and Smith's (1984) bounds on

option value would need to be reexamined under temporal risk using an extension

of Machina's (1984) generalized expected utility analysis to the case of state

dependent preferences. An alternative is the use of the restriction of Kreps

and Porteus (1979) to obtain temporal von Neumann-Morgenstern utility represen-

tations. The use of atemporal vN-M representations undoubtedly is too strong.

Another alternative to all of these machinations is to explicitly model the

intervening choices, as in Dreze and Modigliani (1972). This is the approach

taken in the QOV literature. While a complete analysis along these lines is

likely to result in too much deatil so that analytical tractability is lost, for

some decisions (or under separability assumptions) this may prove useful.

Regarding empirical studies, it is clear that the use of contingent

valuation techniques to measure option price holds the key to correct project

appraisal under uncertainty. It may turn out that empirical regularities exist.

My own feeling is that this will not be the case, and such an approach is
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similar to the search for a single discount rate for use in the analysis of

public projects. It is likely that decisions will differ sufficiently that

regularities will not exist.

Regarding the conduct of these empirical studies to determine option

prices, two important points emerge. When setting the context of the questions

in the survey, it is curcial that respondents understand the temporal aspects of

the choices being made. Inadequate attention has been given to this issue in

existing studies. Can individuals change their minds? Will a reassessment be

made as learning takes place? Need payments be equal annual payments, or can

WTP lump-sum payments be allocated through time in any fashion?

A second point concerns the existence of local utility functions. The uti-

lity functions depend on initial probabilities and on all probabilities in a

global analysis. This may prove to be important in teh assessment procedure,

particularly regarding specification bias in regressions explaining willingness-

to-pay.

While the overall results of this paper seem quite negative, this is not

the acutal intent of the analysis. Rather, it is to suggest that much work

remains to be done. But, this is not surprising given the difficulty of

analyses involving both time and risk.
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